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BICYCLES AND SPANNING TREES*

KENNETH A. BERMAN"

Abstract. Let G be a connected multigraph and let (A, +, 0) be any Abelian group. For k an integer,
let A(k) denote the subgroup of A given by A(k)={aA[ka=O}. A bicycle over A is a cycle over A that
is also a cocycle. The set B(A) of bicycles over A determines a group. In this paper we show that the
spanning tree number of G has a unique factorization tit2.., tm such that ti is a multiple of

1, 2, , m and such that for every Abelian group A the group B(A) of bicycles over A is isomorphic
to A(tl) x A(t2) x. x A(t,,). Using this result we obtain a number of results on the spanning tree number
including two formulae for the spanning tree number.

1. Introduction and definitions. Let G be a connected multigraph with vertex set
V and edge set E. All multigraphs considered in this paper will be without loops. A
tree of G is a connected subgraph that has no circuits. A tree may consist of a single
vertex. A spanning tree is a tree that spans the vertices. Throughout this paper will
denote the number of spanning trees.

Let (A, +, 0) be an Abelian group. A weighting of the vertices over A is a mapping
f from V into A. For v V, we will refer to f(v) as the weight off on v. Let Wv(A)
denote the set of vertex weightings over A. The set Wv(A) determines a group where
addition is given by

(1.1) (fl +f2)(v)=f(v)+f2(v)
for fl,f2 Wv(A) and v V. Analogously, we have a group We(A) of edge weightings
over A.

Now consider a commutative ring (R, +,., 0, 1). (Note that (R, +, 0) is an Abelian
group.) The set Wv(R) of vertex weightings over R determines a module over R where
group addition is given by (1.1) and scalar multiplication is given by

(1.2) (Af)(v)= A(f(v))

A R, f Wv(R) and v V. Analogously, we have a module W(R) of edge weightings
over R. If F is a field then the set Wv(F) of vertex weightings over F and the set
W(F) of edge weightings over F determine vector spaces over F.

Orient the edges of G arbitrarily. For v V, let N+(v) and N-(v) denote the set
of edges having head v and tail v, respectively. A cycle over A is a weighting c of the
edges such that for each vertex v V

c(e+) E c(e-).(1.3)
e/ +(v) e-eN-(v)

The set C(A) of cycles over A is a subgroup of WE (A).
For e E let h(e) and t(e) denote the head and tail of edge e, respectively. The

coboundary operator is the mapping from Wv(A) to WE(A) given by

(1.4) f(e) f(h(e)) f( t(e))

for f Wv(A) and e E. A coboundary or cocycle over A is a weighting y of the edges
such that y f for somef Wv(A). The set Y(A) of cocycles over A is a subgroup
of WE(A).

Note that if we reverse the direction of an edge e and replace the weight on e
with negative that weight then a cycle remains a cycle and a cocycle remains a cocycle.
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Thus, in this sense, the definition of a cycle and a cocycle is independent of the
orientation chosen. Cycles and cocycles are studied in electrical network theory [4].
Tutte 11 studied cycles and cocycles over the integers mod k in connection with face
k-colorings of a plane graph and vertex k-colorings of a general graph.

A bicycle over A is an edge weighting over A that is both a cycle and a cocycle.
The group B(A) of bicycles over A is the intersection group of the cycle and cocycle
groups over A, i.e., B(A) C(A) f Y(A). Bicycles, particularly over the field of integers
mod 2, have been studied by a number of authors. See [3], [6], [7], [8], [9].

For k an integer, let A(k) denote the subgroup ofA given by A(k) {a A]ka 0}.
In 2, we show that the spanning tree number of G has a unique factorization

tlt2"’t,, such that ti is a multiple of ti/l, i= 1,2,..., m-1 and such that for
every Abelian group A the group B(A) of bicycles over A is isomorphic to the direct
product group A(t) x A(t2) " x A(tm). We call the factorization t t2" t, the
principalfactorization of t. This result has various implications. One immediate implica-
tion is the following existence theorem. There exists a nonzero bicycle over an Abelian
group A if and only if A contains a nontrivial subgroup whose order divides the
spanning tree number. The latter result generalizes an existence theorem of Shank (see
[6]) on bicycles over a field.

In 3, we obtain a formula for the factors in a principal factorization. In 4, we
show that a planar graph and its dual is an example of a pair of graphs that have the
same spanning tree number with the same principal factorization.

Let Zk denote the ring of integers modulo k. We will refer to a bicycle over Zk
as a k-bicycle. For convenience, we denote the module of k-bicycles by B(k), i.e.,
B(k) B(Zk). In 5, we show that the number/3(k) of k-bicycles is given by

(1.5) fl(k) 1-I g.c.d. (k,
i----1

where t- t t2" tm is the principal factorization of the spanning tree number and
where g.c.d. (x, y) denotes the greatest common divisor of the integers x and y. As an
immediate corollary of this we have/3(k) divides for all k>_-2 and fl(k)= if k is a
multiple of t. We use this to prove a number of divisibility results on the spanning
tree number.

A k-bicycle b is reducible if the weight of b on each edge is divisible by d where
d is a noninvertible element of the ring Zk. Otherwise b is irreducible. Let y(k) denote
the number of irreducible k-bicycles and set y(1)- 1. In 6, we show that if there
exists an irreducible k-bicycle then k is a divisor of t. Further, the total number of
irreducible k-bicycles over all the positive integers k equals the spanning tree number,
i.e.,

(1.6) t= E y(k).
k=l

Let p be a positive prime number and a positive integer. The set pB(pi)
{pb] b B(pi)} is a submodule of B(pi). Consider the quotient module

B(p i.___...)(1.7) B(p’) =pB(pi).
That is, /(pi) consists of congruence classes of elements from B(p i) where two
pi-bicycles bl and bE are congruent if b- bE pb3 for some pi-bicycle b3. The quotient
module/(pi) is a vector space over the field of integers mod p. We will refer to/(pi)
as the quotient pi-bicycle space. Let p(pi) denote the dimension of/(pi). In 7, we
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show that the prime factorization of the spanning tree number is given by

(1.8) t= 1-I
pe

where denotes the set of positive prime numbers.
In 8, we employ the above result to strengthen a theorem of Shank [8] on

left-right paths and spanning trees in planar graphs.

2. Characterization theorem. Let G be a connected multigraph with vertex set
V { vl, v2, , vn} and edge set E. Let (A, +, 0) be an Abelian group. In this section,
we characterize the group B(A) of bicycles over A.

Before stating the main theorem we discuss some preliminary results. For v V,
let N(v) denote the set of edges incident with vertex v and let d(v) denote the degree
of vertex v. For e N(v), let Ve denote the end vertex of edge e different from v. A
weighting f of the vertices over A is balanced if for every vertex v

(2.1) d(v)f(v)= Z f(v).
eeN(v)

Let L(A) denote the set of balanced vertex weightings over A. Then, L(A) is a subgroup
of Wv(A). A vertex weighting is constant if the weight on every vertex is the same.
Clearly a constant vertex weighting is balanced. The following proposition is a joint
result (unpublished) of the author and H. Shank.

PROPOSITION 2.1. The coboundary operator 6 is a surjective homomorphism from
the group L(A) of balanced vertex weightings over A to the group B(A) of bicycles over
A whose kernel is the group of constant weightings over A.

Proof It is immediate that the kernel of 6 is the group ofconstam vertex weightings.
Let f Wv(A). We wish to show that g= 6f is a cycle iff f is a balanced vertex
weighting. Now g is a cycle iff for every vertex v

E g(e+) _, g(e-)
e+N+(v) e- N-(v)

e+NZ+(v)(f(h(e+))-f(t(e+)))= e-N-<o)E (f(h(e-))-f(t(e-)))

: E f(h(e+)) + E f(t(e-)) , f(h(e-))+ f(t(e+
e+N+(v) e-N-(v) e-N-(v) e+ +(v)

))

,d(v)f(v)= E f(v).
eeN(v)

The last equation is true if[ f is a balanced vertex weighting.
COROLLARY 2.2. The group L(A) ofbalanced vertex weightings is isomorphic to the

direct product ofA and the group B(A) of bicycles over A, i.e.,

(2.2) L(A)=AxB(A).

The Kirchhoffmatrix K (ko) is the n x n matrix such that k, (degree of vertex
vi) for {1, 2,. ., n} and k0 -(the number of edges joining vertices v and vj) for
i, j {1, 2,. ., n}, #j (ke 0 if there are no edges joining v and vy.). Let K[i:j] be
the matrix obtained from the Kirchhoff matrix K by stroking out the ith row and the
jth column and let det K[i:j] denote the determinant of K[i:j]. The ij-cofactor Co of
the Kirchhoff matrix is given by C0=-I+ detK[i:j]. The following theorem is a
classical result known as the matrix-tree theorem.

MATRIX-TREE THEOREM The spanning tree number of G is equal to any cofactor
of the Kirchhoff matrix, i.e. t i, j { 1, 2,. ., n}

(-1)’+ det K[i:j].
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For references the matrix-tree theorem see [1], [4], [10].
Let M (mo) be an n n integer matrix. For A an Abelian group let A" be the

group obtained by taking the direct product of A with itself n times. Let H(M, A)
denote the set of all _x (Xl, x2,’’’, x,)c A" satisfying the homogeneous equations

(2.3) m0x =0 (i= 1,2,..., n).
j=l

We will represent these equations in matrix notation by

(2.4) M_xt= 0, _x c A"

(_x denotes the transpose of _x). Clearly, H(M, A) is a subgroup of A". For _x-
(xl, x2,’’" ,x,)A let denote the vertex weighting over A such that (v)= x,
i-1,2,. -,n.

PROPOSITION 2.3. Let K be the Kirchhoff matrix. Then the group L(A) ofbalanced
vertex weightings is isomorphic to the group H(K, A), i.e.,

(2.5) L(A)-H(K,A).

Proof. It is immediate from the definitions of a balanced vertex weighting and
the Kirchhott matrix that K_xt= 0 if and only if is .a balanced vertex weighting.

We are now ready to state the main theorem. For k an integer, let A(k) denote
the subgroup of A given by A(k) {a Alka =0}.

THEOREM 2.4. Let G be a connected multigraph with spanning tree number t. Then
has a unique factorization t= tilE’’’ t, such that t is a multiple of t+, i-

1, 2,. , m 1 and such that for every Abelian group A the group B(A) of bicycles over
A is isomorphic to the direct product group A(tl) x A(t2) " A(tin), i.e.,

(2.6) B(A) A(tl) A(t2) ’" A(tin).

Proof. We prove the theorem with the aid of two lemmas. Let M- (m0) be any
n x n integer matrix. By a classical result (see [5]) there exist invertible n x n integer
matrices P and Q (i.e., detP=+/-l and detQ=+/-l) and a diagonal matrix D-
diag (dl, dE,’’’, dn) of nonnegative integers such that di divides d+l, i-1, 2,..., n
(by convention 0 divides 0) and such that

(2.7) M=PDQ.

The integers dl, dE,’’’, dn are the invariant factors of M.
LEMMA 2.5. Let M be an n n integer matrix and let dl, dE, dr be the nonzero

invariant factors of M such that d divides d+l, 1, 2, , r- 1. Then

(2.8) H(M, A) A A(d) x A(dE) -.. x A(dr).

Proof For _x c A" let _x’= Q_x t.
Now

Mx’ 0 :> (PDQ)x’ 0 :> D_x’= 0.

The last step follows since P is invertible. Since Q is invertible it follows that H(M, A)
and H(D, A) are isomorphic groups. It is immediate that H(D, A) A(d) A(dE)

A(d,)=A(d) A(dE) ." A(dr) xA"-r. This proves the lemma.
LEMMA 2.6. Let x, XE, , x be positive integers greater than 1 such that x is a

multiple ofxi+, 1, 2, , r- 1 and let Yl, Y2, , Ys be positive integers greater than
1 such that y is a multiple of Y+I, i= 1, 2,..., s-1. For A an Abelian group set
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X(A) A(xl) x A(x2) x... xA(xr) and Y(A) A(yl) xA(y2) x... xA(ys). Then
X(A) Y(A) for every Abelian group A iff r s and xi yi, 1, 2,. ., r( s).

Proof. If r= s and x=y, i= 1,2,.-., r then trivially X(A)= Y(A) for every
Abelian group A. Conversely, suppose that X(A)= Y(A) for every Abelian group A.
Assume that x y for some index i. We show that a contradiction arises. Let p be a
prime that divides x, Then p divides xi for all < r since xi is a multiple of xr for all
< r. Consider the group Zp of integers mod p. Clearly the order of X(Zp) equals pr.

The prime p must divide ys since otherwise we would have that the order of Y(Zp)
equals 1 contradicting that fact that X(Zp) Y(Zp). It follows that the order of Y(Zp)
equals p. Since the order of X(Zp) must equal the order of Y(Zp) we have that r s.
Now let j be the highest index such that x y, i.e., x y for >j and xj yj. Assume
without loss of generality that x > y. Then there must exist a prime q such that the
exponent e of the highest power of q that divides x is strictly greater than the exponent
e’ of the highest power of q that divides y. Consider the group Zq of the integers
mod q. It is easily shown that if A is the group Z of integers mod then the order
of A(k) equals the greatest common divisor of k and/. Thus it follows that the order
of X(Zq equals 1-I _-1 g.c.d. (xi, q) and the order of Y(Zq equals I-I= g.c.d. (yi, q).
Now

g.c.d. (xj, q) q > q’= g.c.d. (y, q).

Since x is a multiple of x for i<j

g.c.d. (x,, q) q >= g.c.d. (y,, q) for i<j.

Since by assumption x y for i>j we have

g.c.d. (x,, q’)= g.c.d. (y,, q’) for i>j.

Combining these inequalities we have

Ix(z  )l g.c.d. (x,, q)> I g.c.d. (y,, q)= Y(Zq-)I
i=l i=1

contradicting the fact that X(Zq) Y(Zq,). This proves the lemma.
We now prove Theorem 2.4. Let dl, d2," ’’, d, be the invariant factors of the

Kirchhott matrix K. Since det K 0 it follows that d, 0. By the matrix-tree theorem
all the (first-order) cofactors equal the spanning tree number t. This implies that

dld2"" dn_. Employing Proposition 2.3 and Lemma 2.5 we have that

L(A) H(K, A) A x A(d,) x x A(dn_,),

and by Corollary 2.2 we have that

B(A)A(dl) x A(d2) ... xA(d,_).

Now set t d,_i, 1, 2,..., n-1 and let rn be the largest index such that t # 1.
Then t= tlt2"" t,, and t is a multiple of ti+l, i= 1,2,..., m-1. Also

B(A) A( tl) x A( t2) x A( tm).

The fact that the factorization t= tt2"" "tm is determined uniquely follows from
Lemma 2.6.

This completes the proof of the theorem.
We will call the factorization tt2"" t, the principalfactorization of t.
COROLLARY 2.7. Let G be a connected multigraph with spanning tree number t.

Then there exists a bicycle over an Abelian group A iff A contains a nontrivial, finite
subgroup whose order divides t
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Proof. First suppose there exists a nonzero bicycle over A, i.e., B(A) is nontrivial.
Since B(A) A(tl) x A(t2) " x A(tm) where ti is a multiple of ti+l, 1, 2,. ., m 1
it follows that A(tl) is nontrivial. Let a A(tl), a # 0. By definition ha 0. Hence the
order of the cyclic subgroup C of A generated by the element a divides t. Since t
divides t, the order of C divides t.

Conversely suppose A contains a finite subgroup S whose order divides t. Let
a S, a # 0. Then ta 0 or equivalent (t t2" t,,)a 0. This implies that either t,a 0
or there exists a j, 1-<j < m such that tj(tj+.., t,,a)=0 and a’= tj+ltj+2"’’tma O.
If the former case is true then A(t,,) is nontrivial since it contains the nonzero element
a, and if the latter case is true then A(tj) is nontrivial since it contains the nonzero
element a’. In either case Theorem 2.4 implies that B(A) is nontrivial. Hence there
exists a nonzero bicycle over A.

Corollary 2.6 generalizes the following result of Shank (see [6]).
COROLLARY 2.8 (Shank). Let G be a connected multigraph having spanning tree

number t. Then there exists a bicycle over a field F iff the characteristic of F is nonzero
and divides t.

Proof. Let p denote the characteristic of F. If p 0 then F cannot contain a finite
additive subgroup other than the trivial subgroup and hence by Corollary 2.6 there is
no bicycle over F. Suppose p 0 and p divides t. Clearly p is the order of the subfield
(subgroup) generated by the multiplicative identity. By Corollary 2.6 this implies that
there exists a bicycle over F. Conversely suppose there exists a bicycle over F. Then
by Corollary 2.6 F contains a nontrivial additive subgroup whose order divides t. But
the characteristic p divides the order of any additive subgroup of F. Hence p divides
t.

The special case of Corollary 2.7 when p 2 was discovered independently by
Chen [3].

3. Formula for the factors in a principal factorization. Assign a linear ordering <
to the vertex set V of the multigraph G. For k a positive integer let Vk denote the
collection of all sets of k vertices. Consider any two sets R {rl, r2,’’’, rk} and
S {s, s2, , Sk} from Vk where ri < r and si < s for <j. Let k denote the set of
all permutations of {1, 2,. , k} and suppose tr k- An (R, S, r)-forest is a set of k
vertex disjoint trees T1, T2,. ., Tk whose union spans the vertices of G such that tree

T contains the vertices r and so; 1, 2, , k. Let f(R, $) denote the number of
(R, $, tr)-forests and set

(3.1) fk(R, S) sign crf(R, S).
k

Now let fk denote the greatest common divisor offk(R, S) over all sets R, S Vk, i.e.,

(3.2) fk g.c.d. {fk(R, S) R, S V}.

THEOREM 3.1. Let G be a connected multigraph on n vertices whose spanning tree
number has principalfactorization tl t2 t,. Set tk 1 for k > m and letfk be defined
by (3.2). Then

(3.3) t f+,
1,2, n 1.

Proof. Let d, d2, dn- be the nonzero invariant factors ofthe Kirchhoff matrix
K. Then t, dn_,, 1, 2,..., n- 1. Let A denote the greatest common divisor over
all the minors of K of size i. Set Ao= 1. Then by a result in [5] we have d A/Ai_I,
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i= 1, 2,..., n-1. Thus

i= 1,2,. ., n-1.(3.4) ti An_i_l

For R, S ri let K[R: S] be the submatrix obtained from the Kirchhoff matrix by
stroking out the rows corresponding to the vertices in R and the columns corresponding
to the vertices in S. Then by the all minors matrix-tree theorem (This is a stronger
version of the matrix-tree theorem which gives a formula in terms of spanning forests
for the minors of the Kirchhoff matrix. See [2].) we have

(3.5) f(R, S) +/-det K[R: S].

(The actual sign preceding det K[R: S] is given in [2] but we omit it here since it is
not needed in our proof.) This implies that

(3.6)

Equation (3.3) of Theorem 3.1 follows from (3.4) and (3.6).
An R-forest is an (R, R, o’)-forest where cr is the identity permutation.
COROLLARY 3.2. Let F be a connected multigraph whose spanning tree number

has principal factorization tt2" tm. Then for any set R of k vertices, k <-_ m, the
number fR of R-forests is divisible by tktk+ t,,.

Proofi Observe that f(R, R)=0 unless r is the identity permutation in which
case f(R, R)=fR. This implies that fk(R, R)=fR. It follows from the definition offk
that f divides f(R, R). Now f (AIA+,)(f+,IA+:)"" (f,,-1/f,,) since fn 1 (fn
fv 1 since there is only one forest having n trees, namely the forest such that each
tree is a vertex of G). Therefore by Theorem 3.1 we have that fk tktk/l’’" t,,. Hence
tktk+’’" t,, divides fR as stated in the corollary.

4. Graphs with the same principal factorization of t. It is easy to find examples of
graphs that have the same spanning tree number but different principal factorizations.
For example the complete graph on 4 vertices, the graph consisting of a circuit of
length 16 and the graph on 7 vertices consisting of two circuits of length 4 having
exactly one vertex in common each have 16 spanning trees with principal factorizations
16 8 2, 16 16 and 16 4 4 respectively.

The following proposition gives natural examples of pairs of graphs having the
same spanning tree number with the same principal factorization.

PROPOSITION 4.1. A planar graph G and its dual Gd have the same spanning tree
number with the same principal factorization.

Proofi Embed G in the plane. To obtain dual graph Gd from G we place a vertex
in every face of G and join two vertices u and v of Gd with an edge e’ whenever the
face fu of G containing vertex u and the face fo of G containing vertex v share a
common edge e. Now orient the edges of G at random. Assume without loss of
generality that the face fu is on the left and the face fo is on the right when travelling
along edge e in the assigned direction. Orient edge e’ of Gd so that it is directed from
u to v. Now let A be any Abelian group and let f be an edge weighting of G over A.
Consider the edge weighting f’ of Ga given by f’(e’)=f(e), e E(G). It is a simple
exercise to show that f is a bicycle of G if and only iff’ is a bicycle of Gd. It follows
that the group Be(A) of bicycles over A in G and the group Bd(A) of bicycles over
A in Ga are isomorphic for every Abelian group A. Therefore, by Theorem 2.4, G
and Ga have the same spanning tree number with the same principal factorization.
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5. Module of k-bicycles and divisibility results on the spanning tree number. Let G
be a connected multigraph and let B(K) denote the module of k-bicycles (i.e., the
module of bicycles over the ring Zk of integers mod k).

THEOREM 5.1. Let G be a connected multigraph with spanning tree number having
principal factorization tl t2"’" tm. Then the number (k) of k-bicycles is given by

(5.1) fl(k) I-I g.c.d. (k,
i=1

Proof. Let A Zk. It is easily verified that for an integer IA(l)l g.c.d. (k, l). By
Theorem 2.4 we have that

Hence

B(A) A( tl) A(t2) "" A(tm).

(k)--IB(A)I=IA(t)I IA(t)l’’’

I-I g.c.d. (k, t,).
i=1

This proves the theorem.
The following corollary is immediate.
COROLLARY 5.2. The number fl(k) of k-bicycles divides the spanning tree number

for all k >-2. Further if k is a multiple of then fl (k)= t.
COROLLARY 5.3. For any k >-_ 2, the cardinality of any submodule M of the module

B(k) of k-bicycles divides the spanning tree number t.

Proof. By Lagrange’s theorem the order (cardinality) of any subgroup of a finite
group divides the order of that group. Since a module is an additive group it follows
that the cardinality of any submodule of a finite module divides the cardinality of that
module. Hence the cardinality of a submodule M of B(k) divides/3(k)- IB(k)l. But
/3(k) divides by Corollary 5.2.

Corollary 5.3 is useful in obtaining divisibility results on the spanning tree number
as will be demonstrated in the proofs of the following three theorems.

A graph G is strict if it has no multiple edges. The complement graph G of G
is the graph whose edges join precisely those pairs of vertices not joined in G.

THEOREM 5.4. Let G be a strict graph on n vertices whose complement graph G is
disconnected have K connected components. Then the spanning tree number ofG is divisible
by n K-2.

Proof. Let HI, H2,’’ ", HK be the K connected components of G and let Ui be
the vertices of G that belong to Hi, s { 1, 2, , r}. Let ni denote the cardinality of
Ui, s {1, 2, , r}. Then n n + nEd-" "d- n. Consider a vertex n-weighting f of G
such that f(v) xi for all v s Ui, s { 1, 2,. , } where xi s Z, and

(5.2) nix d-/’/2X2 d-" d- nkXk O.

Then f is a balanced n-weighting since equation (5.2) implies that, for each is

{1,2,... ,},

(5.3) (n n)xi nXl +" + ni-xi-1 + ni+x+l +" + nkXk

and a vertex v s U, has weight x, and is joined to nj vertices having weight xj (i.e., the
vertices in Uj) i,j={1,2,..., r}, i#j. Let M denote the submodule of L(n) (the
module of balanced vertex n-weightings) consisting of all balanced vertex n-weightings
f obtained in this fashion. Let M’ denote the submodule of B(n) consisting of the
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n-bicycles {flf M}. Clearly [MI--nlM’l. Now [M is divisible by n k-1 because any
solution of (5.2) can be obtained by choosing x2, x3, , xn arbitrarily and solving for
Xl. Hence n-2 divides IM’[. By Corollary 5.3 we have that n-2 divides t.

THEOREM 5.5. Let G be a multigraph on n vertices whose edges can be partitioned
into q cliques, q < n, such that the size of each clique is a multiple of r for some integer
r >= 2. Then the spanning tree number of G is divisible by rn-q-1.

Proof. Let Q1, Q2,’", Qq be the q cliques of G and let V={Vl, v2,’", v,} be
the vertex set of G. Let C (cij)q, be the vertex-clique incidence matrix, i.e.,

1, vj belongs to clique Qi,
(5.4) c 0, v does not belong to clique

Consider the module H(C, Zr), i.e., H(C, Zr)={_XZr"IC_x’=0}. Since C is a qn
matrix it follows that rn-q divides IH(C, Z)[. Let _x (xl, x2,’’ ", x,) be an element
from H(C, Zr) and consider the vertex r-weightingf such that f(v)= x for all vertices
vj V. It is easily verified that f is a balanced vertex r-weighting. The set M of all
balanced vertex r-weightings f obtained in this way is a submodule of L(r), the module
of all balanced vertex r-weightings. Let M’ denote the submodule of the module B(r)
of r-bicycles given by M’= {Sf[fs M}. Then IM’[ 1/rlMI 1Zr)l. Therefore
rn-q-1 divides IM’I. By Corollary 5.3 we have that rn-q-1 divides t.

The line graph L(G) of a graph G is obtained by associating a vertex of L(G)
with each edge of G and joining two vertices of L(G) whenever the corresponding
edges of G are incident. An r-regular graph is a graph in which every vertex has degree
r.

COROLLARY 5.6. Let G be an r-regular graph on n edges having line graph L( G).
Then the spanning tree number of L( G) is divisible by r((r-2)/r)n-1.

Proof. Since G is r-regular and has n-edges it has 2n/r vertices. This implies that
L(G) has n vertices whose edges can be partitioned into 2n/r cliques each of size r.
Corollary 5.6 can now be immediately induced from Theorem 5.5.

Let G be a connected multigraph with vertices v, v2,’’ ", v, and let li denote
the number of edges linking vertices v and v; i,j {1, 2,..., n}. We will say that a
multigraph H is divisible by G if the vertices of H can be partitioned into n classes
U, U2,’", U, such that for i,j{1,2,..., n} a vertex v in U either (1) is joined
only to vertices in U or (2) for every j is joined to exactly h0 vertices of U (and
any number of vertices in U).

THEOREM 5.7. If a connected multigraph H is divisible by a connected multigraph
G then the spanning tree number tn ofH is divisible by the spanning tree number t ofG.

Proof Let L(H) denote the set of edges in H having one end vertex in Ui and
the other in U; i,j{1,2,... ,n}. For eLj(H), ij, let be any edge of G linking
vertices v and vy. Now orient the edges of G such that all the edges joining the same
two vertices are directed the same. Orient the edges of H such that e has tail in U
and head in U if has tail v and head v. If both ends of e belong in the same class
orient e arbitrarily. For k => 2 let b be any k-bicycle of G. It is easily verified that bn
is a k-bicycle of H where for e an edge of H

5.5) bH (e)
O, e Lii for some { 1, 2,. ., n},
be(.), eLo forsome i,j{1,2,...,n}, ij.

Let Mn(k) denote the submodule of the k-bicycle module Bu(k) of H consisting
of all k-bicycles bn which correspond to a k-bicycle be of G in the above fashion.
Then IM,(k)l IB(k)[ (where Be(k) denotes the k-bicycle module of G). In particular
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]Mn(t)[ [B(t)[. But IB(t)[-- t by Corollary 5.2. By Corollary 5.3 we have that
IM,(t)[ divides tn. Hence t divides t/.

6. Irreducible bicycles. A nonzero k-bicycle b is reducible if there exists a nonin-
vertible, nonzero element d Zk such that d divides b(e) for all edges e. A k-bicycle
is irreducible if it is nonzero and not reducible.

THEOREM 6.1. Let G be a connected multigraph with spanning tree number t. If
there exists an irreducible k-bicycle then k is a divisor of t.

Proof. Suppose G has an irreducible k-bicycle b. Then the set of all scalar multiples
of b is a submodule of the k-bicycle module B(k) that contains k elements. Hence
the theorem follows from Corollary 5.3.

It is easy to find examples where the converse of Theorem 6.1 does not hold when
k is a composite number. Note that Shank’s result (Corollary 2.7) implies that the
converse holds when k is a prime number.

Let y(k) denote the number of irreducible k-bicycles. Set 3’(1) 1. Let D(k)
denote the set of divisors of k. The following proposition relates the number of bicycles
to the number of irreducible bicycles.

PROPOSITION 6.2. For k a positive integer, k>=2 let (k) and y(k) denote the
number of k-bicycles and number of irreducible k-bicycles respectively. Then

(6.1) /3(k)= E y(d)
deD(k)

where the summation is over all divisors d of k.
Proof. Let b be a nonzero k-bicycle. Let k’ be the largest positive integer that

divides b(e) for all edges e and let d- k k’. With the k-bicycle b we associate the
irreducible d-bicycle b’ defined by b’(e)= b(e)/k’ for e an edge of G. (In defining b’
we are using the fact that for d a divisor of k the module Zd may be regarded as a
submodule of Zk.) This determines a bijection between the k-bicycles and the irreducible
d-bicycles where d divides k, d 1. The zero k-bicycle is counted by y(1).

PROPOSITION 6.3. For r and s two relatively prime positive integers

(6.2) y(rs)= y(r)y(s).

Proofi Since Zrs Zr 03 Zs (where 09 denotes the direct sum of two rings) we have
that B(rs) B(r)03 B(s) (where 03 denotes the direct sum oftwo modules. The underly-
ing set is B(r)xB(s), i.e., bB(r)O)B(s)Cb(e)=b(e)xb(e), eE for some
B(r) and b B(s).) Proposition 6.3 follows from the fact that the direct product br x bs
corresponds to an irreducible bicycle in B(rs) if and only if b is an irreducible bicycle
in B(r) and b is an irreducible bicycle in B(s).

We now state the main theorem of this section.
THEOREM 6.4. Let G be a connected multigraph with spanning tree number t. Then,

the total number over all the positive integers k, of irreducible k-bicycles equals t, i.e.,

(6.3) t= E y(k).
k=l

Proof. By Theorem 6.1, y(k)=0 for every k that is not a divisor of t. Hence by
Proposition 6.2 we have that/3(t) =Y,dD(,) y(d)= Yk=I y(k). But by Corollary 5.2 we
have that fl(t)- t. This proves Theorem 6.4.

7. Prime factorization formula for the spanning tree number. Let p be a positive
prime number and a positive integer. The set pB(pi) {pblb B(pi)} is a submodule
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of B(pi). Consider the quotient module

B(pB(p’) =pB(p’)-
That is, /(p) consists of congruence classes of elements from B(pi) where two
pi-bicycles bl and bE are congruent if bl bE pb3 for some pi-bicycle b3. The quotient
module/(pi) is a vector space over the field of integers mod p. We will refer to/(p)
as the quotient p-bicycle space. Let p(p) denote the dimension of/(pi). Let ep(t)
denote the exponent of the highest power of p that divides the spanning tree
number t.

PROPOSITION 7.1. Let G be a connected multigraph with spanning tree number t.
Then p(p’)-> p(p) for <j. Further p(pi)=O for all i> ep(t).

Proof. Let and j be two positive integers such that i<j. Since/(p) is a vector
space over Zp the cardinality of/(p) equals pP(P’), i.e., [(p)l=pp(p’). Similarly
I(pY)[=pE(p’). With every p-bicycle b we may associate a pi-bicycle b’ given by
b’(e) b(e)(mod p) for e an edge of G. It is immediate that the mapping taking/ to
b--7 is an injective mapping from /(p) to /(p’). This implies that
Hence p(p)>-_p(p). By Theorem 5.1 there are no irreducible pi-bicycles for any
i> ep(t). This implies that/(pi) contains only the zero bicycle. Thus p(p)- 0 for all
i> ep(t). This proves Proposition 7.1.

We now state that main theorem of this section which gives a formula for the
prime factorization of the spanning tree number.

THEOREM 7.2. Let G be a connected multigraph with spanning trees. For p a
positive prime number and a positive number let p(pi) denote the dimension of the
quotient p-bicycle space. Then the prime factorization of is given by

(7.1) t= I-I pp(p)+la(p2)+’’’+ta(p’)+’’"

where the product is over the set P of all positive prime numbers. (The product over an
infinite number of one’s is one.)

Proof. By Proposition 6.2

(7.2) fl(p’) 1 + 7(p)+ y(p2)+... +
Now [B(p’)l-p(p’. Also, it is clear that IB(p’)l--,8(pi)//3(p’-). Hence
p,p,fl(p-l). By induction we have that

(7.3) fl(p i) p,p+,,+. .+,p,).

Combining (7.2) and (7.3) we obtain

(7.4) poP+oP+’+oP’+"" 1 + y(p) + y(p:) +... + y(p’) +....

EmplOying Proposition 6.3 and Theorem 6.4 we have

I P’P)+’P)+"’+’<P’)+’"= I-[ (I+y(P)+y(p2) +’" "+Y(P’)+’’"
peP peP

Y y(k)=t.
k=l

This proves Theorem 7.2.
COROLLARY 7.3. Let G be a connected multigraph with spanning trees. For p a

positive prime number and a positive integer let p(pi) denote the dimension of the
quotient p-bicycle space. Then, p divides iff p(p) + p(p2) + "-I-p(pi)>= i. Further
(pi)(p,) divides t.
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Proof. If p(p)+ p(p.Z)+... + p(p,)>-i then Theorem 7.2 implies that p’ divides
t. Conversely suppose pi divides t. Assume p(p)+p(p2)+... +p(pi)< i. Since by
Proposition 7.1 we have that p(p) >= p(pi) for all j < it follows that p(p) =0. Again
applying Proposition 7.1 we have that p(p)=0 for all j> i. Since pi divides Theorem
7.2 yields

<- p(p) + p(p2) + + p(p) +
p(p) -I- p(p2) +... + p(p,).

This is a contradiction. Hence p(p)+p(p2)+... +p(p)>__ i. This proves the first part
of the Corollary.

Since by Proposition 7.1, p(pi)<-p(Id) for all j <i we have that

ip(p’)<--_p(p)+p(p2)+ + p(p’).

But by Theorem 7.2 we have that pt’(p)+p(pE)+’’’+p(p’) divides t. Hence piO(p’) divides t.

8. 2-bicycles in planar graphs. Let G be a planar, connected multigraph embedded
in the plane. In [9], Shank discovered a very simple way of determining the dimension
p(2) of the 2-bicycle space. A left-right path of G is a closed path such that the edge
chosen at each vertex is alternatively the leftmost (labelled L) and rightmost (labelled
R) edge. An edge may be transversed twice as long as it is not transversed in the same
direction with the same label.

THEOREM 8.1. (Shank). Let G be a planar, connected multigraph with L left-right
paths. Then the dimension p(2) of the 2-bicycle space is given by

p(2)=L-1.

Shank employed this theorem to prove that the number of spanning trees of G
is odd if and only if G has exactly one left-right path. The following theorem which
is an immediate consequence of Theorem 8.1 and Corollary 7.3 strengthens this result.

THEOREM 8.2. Let G be a planar, connected multigraph having spanning trees and
L left-right paths. If there is exactly one left-right path then is odd. Otherwise 2L-1

divides t.

Acknowledgments. I would like to thank J. D. Reid and H. Shank for helpful
comments.
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TELEPHONE PROBLEMS WITH FAILURES*

KENNETH A. BERMANf AND MICHAEL HAWRYLYCZ"

Abstract. Consider a multigraph G on n vertices whose edges are linearly ordered. The vertices of G
may represent people and the edges two-way communication between pairs of people. A vertex v is

k-failure-safe in communicating with a vertex w if there is a path of ascending edges from v to w even when
any k edges of G are deleted. In this paper, we show that the minimum size/x(n, k) of G such that one
vertex communicates k-failure-safe with every other vertex is given by tz(n,k)= [((k+2)/2)(n-1)] for
k<=n-2 and Ix(n,k)= [((k+ 1)/2)n] for k>-n-2. We also show that for k>-I the minimum size -(n_n_, k)
of G such that every vertex communicates k-failure-safe with every other vertex satisfies/z n, k) + n 2 [/n _-<

(n, k)_- [(k + 3/2)(n- 1)J. The problem of finding -(n, k) for k =0 is the well-known telephone problem.

1. Introduction. Consider a multigraph G with vertex set V and edge set E where
E has been assigned a linear order. We will call such a multigraph a communication
network. An ascending path from a vertex v to a vertex w is a path from v to w such
that for any two edges of the path the edge closer to v is smaller in the linear order.
A vertex v communicates with a vertex w if there is an ascending path from v to w
(note that if v communicates with w this does not necessarily mean that w communicates
with v). A vertex v communicates k-failure-safe with a vertex w if there is an ascending
path from v to w even when any k edges of G are deleted.

One model of a communication network is a group of people who have made a
sequence of telephone calls. The people are represented by vertices and the calls
between pairs of people are represented by edges. The edge corresponding to the ith
call occurs ith in the linear ordering of the edges. When a call is made, the two people
exchange all their information. An ascending path from a person Pi to a person P
indicates that P has received Pi’s information. If Pi communicates k-failure-safe with

P then P is guaranteed to know P’s information even if there is the possibility that
in up to k of the calls information is not exchanged.

Consider a communication network G on n vertices where one vertex v communi-
cates k-failure-safe with every other vertex. Note that by reversing the linear order of
the edges of G we obtain a communication network in which every vertex communicates
k-failure-safe with v. Let/x(n, k) be the minimum number of edges in such a network.
In this paper we show that tx(n,k)= [((k+2)/2)(n-1)] for k<-n-2 and/x(n, k)
[((k+l)/E)n] for k>-n-2.

A k-failure-safe total communication network is a communication network in
which every vertex communicates k-failure-safe with every other vertex. Let (n, k)
be the minimum number of edges in a k-failure-safe total communication network on
n vertices. In 3 we show that for k->_ 1, z(n, k) satisfies/z(n, k)+ n 2 [x/n _-< (n, k) _-<

[(k + 3/2)(n- 1)1. The telephone problem which was proposed by A. Boyd and solved
by a number of authors is equivalent to finding (n, k) for k- 0. For references see
[1], [2], [3], [4], [5], [6]. It is well-known that r(n, 0)-2n-4.

In 4 we consider communication networks in which the edges are directed, the
orientation of an edge indicating the direction in which information is passed. One
model of this is a group of people who send telegraph messages to other people in
the group. In a directed communication network a vertex v communicates k-failure-safe
with a vertex w if there is an ascending directed path from v to w even when any k

* Received by the editors November 15, 1983, and in revised form August. 1, 1984.
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arcs are deleted. It is shown that the minimum number/(n, k) of arcs in a directed
communication network in which one vertex communicates k-failure-safe with every
other vertex is given by/2(n, k)-(k+ 1)(n-1). Further we show that the minimum
number (n, k) of arcs in a directed k-failure-safe total communication network is
given by (n, k)-(k+2)n-2. The problem of finding ,(n, 0) is called the telegraph
problem. See [4].

2. Communication to a single vertex. In this section, we prove the following
theorem.

THEOREM 2.1. Let I( n, k) be the minimum size of a communication network on n
vertices in which every vertex communicates k-failure-safe with a given vertex. Then

(n- 1)], k<=n-2,

k>_n-2.

Proof. An ascending tree rooted at v is a tree whose edges are ordered such that
there is an ascending path from every vertex in the tree to v. For k 0, an ascending
tree on n vertices clearly gives the minimum solution. For k > 0 there are two cases"

k<=n-2 and k>-n-2.
Case 1. k<-_n-2. We first show by construction that i(n,k)<-[((k+2)/2)

(n 1) ]. Consider a multigraph G with vertices Vl, v2, , vn which is the edge disjoint
union of graphs T and T’ where T is a spanning tree such that every vertex of G
different from Vl is joined to Vl and T’ is a simple graph having degree k at every
vertex different from vl and degree either 0 or 1 at vl. Graph T’ can be constructed
as follows: For k even vivj is an edge of T’ precisely when 1,j # 1 and i-j is
congruent mod (n- 1) to an element of {1,-1, 2,-2,..., k/2,-k/2}. In the case k
odd, n odd, vivj is an edge of T’ precisely when iS 1,j 1 and i-j is congruent
mod (n 1) to an element of{l, -1, 2, -2,. ., (k- 1)/2, -(k- 1)/2, (n 1)/2}. Finally
in the case k odd, n even the pairs /)2Dn/2+l, l)3/)n/2+2, l)n/EDn_ and vvn are edges
of T’. Furthermore, if 1,j # 1 and i-j is congruent mod (n- 1) to an element of
{1,-1,2,-2,..., (k-1)/2,-(k-1)/2} then viv; is an edge of T’.

We now order the edges of G by first ordering the edges of T’ arbitrarily and
then ordering the edges of T arbitrarily. With this ordering G is a communication
network in which every vertex communicates k-failure-safe with vertex v. To prove
this it is sufficient to show that there are k + 1 pairwise edge disjoint ascending paths
from any vertex v, to v. Let v,,, v,,. , v be the k vertices adjacent to v in T’. The
k+ 1 paths vv, viv,v, vivv,..., vv,Vl are pairwise edge disjoint ascending paths
from v to /)1.

Since the tree T has n- 1 edges and the graph T’ has by a simple degree counting
argument [k(n-1)/2] edges it follows that G has [(k+2)(n-1)/2] edges. Hence
g(n,k)<- [((k+2)/2)(n-)].

We now show that tz(n,k)>= [((k+2)/2)(n-1)]. Let G be any communication
network in which every vertex communicates k-failure-safe with a single vertex vl. Let
v be any vertex different from v and let vw be the edge of highest order which is
incident with v. If P is any ascending path which terminates at v and if P contains
the edge vw, then in P vertex w must lie between v and v. Thus replacing vw with
VVl preserves the property that every vertex communicates k-failure-safe with v.
Repeated replacements of this kind results in a graph G’ where every vertex
other than v is adjacent to v. Clearly every vertex of G’ different from v must have



TELEPHONE PROBLEMS WITH FAILURES 15

degree at least k + 1. It follows that the sum of the degrees of the vertices in G’ is
at least (n-1)+(n-1)(k+l). Therefore the number of edges of G’ is at least
[(n-1)(k+2)/2]. This shows that the number of edges of G is at least [(n-l)
(k+2)/2].

Cae 2. k _>-n- 2. The following upper bound construction shows that p.(n, k)<-
[((k+ 1)/2)n]. Let A, r be positive integers such that k+ 1 A(n-1)+ r, r(n-1. Let
R be a simple graph which has degree r at every vertex different from v and degree
either r or r+l at v. Let K, be the complete graph on n vertices. Consider the
multigraph (7 on vertex set V which is the union of copies of K, and one copy of
R, i.e., two vertices u and w are joined with A + multiple edges where is the number
of edges joining vertices u and w in R (l 0 when there are no such edges). We now
make (3 a communication network by imposing an order on its edges. First, in an
arbitrary fashion, order all the edges of R not incident with vertex v. Then order all
the edges of the complete graphs not incident with vertex v in an arbitrary way. Finally
order all the edges incident with v in an arbitrary way. The reader can easily verify
that there exists k + 1 pairwise edge disjoint ascending paths (of lengths 1, 2 and 3)
from any vertex to v. Thus every vertex of (7 communicates k-failure-safe with v.
Since every vertex in G has degree k + 1 except v which has degree either k + 1 or
k+2 it follows that the number of edges of (3 is [((k+ 1)/2)n. Hence, /(n, k) >
[((k+l)/2)n].

Conversely let (3 be a graph in which every vertex communicates k-failure-safe
with v. It is clear that every vertex must have degree at least k + 1. Hence (7 must
have at least [((k+ 1)/2)n edges and thus/z(n, k)_> [((k+ 1)/2)n].

This completes the proof of Theorem 2.1.

3. k-failure-safe total communication networks. In this section we consider com-
munication networks where every vertex communicates k-failure-safe with every other
vertex. Let r(n, k) denote the minimum size of such a network. As mentioned in the
introduction, the problem of finding r(n, 0) is the telephone problem and it is well
known that -(n, 0)= 2n-4. The following theorem gives upper and lower bounds for
’(n, k) when k -> 1.

TI-IEOREM 3.1. Let z( n, k) be the minimum size ofa k-failure-safe total communica-
tion network where k >-1. Then z( n, k) satisfies

[(k+4)(n-1)] [(k+)(n-1)J, k<n-2,=

2
n-2[x/]_-<r(n,k)-< k+ (n-l) k<_n-2.

We first show that the upper bound holds by construction. For n odd, we construct
a communication network G as follows. In the case when is odd, 1, join vertex
vi with k edges to vertex vl labeling them 3, 5, , 2k+ 1. In the case when is even
join vi with k + 1 edges to vl labeling them 2, 4, 6, , 2k + 2. Further join vi and
with two edges, one edge labeled 1 and the other edge labeled 2k+3 for i--
2, 4, , n 1. The labels determine a partition of the edges into 2k + 3 classes. Edges
in the same class are ordered arbitrarily but for <j all the edges in class are ordered
before any of the edges in class j.

Consider any two distinct vertices vi and vj in communication network G. It is
an easy exercise for the reader to verify that there exist k + 1 pairwise edge disjoint
ascending paths from v to vj. If n is even then we construct G as follows. First do
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the above construction for n- 1 vertices. Then join vertex v, to vl with k + 1 edges,
one from each of the k + 1 new classes 2/, 3/, 5/, 7/, , (2k + 1)/, where an edge in

class j/ is ordered so that it is larger than any edge in class j and smaller than any
edge in classj + 1. Again it is easy to verify that every vertex communicates k-failure-safe
with every other vertex. The number of edges in G is [(k+)(n- 1)J. This gives the

upper bound for z(n, k).
We now obtain the lower bound. Let G be a communication network in which

every vertex communicates k-failure-safe with every other vertex. Let E (r) be the set
of the first r edges in the linear order. Let E’(r) denote the edges that follow these.
Set (n, k). For a positive integer :, sc <-/x, let H be subgraph whose vertex set
includes all the vertices of G and whose edge set is E’(/z- ). Let K be the connected
component of H with the fewest number of edges and let be the number of edges
of K. Let C be the subgraph of G whose vertex set includes all the vertices of G and
whose edges consist of the set E(/x- sc) together with the edges of K. (Subgraph C
may contain isolated vertices.) Let v be any vertex of K. It is clear that in C every
vertex communicates k-failure-safe with v since every vertex communicates k-failure-
safe with v in G. Hence C has at least /x edges. But the number of edges of C is

/x-s +/. Therefore >_-:. Since K was the smallest component of H subgraph H has
at least n- n/sc edges. (It is an easy exercise to verify that a graph has at least n n/
edges if each of its components has size at least :.) This implies that G has at least
+n--n/ edges. To optimize choose := [x/]. Then we have that ]E(G)I>_-
/ + n- 2 [x/rff], i.e., IE(G)I >_- (n, k)/ n -2 [,/-ffq, By employing the formula for/x(n, k)
we obtain the lower bound for Theorem 3.1.

For k 1 Theorem 3.1 gives r(n, k) to within 2x/. For k > 1 the bounds ofTheorem
3.1 become increasingly less tight as k increases. We propose the following conjecture.

Conjecture. For k_-> 1

-(n,k)=(k+)n-c

where c is bounded as n goes to infinity.

4. Directed communication networks. In this section we prove two theorems on
directed communication networks which are the analogs of Theorems 2.1 and 3.1.

THEOREM 4.1. Let (n, k) be the minimum size ofa directed communication network
on n vertices in which every vertex v communicates k-failure-safe with a single vertex vl.
Then

i(n, k)= (k+ l)(n-1).

Proof. Let D be the multidigraph on vertices v, v2," ", v, such that vertex vi is
joined to vertex v with k+ 1 arcs directed toward v, 2, 3,..., n. Clearly every
vertex communicates k-failure-safe with every other vertex and D has (k + 1)(n- 1)
arcs. This shows that (n, k)<-(k+ 1)(n- 1).

Conversely, let D be a directed communication network such that every vertex
communicates k-failure-safe with every other vertex. Clearly, D must have out-degree
at least k + 1 at every vertex vi, # 1, and thus D must have at least (k + 1)(n 1) arcs.
This shows that (n, k)>-_(k+ 1)(n- 1).

THEOREM 4.2. Let r(n, k) be the minimum size of a directed k-failure-safe total
communication network. Then

.F(n, k) (k + 2)n-2.

Proof. We first show that (n, k)<-(k+2)n-2 by construction. Let vl, v2,- ", vn
denote the n vertices. We construct a directed communication network D as follows"
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Join vertex vi to vertex/)i+l with k + 2 arcs directed toward vi+ for 1, 2,. ., n- 2.
Join vn-1 to vn with k + 1 arcs directed toward v, and join v, to Vl with k + 1 arcs
directed toward v. We now order the arcs of D. The k + 2 arcs joining vertex vi to
vertex V+l are ordered i, n+i, 2n+i, , (k+2)n+i for i= 1,2,. , n-2. The k+l
arcs joining vertex v,_ to vertex v, are ordered n-1, 2n-1,. ., (k+ 1)n-1 and the
k+ 1 arcs joining vertex v, to vertex v are ordered n, 2n,..., (k+ 1)n. We leave it to
the reader to verify that there are k + 1 pairwise edge disjoint ascending directed paths
from any vertex of D to any other vertex of D, i.e., D is a directed k-failure-safe total
communication network. Since D has (k+2)n-2 edges (n, k)<=(k+2)n-2.

We now show that (n, k)>-(k + 2)n-2. Let D be a directed k-failure-safe total
communication network. Consider the n- 2 arcs which occur first in the linear order
and let A be the subdigraph consisting of these n- 2 arcs. Since a connected graph
must have at least n- 1 edges A is not connected. Therefore for any vertex v of D
there is some vertex v’ which does not communicate with v using only the arcs in A.
Since D is a directed k-failure-safe total communication network, and since the arcs
from A occur first in the linear order it follows that there are at least k + 1 arcs directed
toward v which do not belong to A for every vertex v of D. This implies that there
are at least (k+ 1)n arcs not lying in A. Hence D has at least (n-2)+(k+ 1)n=
(k + 2)n 2 arcs showing that (n, k) -> (k + 2)n 2.

This proves Theorem 4.2.

Acknowledgments. We thank the referee for several valuable comments. We thank
Daniel Kleitman for many illuminating discussions.
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Abstract. For a graph F with vertex set V an algebra of adjacency matrices is defined and viewed as
an equivalence relation on V x V with certain nice properties. This can be used in algorithms to find

automorphisms of graphs and isomorphisms between graphs. It also provides intersection numbers indepen-
dent of the labelling on V which determine the similarity class of the adjacency algebra.

AMS(MOS) subject classification. 05C50

Introduction. This article has two main objectives. The first is to associate as high
a dimensional algebra of n x n matrices as possible with the adjacency matrix of a
labelled graph F on n vertices. In this way a set of intersection numbers is obtained
which is an invariant for the isomorphism class of F. The other aim is to show that
these intersection numbers provide a finer decomposition into equivalence classes of
graphs than do graph spectra, even with the more general definition given here. It
therefore seems likely that nice classification theorems must exist using these numbers,
giving more powerful results than from spectra. Indeed the theory of distance transitive
graphs illustrates this (see [1]). However, such results are not given here. What is
provided is the step from a given graph to a coherent configuration as defined by D.
G. Higman [4] and one can then apply his theory. He gives some applications.

The associated algorithm which tests for isomorphism by computing these numbers
(implicitly) has order at worst n log n and can be applied recursively to the subgraphs
obtained by deleting vertices until isomorphism is established or confuted. The calcula-
tion is then producing generalised intersection numbers corresponding successively to
ordered pairs, triples, quadruples, etc., of vertices. This points to the correct generalisa-
tion to yield invariants which completely determine the isomorphism class of the graph.

Sections 1 to 3 are definitions and elementary properties. Section 4 starts with a
couple of well-known results which can be traced back to Frobenius [3]. From them
is deduced that intersection numbers are more discriminating than the spectrum. In
5 these numbers are shown to be equivalent to knowledge ofthe regular representation,

for which a symmetric definition and an easy method of computation are given. Lastly,
in 6, the names ofthe labels, hitherto ignored, are traced to ensure that an isomorphism
preserves not just the equivalence classes of edges carrying the same label, but also
the label itself.

The starting point of this paper was a talk by Charles R. Johnson on a joint work
of his with Morris Newman [5]. The author would especially like to thank T. J. Laffey
for many helpful conversations during its development.

The intersection numbers are obtained in the following way. Let A be an adjacency
matrix of a graph F. Any automorphism of F acts as a similarity transformation by a
permutation matrix on A. Thus such transformations act trivially on the algebra
generated by all such A for the given graph. A generic matrix of this algebra can be
used to partition the vertex set V of F into subsets V1, V:,..., Vt with the property
that any automorphism of F restricted to V maps onto V. The V are unions of orbits
under the automorphism group.

This can be expressed abstractly using equivalence relations on V x V: giving a
"colour" to each edge and vertex. There is a smallest refinement of this colouring of

* Received by the editors August 2, 1983, and in revised form August 6, 1984.
f Department of Mathematics, University College, Belfield, Dublin 4, Ireland.
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V V with a property corresponding to closure under multiplication of matrices. This
is called here the completion of the colouring, but is just a coherent configuration in
Higman’s terminology.

The formulae in terms of colours for the product of two matrices in this algebra
define the intersection numbers and determine the algebra up to similarity. Thus they
are identical for isomorphic graphs and can be used as a test for isomorphism. The
adjacency algebra defined in this way is larger than the usual one, being generated by
all possible adjacency matrices instead of a single 0, 1-matrix. It is big enough to show
how closely connected are the ideas of similarity, co-spectrality, and intersection
numbers.

Addendum. The author would like to note that associating a coherent configuration
with a graph is the subject of [10]. This does not seem to be well known despite its
reference in 11 ]. The first few sections here describe the method.

1. Colourings.
DEFINITION 1.1. Let V be a finite set and c an equivalence relation on V V with

r equivalence classes. Then c is called an r-colouring or colouring of V and the
equivalence classes are called the colours of c. The set of such classes will be denoted
by c and the class of (i,j) V Vby c(i,j). This should be distinguished from c((i,j)),
also called the colour of (i,j), which is always the image of c(i, j) under an injective
map. Elements of V are identified with the diagonal of V V and called vertices, whilst
off-diagonal elements are called edges.

For example, let F be a graph on V with edge set E. Then F yields a 3-colouring
of V whose colours are V, E, and (V V)\(E U V).

DEFINITION 1.2. For n VI and a commutative ring R containing the integers
7/, let My(R) be the set of n n matrices with entries in R whose rows and columns
are indexed by V. Any injective map c-R with c(i,j)-c((i,j)) defines a matrix
A=(aij)Mv(R) by aij=c((i,j)). Such a matrix is called an adjacency matrix of c.
Conversely, given a matrix A- (ai) My(R) there is a uniquely determined colouring
for which A is an adjacency matrix, namely that given by c(i, j) c(k, l): ao ak for
all i, j, k, V. The colouring so obtained is denoted CA. If the set of distinct entries of
A are algebraically independent over 7/(as a subring of R) then A is called a generic
matrix of the colouring it defines. A set of generic matrices (not necessarily for the
same colouring) are called independent if the entries in each matrix are distinct from
the entries in every other matrix and the set of distinct entries from all the matrices is
algebraically independent over 7/.

LEMMA 1.3. Letc, dbecolouringsofV. Thenc= difandonlyif, c((i,j))- c((k, 1))
d((i,j))=d((k, l)) for all i,j, k, l V.

Example 1.4. The colourings with adjacency matrices

A 1 and A" 1

3 2

are equal.
DEFINITION 1.5. (i) There is a partial ordering <-_ of colourings given by

c _-< d if, and only if, c(i, j)
_
d (i, j) for all (i, j) V V.

(ii) The sum or join c + d is defined by

(c+ d)(i,j)= c(i,j) f’l d(i,j)
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and the meet c ^ d is defined so that (c ^ d)(i, j) is the smallest union of colours of c

containing (i, j) which is also a union of colours of d.
(iii) The rank of a colouring c is the number Icl of equivalence classes of c. Clearly,

1=<1cl =< n2 for n =IVI.
LEMMA 1.6. (i) The colourings of Vform a lattice under <- with meet and join as

above.
(ii) c + d is the least upper boundfor c and d. In particular, c <= c + d and d <- c + d.

Also c + d is the colouring defined by the sum of independent generic matrices for c and
d. Moreover, c + d c if d <- c.

(iii) c ^ d is the greatest lower boundfor c and d. In particular, c ^ d <- c and c ^ d <- d
with c ^ d c if c <= d.

(iv) The map c->lc is orderpreserving, i.e. c d implies Icl < Idl. Also
Ic/dl<=lclldl.

DEFiNITiON 1.7. (i) There is a unique minimal colouring Co corresponding to the
zero matrix. This is a 1-colouring with co(i,j)= V V.

(ii) There is a unique maximal colouring cv which is defined by cv(i, j)= {(i, j)}.
It has IVl colours.

(iii) The identity colouring cI is that which corresponds to the identity matrix. It
is a 2-colouring with ci(i, i)= V___ V V and ct(i,j)= V V\V for ij.

DEFiNiTiON 1.8. The transpose colouring c7- is defined by cT-(i, j)= c( i) 7- where
S= {(i,J)l( i) S} for any subset S of V V. A colouring c is called symmetric if
c=c7- and totally symmetric if c( i, j) 7- c( i, j) for all i, j V. Because (j, i) c( i, j) , c
is totally symmetric precisely when c(i,j)= c(j, i) for all i,j V.

Remark 1.9. Suppose A is a generic matrix for c. Then AT" is a generic matrix
for c.

Example 1.4 illustrates a symmetric colouring which does not arise from a sym-
metric matrix. The totally symmetric colourings are characterised by having symmetric
adjacency marices, whilst the symmetric colourings are characterised by having their
set of adjacency matrices closed under the transpose mapping.

The product cd of two colourings is defined as that obtained from the product of
independent generic matrices for c and d. Hence we have the following definition.

DEFINITION 1.10. The product cd of two colourings c, d of V is defined by its
injective image

cd((i,j))={c(i, t) d(t,j)lt V}

or, equivalently,

cd((i,j))={(c((i, t)), d((t,j)))lt V}

where the elements are counted with appropriate multiplicity. All such sets from here
on will be assumed to have multiplicities attached to their elements, i.e. they are multisets
or bags.

In computations as in Example 1.4 the values c((i, j)) are usually integers. Then
the product class cd(i,j) consists of those directed edges (i, j) yielding the same
VI-tuple of pairs (c(i, t), d(t,j)) sorted into order. Thus, if c, d are the colourings in
Example 1.4, then cd(2, 3) is the set of edges giving the triple (13, 21, 32). If generic
matrices are used, one has xAy2 q- xly d- X2Yl representing this class. Ordering the terms
lexicographically and recording only subscripts yields the previous triple.

THEOREM 1.11. (i) The sum and product operations satisfy the usual associative
and distributive axioms ofrings. Addition is commutative but multiplication is not commu-
tative if vI > 1,



ADJACENCY MATRICES 21

(ii) cc >- c and cc >- c.
(iii) ce <-_ df if c <- d and e <-ffor colourings c, d, e, f.
(iv) c+ d <- cd if c >= c and d >- c.
Proof. (i) Generic matrices which determine colourings satisfy the named axioms

of ring theory. Hence the colourings themselves satisfy these axioms. For IVI > 1 let c
be the colouring with generic matrix A-(ai) such that al x and ai=y for i# 1.
Easily cc r # c rc since the former is a 4-colouring and the latter the 1-colouring.

(ii) (k, l) cci(i, j) implies

{c(k, t) cI(t, l)lt V}={c(i, t) xc(t,j)lt V}.

Equating terms which contain the diagonal V= c(t, t) gives c(k, I)= c(i,j) and hence
(k, l) c(i,j). Thus cc(i,j)_ c(i,j) and cc>-c. By symmetry cc>-c.

(iii) (k,l)df(i,j) implies {d(k,t)xf(t,l)ltV}-{d(i,t)xf(t,j)ltV} and
hence {c(k, t) xe(t, l)lt V}={c(i, t) xe(t,j)[t V}. Therefore (k, l) ce(i,j). Thus
df(i, j)

_
ce(i, j) and ce <- df, as required.

(iv) From (ii) and (iii) c <-_ cc <- cd and d <-_ ctd <- cd, giving c + d <-_ cd.
LEMMA 1.12. (i) C

rr
C;

(ii) (cd)r= drcr and (c+d)r= cr+d r.

(iii) cc r and c + c r are symmetric;
(iv) c <-_ d implies cr<-d r and vice versa;
(v) Icl--- Ic l.
PROPOSITION 1.13. Let c be the product of c with itself r times for r 7/, r > O, and

set co c. Take n IV[ > 1.
(i) If c >= c then there is a positive integer m < n2 such that c" c"+r for all r >= O.
(ii) For each colouring c there are positive integers m, p bounded by functions of n

such that c c+for all r >= m.
Proof (i) By Theorem 1.11 (ii) and (iii), c <- cc <= cr+ for all r => 0. If c co <

cl< <C then 2-1cl<lc’l <.. "<lCr[ by Lemma 1.6(iv) and so Icrl>-r-f’l. Now
ICrl <--n 2 yields r < n2. Hence there is a maximal value r= m with this property, i.e.
cm= c"/1, which gives cm= c"/r for all r>0.=

(ii) This is automatic from the finitude of the number of colourings for fixed n.
DEFINITION 1.14. In Proposition 1.13 the minimal m satisfying (i) is called the

order of c, and the minimal value of p satisfying (ii) is called the period of c.
The completion of c is ? (c / cT

_
Cl for n

Remarks 1.15. Note that c+ cT+ C >= C. Thus, by Proposition 1.13, its period is
1 and C (c + cT + C where tn is the order of c + cT + Ct. In computations is obtained
by successively squaring c+ cT+ C. The rth squaring gives (c+ cT+ C)2 and so
results after at most log2 (n2- 1) steps. The computation terminates when squaring
returns the same colouring.

e is the maximal colouring obtainable from c using c and the operations so far
defined because of the next theorem.

THEOREM 1.16. (i) C2= ; += ; and
(ii) If c<=?, c2<=? then cc2<=, c+c2<=?, and cT <=?,
(iii) If C <= d then ? <= d,
(iv)
(v) 6c c and >- c
(vi) c is complete if, and only if, c >-c, cr= c and c2= c.
THEOREM 1.17. Suppose c is the totally symmetric 2- or 3-colouring of a regular

graph with adjacency matrix A and ci is the colouring associated with A. Then, for n V[,-- CO+ C "4-" "-F" Cn_ 1.
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Proof By Theorem 1.16, ci <- 6 and therefore Cp <- 6 where Cp Co+ Cl "q- "-- Cn--1.
Now c has generic matrix xI + yJ + zA with JA AJ dJ for some d Z and j2 nJ.
So any polynomial in I, J, A is a linear combination of A, A, A"- and J by
the Cayley-Hamilton theorem. Since 6 (c + cl)i for large enough, 6 has an adjacency
matrix of this form and 6-<_ cp, giving 6 Cp.

Remark 1.18. Complete colourings are the same as coherent configurations in the
sense of D. G. Higman [4]. The intersection numbers he has are just the multiplicities
of the various terms in each entry of a product of two independent generic matrices.
Thus completion provides a natural and easy way of associating a coherent configur-
ation with any graph. The completion 6 is the minimal coherent configuration which
is a refinement of c. If 6 is totally symmetric then it is an association scheme in the
sense of Bose and Shimamoto [2]. If c is obtained from a strongly regular graph, then
6= c (see J. J. Seidel [8]).

2. Automorphisms.
DEFINITION 2.1. Let Sv denote the group of permutations of V. Sv acts naturally

on V V by tr(i,j)- (tri, trj). Thus .trT is well-defined for subsets T of V V and
cr Sv. In particular, a colouring c with classes cx, c2," ", Cr yields a colouring trc with
classes trCl, trc2,’’ ", o’cr where trCk={(tri, trj)l(i,j)c: }. The (strict) automorphism
group Aut*c of a colouring c is the subgroup of Sv consisting of permutations which
leave the colours fixed, i.e.,

tr e Aut* c <:> trci c for each colour c of c.

Of less interest here is the group Aut c {r Svlrc c} which may include automorph-
isms which permute the colours nontrivially. For a matrix A (aj) with associated
colouring c, trA= (raij) is associated with o-c and so has entries ra0 a,-li,-. Then,
obviously, Aut* c {tr SvlrA A} whilst Aut c consists of those r for which o’A is
also an adjacency matrix of c.

LEMMA 2.2. (i) rc+trd=r(c+d); (crc)(trd)=tr(cd); cr(cT)--(crc)T for o’ Sv’,
(ii) Aut* (c+d)=Aut* cf’lAut*d;
(iii) Aut* (cd) Aut* c fq Aut* d if c >= cl and d >= ci
(iv) Aut* (c T) Aut* c
(v) c <= d implies Aut* c

___
Aut* d.

Proof. (i), iv) and (v) are clear.
(ii) If A, B are independent generic matrices for c, d then

r Aut* c + d :> o’(A + B) A+ B:> o’A A and trB B) :> tr Aut* c f’l Aut* d.

(iii) Here r Aut* c f’l Aut* d implies tr(AB) (trA)(trB) AB and so o"

Aut* cd. Thus, Aut* c CI Aut* d
_
Aut* cd without restriction. Assuming (v) and using

(ii) with Theorem 1.11 (iv) gives Aut* c CI Aut* d Aut* (c + d)
_
Aut* cd and so

equality must hold.
THEOREM 2.3. Aut* c Aut* (c + cr + c) Aut* 6.

3. Complete colourings.
LEMMA 3.1. Suppose c is complete.
(i) c(i,j) # c(k, l) if 6i# 6kl (Kronecker delta).
(ii) If c(i, j)= c(k, l) then there is a permutation tr Sv with c(i, t) c(k, trt) and

c( t, j)= c( trt, l) for all V.
(iii) If c(i,j)= c(k, l) then c(i, i)= c(k, k) and c(j,j)= c(l, l).
Proof. (i) is immediate from c ->_ c. Using the definition of product and c2 c gives

{c(i,t)c(t,j)lt V}=cE((i,j))=cE((k,l))={c(k,t)xc(t,l)lt V}. Any bijection
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between these two bags which preserves colours determines a suitable Sv in (ii).
In particular, restricting tr to diagonal classes yields (iii).

THEOREM 3.2 [3, 2.10]. If V= V V V is the partition of V induced by
the diagonal classes ofa complete colouring c then each block V V is a union ofcolours
ofc.

COROLLARY 3.3. With the hypotheses and notation of Theorem 3.2, the permutation
r Sv in Lemma 3.1 (ii) satisfies trV V for each i.

COROLLARY 3.4. Suppose V1 and V2 are diagonal classes (possibly equal) for a
complete colouring c. Then {c(i, t)lt V2} and {c(t,j)lt V1} are independent of V1
andj V2 respectively. The multiplicities of a colour Ck in V2 and V1 xj are related by

ICk ’) X V2)I Vii--ICk -) V j)l v=l.

If c
_
V x V2 then lVl and lVl divide c k l.

Proof. For i, i’ V, c(i, i)- c(i’, i’). So, by Lemma 3.1, there is a tr Sv with
c(i, t) c(i’, trt) for all V. By Corollary 3.3, tr restricts to r: V2 V2. Hence
{c(i, t)lt V2} is independent of V. Independence for the second set follows similarly
or by applying the transpose. This immediately gives the equation relating multiplicities,
both sides having cardinality ICk f’l V V21. The last part is now clear.

THEOREM 3.5. The restriction c of a complete colouring c to V V for a diagonal
class V of c is a complete colouring with one diagonal class.

Proof. Clearly c >_-c and c cf because these properties hold for c. Suppose
c(j, k) c(r, s). Then c(j, k) c(r, s) and by Corollary 3.3 the permutation cr Sv
defined in Lemma 3.1 restricts to a map try: V V such that c(j, t)= c(r, trot) and
c(t,k)=c(trit, s) for t V. So c((j,k))={c(j, t)c(t,k)lt V}-{c(r, t) xc(t,s)lt

2 2V} c2((r, s)). This means c =c and hence c c. Thus c is complete.
Remark 3.6 [3, 8]. In the same way a complete colouring restricts to a complete

colouring on any union of its diagonal classes.
DEFINITION 3.7. The number of colours on the diagonal of a colouring c >_-c is

denoted c ll. g complete colouring is called regular if c 1 ("homogeneous" in the
terminology of Higman).

Remark 3.8. Ilcll=_<-Icl for complete colourings.

4. Adjacency algebras and determinants. If we regard a matrix in My(R) as a map
V x V R in the obvious way, then the adjacency matrices of a colouring c are the
maps b: Vx V R for which every b-l(r), rR, is either the empty set or a colour
of c. The adjacency matrices for all colourings d -<_ c are the maps b V x V R which
are constant on each colour of c, that is, b-l(r) is a union of colours of c for all r R.
Such matrices form a free R-module Mc Mc(R) of rank Icl. Certainly I Mc if, and
only if, c >= ci. Indeed, c -< d if, and only if, M Md. The most important observation
is that M is a ring if c is complete. When R is a field and c is complete Me is therefore
an algebra. M is the adjacency ring (or algebra) over R of the colouring c.

THEOREM 4.1 (see e.g. Higman [4]). For a subfield K of the complex numbers C
and a complete colouring c the adjacency algebra M(K) is semi-simple.

For the rest of this section take R C. Since the only division ring over C is C
itself, Wedderburn’s theorem says that for the decomposition 1 Yi-- ei of 1 into
minimal central orthogonal idempotents and M Mce there is a decomposition
Me )__ M ofM into a direct sum of full matrix algebras Mi over C. If M consists
of e x e matrices, then the minimal irreducible left (or right) M-modules have
dimension ei and character ’, say. The vector space C v on which Me acts decomposes
as cv =)i--1 eicV where eiCV is a direct sum of, say, z copies of the irreducible



24 COLIN D. WALTER

Mi-module with character i" If C v has character " then " ""Ei=I Zii and equating
degrees gives n vI- ,_- z,e, and cl m =

i=1 e i. Clearly z => 1 for each since the
representation of Mc in My(C) is faithful.

By the Noether-Skolem theorem there is an invertible matrix U My(C) such
that for all A Me,

U-1AU=diag (DI(A), ,D,(A), D,(A).,,..., D,,(A))
multiplicity z

is a block diagonal matrix with D(A) affording sty(A).
For generic A, det Di(A) is irreducible as follows. Since D(A)= (drs) is generic

for M every entry is distinct and independent of the others. Let det D(A)=fg be a
nontrivial factorisation and x dl 1. Without loss of generality degx f 1 and degx g 0.
Choose entry y with degy g 1 and degy f 0. As fg contains a term which is a multiple
of xy we may assume y d2 by row and column interchanges. Take d12 d21 1,
drs =0 otherwise for r# s, and d= 1 for r> 2. Then det D(A) specialises to xy-1
which fails to factorise in the required way. So det Di(A) is irreducible.

Thus, if A is generic then F[=I det D(A)z, is the factorization of det A into its
irreducible factors. Hence det A determines the e and z(=>l) uniquely. They in turn
determine Mc_ My(C) up to similarity.

Conversely, to obtain a determinant for a given similarity class, pick a matrix
representation containing a generic matrix whose distinct entries are linearly indepen-
dent and which generates the algebra.

THEOREM 4.2. For a complete colouring c, Me(C) is determined up to similarity by
the determinant of a generic matrix, and conversely.

Warning 4.3. R. Mathon [6] has some regular graphs on 25 vertices which yield
complete 3-colourings that are not isomorphic but have similar adjacency algebras
over C. These also appear in [10] and seem to have been computed independently by
several people.

Consider next maps A: c - C ci- a from the colours c(1 <-_ <- r) of c into C. Let
C denote the set of such maps. If for each (i,j) V V we are given k such that
c(i,j)--Ck then the structure of A as an adjacency matrix is given by ao -ak and we
obtain a map det c:C-C A- det (ao). Clearly, from Theorem 4.2:

COROLLARY 4.4. For a complete colouring c, det c determines the adjacency algebra
M C up to similarity, and conversely.

The maps in C form an algebra (the regular representation) isomorphic to M(C)
under the operations induced by the map A (a)--A where A: c(i,j)-a.

THEOREM 4.5. Suppose the partition of c into diagonal and off-diagonal colours is
givenfor a complete colouring c. Then Me(C) is determined up to similarity by multiplication
in C defined on its natural basis.

Proof. By Corollary 4.4 it suffices to reconstruct det c. Multiplication can be
described giving the intersection numbers no such that AB Fc C satisfies f
i,k nijkaibk. If c V is a diagonal colour then a colour c belongs to the block V V
if, and only if, n- n 1. So cl .k njik can be found where the sum is restricted
to j with c

_
V,. x V. Let A C and compute (A)c for iN. Then each trace Tr (Ai)

can be calculated using Tr A I Iclai where the sum is over diagonal classes. Newton’s
formulae then yield det A and we obtain det c.

This theorem is implicit in Higman [4, 5]. There is a partial converse to the
above which is given in [9].

Remark 4.6. Det c provides the spectrum of a graph, and, by virtue of the proof
of 4.5, it follows that the intersection numbers determine equivalence classes of graphs
which are at least as fine as those given by the spectrum.
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5. The regular representation of the adjacency algebra. The adjacency ring Mc-
Me(R) of a complete colouring c is the set of maps V V- R which are constant on
colours of c with suitable multiplication. This gives the standard representation of Mc
as a ring of matrices operating on R v. The regular representation is given by considering
Mc as the set R of maps from the set of colours of c to R. It is obtained as a ring of
matrices as follows.

DEFINITION 5.1. For a colouring c and Av=(ao)Mv(R) the standard (i.e.
adjacency matrix) representation of A M, define the matrix A- (al,,) with entries
indexed by colours l, m of c by

,,. I/I-’Slml-/ I(t, i) n II I(t, j) n
i,j,t V

These matrices A acting on R give the regular representation of M.
Remark 5.2. Higman [4] makes a slightly different definition for complete colour-

ings, namely
am , I( t, i) f’) llaij

iV

where (t, j) m. This is independent of the choice of t, j V by virtue of Lemma 3.1(ii).
Summing over all such (t, j) to incorporate this symmetry yields a,,,=
[ml- Y,,,, v [(t, i) (q 1[ 1( t, j) CI mlae Thus

a,, lll-1/2lmll/2am.
In other words, rows and columns have been multiplied by certain factors.

PROPOSITION 5.3. Let CR be the colouring defined on a set of [c[ vertices by the
regular representation of a colouring c >-ci. Then CR is symmetric (respectively, totally
symmetric) if and only if c is. Also, CR >- CI.

Proof. First observe that if c and d is the diagonal colour in the same row as
then adl--Idl-1/:Zlll-1/2i.(i,i) d j:(i,j)l ao= uaij for any (i,j) and some constant

u 0 dependent only on I. Hence the map (aj)-(atm) is one-one. It now suffices to
notice from the formula that (ao)T -- (am)T.Finally, an contains a nonzero multiple of a, if i, V are chosen with (t, i) l,
but for no can aii appear in al,, if m. So CR >- CI.

Examples 5.4. The following are generic adjacency matrices paired with their
regular matrix images"

-a c c b d d

c c a d d b
and

b a ,]-d /’c
b d d a c c c .,/d a+c b+d
d b d c a c Ld 4rc b+d a+c
d d b c c a

a b d d
a d d

g e f
g g f e

and

a b x/d 0 0 0

b a x/d 0 0 0
x/g x/Cg e +f 0 0 0

0 0 0 e f
0 0 0 f e 2g
0 0 0 x/rd x/d a+b

LEMMA 5.5. If C is complete, the map (ai)- (al,,) from the standard to the regular
representation is an R-module ring monomorphism.
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Proof. The property for addition is clear. Suppose (aij) and (a) are two adjacency
matrices with images (aim) and (a",). Using the formula in Remark 5.2, (btm)
(alm)(am) has bt", =E,c atna’nm=nsc {]l]-l/2]nll/2Eivl(t, i)f"l llai:}{lml-1/2lnll/
Y.vl(t,k)mla} where (t,j)n. Summing over all (t,j)n and all nc yields
b -II[-/-]ml-/z E,..,,, ](t, i) tO l] ](t, k) m] Y. v aiajk which is the /m-entry of the
image of (aj)(a[j). As in Proposition 5.3, the map is one-one.

THEOREM 5.6. Let V1, Vz,.. ., V, be the diagonal colours of a complete colouring
c. Suppose n is the number of colours in V V, so that cl--’i=a n. Then the matrices
giving the regular representation of Me(C) are block diagonal with blocks of size n ni

for l <=i<-_t.

Proof Suppose 1, m c with
_
V x V. If m V, x V then arm 0 because I(t, i) f) 11

0 whenever (t, j) m. The closure under the transpose map described in Proposition
5.3 ensures that a",l 0 also. This establishes the block diagonal nature of the matrices,
each block being indexed by the n colours in V V for its rows and columns.

Any map f" V W of finite sets can be used to obtain a colouring on fV from a
colouring on V. In terms of graphs the map f replaces each set f-a(w) of vertices in
V by a single vertex w fV. In practice, f can be viewed as an equivalence relation
on V which identifies various vertices.

DEFINITION 5.7. (i) For subsets S, T of V we define c(S, T) {c(s, t)ls S, T},
counting each c(s, t) with the appropriate multiplicity.

(ii) If f: V- W is a map of finite sets and c a colouring on V then fc is the
colouring on fV defined by fc((i,j))= c(f-li, f-lj).

(iii) In case f is written as an,equivalence relation on V (mapping V to Q)
we write for the colouring fc on V.

LEMMA 5.8. If A "-(aij) is a generic matrix for the colouring c on V and is an
equivalence relation on V then has adjacency marix A with entries

E for u, v
iu jv

Note, however, that A need not be generic for ..
Proof Put auv o a for u, v V. Then (ao) is an adjacency matrix for

For any linear functionf ,.v A0a0 ofthe a,’s let Ilfll-- ,, IA,I. Then ao -lul I1
and Ill.oil-lul/=lvl/. Hence ao=axy if, and only if, ($uo tiy. So (tiuo) is also an
adjacency matrix.

THEOREM 5.9. Define an equivalence relation on V by i-j if, and only if,
c(1, i)= c(1,j) where c is a c.omplete colouring. Let A,--> ft be the map Mc(R)--> Ms(R)
given in Lemma 5.8. Then A is the first block ofA in the regular representation when
the indices are paired c(1, i) with i.

Proof. Let (a) be an adjacency matrix for c, (ti7) the image under and (at.,)
the first block of the regular matrix.

Write " instead of c(1, i) to index the regular matrix block. So

ab---lc(1,j)l/lc(1 i)l-/ 5"..a0
ii

-Il-lc(1,j)l/lc(1, i)l-/ E
l,JJ

since Ivall ’1 Ic(1, i)l where Va is the first diagonal colour.
Remarks 5.10. Naturally, Theorem 5.9 is the fastest way to obtain the regular

representation. Moreover, this representation is independent of the vertex numbering.
By the definitions, it is entirely determined by the intersection numbers, and conversely.
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6. Isomorphisms.
DEFINITION 6.1. Let c and d be colourings on V and W respectively. An isomorph-

ism from c to d is a bijection f" V-, W such that fc d in the notation of Definition
5.7. If, in addition, b’c--> d is a bijection between the colours of c and d then f is
called a O-isomorphism iff induces b on the colours. In particular, if V W and c d
then an isomorphism is an automorphism and vice-versa; and when b is the identity,
then a b-isomorphism is just a strict automorphism. In general,f will map the diagonal
colours of c onto the diagonal colours of d and applying the transpose to colours
commutes with the mapfinduces on colours. We will require b to have these properties.

If c and d arise from two graphs then b is usually the map which matches
properties of one graph with those of the other. Then the existence of a b-isomorphism
from c to d is equivalent to the graphs being isomorphic. By viewing f" V--> W as a
re-naming of subscripts, we have (cf. Lemma 2.2(i)) the next lemma.

LEMMA 6.2. Let f" V--> W be injective and c, d colourings on V. Then
(i) a generic matrix for c is generic for fc
(ii) f(cd)=f(c)f(d); f(c+d)=f(c)+f(d); f(cT)=(fc)7";
(iii) f( e) fc.
DEFINITION 6.3. Let c, d be symmetric colourings >-ci. Suppose b’c-> d is a

bijection of colours which restricts to a bijection between the diagonal colours and
which commutes with the transpose map. There is an induced R-module isomorphism

:R--> Rd of regular representations. If commutes with multiplication, then it
extends to a map 2: Re2._> Rd2:AB_.>(A)(B) for A, B Rc. This yields a bijection
b2" c2-> dE. Equivalently, if for all i,j V there are r, s W with {bc(i, t) $c(t,j)lt
V}= {d(r, t) d(t, s)lt W} then b has a natural refinement to a bijection b2: c2-> dE,

22( 2( s). Note, however, that t2 can be found from the multiplica-namely b i,j) d r,
tions RR-> R* and RdRd-> RuE without referring back to the standard rep-
resentation. In the same way, it may be possible to define b r" cr- d for all r > 0.
Then iteratively one obtains a bijection " e--> inducing " Re--> R a. If this is an
R-ring isomorphism, i.e. preserves multiplication, or equivalently, 2= b-, then we say
b is complete.

There is an obvious correspondence between adjacency matrices A (ao) M(R)
and B (brs) Md(R) when there is a bijection b’c d namely that with ao brs
whenever kc(i,j)=d(r, s). Again, let dP’Mc(R) Md(R) denote the map. We say c
and d are cospectral (under b) if, and only if, det A=detA for all AMc(R), (i.e.
if, and only if, det c- det do) and b gives a bijection between diagonal colours.

THEOREM 6.4. Suppose f" V--> W is a O-isomorphism of the colourings c, d. Then
there is a natural way of refining to a complete bijection dp" --> d independently off so
that f is a b-isomorphism from to d.

Proof. ?. and d are isomorphic underf by 6.2(iii). Since f(AB)-f(A)f(B) for all
A,BM(R), bE’cE->d2 may be defined by qbEcE(i,j)=dE(fi, fj)=-{d(fi, t)
d(t, fj)lt W}={qbc(i,t)x$c(t,j)lt V}. So b is obtained by iteration, and it is
complete.

THEOREM 6.5. Suppose b is a bijection between the colours of c and d, and b can
be refined to a complete bijection dp" ?.-> d ofcolours. Then Me(C) and Mj(C) are similar,
and c and d are cospectral (under dp ). If V1," ", Vr are the diagonal colours of and
ckV V for all then there is a unitary matrix U, necessarily block diagonal under the
partition given by the V’s, such that UA AUfor all adjacency matrices A of ?.. Here
A and A have identical characteristic polynomials. There is also a block diagonal matrix

Ua with rational entries such that UaA AUa for all such matrices A. Moreover, U
and Ua may be chosen to have row and column sums equal to 1.
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Proof. The regular representations are identical except for the indexing by g or
d. Now apply Theorems 4.2 and 4.5.

There is a unitary matrix U Mo(C) independent of the choice of A such that
A U-1AU. Decomposing into blocks under the diagonal colours gives Yt U,Ao

Y, A,Utj. If A is a generic matrix whose elements are independent of those in U, then
equating terms from the block Aij yields U,cbA AU and Ut 0 for i. Hence
U is block diagonal with unitary diagonal blocks.

The matrix Ua is obtained by observing that without loss of generality U has
algebraic number entries and then summing UA AU over all conjugates. A J
A gives the row and column sum property.

ALGORITHM 6.6. The graph isomorphism problem is that of finding a permutation
matrix U such that UcbA AU for corresponding adjacency matrices A,A of two
graphs. This has been translated into finding a permutation f" V W of the vertex
sets which is a b-isomorphism of the appropriate colourings c, d. By Theorem 6.4 there
must be a complete bijection b" g- d. A basic check for isomorphism therefore involves
iteratively forming c2’, d 2’ and b2’ to obtain ’g--> d. This establishes that the regular
representations are the same so that the standard representations by adjacency algebras
are similar and the graphs co-spectral. The partitioning of the vertices via the diagonal
colours serves to restrict the possible permutations if the graphs are isomorphic and
standard techniques (see [7]) enable a tree of completions to be used to yield
isomorphisms.

To construct the completions for two graphs and the map between their colours,
represent the graphs by adjacency matrices with integer entries that are equal for edges
if and only if they have identical labels in the graphs. These entries can be chosen in
the range 1 to n2 for n VI. If this can be done in O(n3) time then the 2 log2 n
squarings lead to an O(n log n) time bound on completion, assuming that integers in
the range 1 n2 can be accessed and compared in unit time. First of all, observe that
even bubble sort will sort the elements of each row into order in O(n3) time, providing
a permutation to reorder the elements as they appear in the row, and information
about repeated elements. The same applies to columns.

Each of the n2 elements of the square is given by a formal dot product of a row
with a column. The information about how to sort both row and column must be
combined to sort the n-tuple in linear time. For each distinct value in the row we have
a series of adjacent spaces in the final sorted n-tuple into which terms containing that
value will be placed. Assign a pointer for each such value, setting it to the first such
place which is empty. Now use the column order to take each term in turn, placing it
according to the corresponding row pointer, and incrementing that pointer. This sorts
the n-tuple in O(n) time.

The other part of the squaring procedure involves renumbering entries to obtain
new numbers which are equal if and only if the corresponding sorted n-tuples are
equal. This is done by renumbering using the first term, then taking the new numbering
with the second term, and so on. Thus, all n-tuples must be sorted first, requiring
O(n3) space to be available. Each n-tuple is represented by a vector of 2n integers in
the range 1 n2. It suffices to show how to incorporate the first element of each into
the new numbering in O(n2) time to achieve the O(n3) time requirement for squaring.

Generally, a unique numbering is obtainable for rn ordered pairs of integers in
the range 1.. k in O(max (k, m)) time. We apply this to pairs given by the current
matrix numbering with the next element in each vector. The numbering is achieved
by setting k list head pointers to zero and scanning each pair to set up linked lists
connecting pairs with the same initial element; then each list is scanned to form sublists
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divided according to the second element; finally the lists are scanned again, assigning
a new number of each sublist: O(k / m) time.

The above process must be carried out simultaneously on both graphs to ensure
common renumberings. If at any point a discrepancy arisesmdillering multiplicities
between the two adjacency matricesmthen the graphs cannot be isomorphic, and
indeed, eventually there are no numbers in common in the completions. If the comple-
tions do agree then the graphs are similar if not actually isomorphic.
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UPDATING LU FACTORIZATIONS FOR
COMPUTING STATIONARY DISTRIBUTIONS*
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Abstract. The computation of stationary probability distributions for Markov chains is important in
the analysis of many models in the mathematical sciences, such as queueing network models, input-output
economic models and compartmental tracer analysis models. These computations often involve the solution
of large-scale homogeneous linear equations by Gaussian elimination, where A is a Q-matrix, i.e., A (ao)
is irreducible, aj <-0 for all j and has zero column sums. The stationary distributions are the components
ofthe unique solution vector x of positive components whose sum is one. Stable direct methods for computing
x by triangular factorization A LU have received considerable attention recently and the purpose of this
paper is to provide a stable method for updating the factors L and U in O(n2) flops in the case where a
column of A is modified. Updating formulas are derived here using an approach similar to that for updating
the Cholesky factor of a symmetric positive definite matrix after the addition of a rank one matrix. The
algorithm is effective more generally for any matrix that has a stable LU factorization and for which the
updated matrix has a stable LU factorization. An error analysis for thw LU update algorithm is outlined
along the lines of that given for the Cholesky update by Fletcher and Powell. Details of the algorithm based
on the error analysis and other considerations are given.

AMS(MOS) subject classifications. 65F05, 15A23, 15A51, 68C15, 60J20

I. Introduction.
I.I. Background. Consider an n n real irreducible matrix A (a0) with aij-<_0

for all j and with i=i a0 0, for 1 <=j <= n. Adopting the terminology in Rose (1984),
and elsewhere, we call such matrices Q-matrices. They arise in several areas, including
the analysis of queueing networks (see, e.g., Kaufman (1983)), in the analysis of
compartmental biological models (see, e.g., Funderlic and Mankin (1981)), in the
input-output analysis of economic models (see, e.g., Berman and Plemmons (1981,
Chap. 9), and even in the least squares adjustment of geodetic networks (see, e.g.,
Brandt (1983)). Q-matrices form a subclass of the widely studied class of singular
irreducible M-matrices and thus they possess several important properties (see, e.g.,
Berman and Plemmons (1979, Chap. 6). Of particular interest to us here is that they
possess LU factorizations where L and U are M-matrices. If L is chosen with ones
down its main diagonal, the factorization is unique and u,, =0 (see Funderlic and
Mankin (1981)).

Assume that a Q-matrix A is given in its LU factored form

A LU ., l,u,

where L and Ur are lower triangular matrices with L having ones on its diagonal, the
columns of L denoted by l and the rows of U by u. Such factorizations can be
computed in a stable way by Gaussian elimination since Q-matrices are diagonally
dominant. In particular, the elements of A do not grow at all in magnitude during the
factorization process (see, e.g., Funderlic and Plemmons (1981)). The stability of the
LU factorization is not affected by a symmetric permutation pTAp of A, where P is
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generally chosen to reduce the fill-in in computing L and U where A is large and
sparse. This paper is concerned with computing in an efficient and stable way the LU
factorization of the modified matrix

(1.1) . A-ye,
where y is such that A remains a Q-matrix. Here the vector ek denotes a unit axis
vector with one as its kth component, zeros elsewhere, and y denotes a column vector.
Thus A is modified only in its kth column. The LU factorization of A will be denoted
by / with the columns of denoted by l] and the rows of by ffl. Because L and
U are M-matrices their sign pattern implies that if aij 0 and j> i, then uij 0 and
for j < if a 0, then li ~0. Ther,efore, if only the nonzero entries of the kth column
of A are modified, then L and U can have nonzero elements only where L and U
have nonzero elements. Thus the same data structure storage,scheme for L and U can
also be used to store the modified factors and . Of course L and can be calculated
in O(n3) operations by Gaussian elimination on A, but we will be concerned with
updating L and U to compute /: and in only O(n2) operations, in the spirit, of
e.g., Bennett (1965), Fletcher and Powell (1974), Gill, Golub, Murray and Saunders
(1974), or Gill and Murray (1977).

1.2. Modification of one column. Wilkinson (1977) has said that the Sherman and
Morrison formula

(1.2) (A- yvT")-1= A-I-[1/(v’A-ly 1)1A-’yvT"A-1

where y and v are column vectors is "... perhaps the most widely used result in
numerical linear algebra and linear programming..." The earliest appearance of this
formula is probably Duncan (1944, p. 666). The solution to the nonsingular modified
system of equations

(1.3) (A-yvT") b,

when the solutions to Ax b and Az y are known, follows from (1.2) and is given by

(1.4) = x-(vT"x/(vT"z 1))z.

Note that for nonsingular A-yv r, v Tz 1 since otherwise z is in the null space of
A-yv.

In Funderlic and Mankin (1981) it was shown for Q-matrices that the solution
to a modified homogeneous system can also be obtained from (1.4). In fact if y and
b are any vectors in the range of any matrix A and the solutions to Ax b and Az y
are known, and if b is also in the range of A-yv, then a solution to (1.3) is also
given by (1.4) when v T"z 1. A continuation of these results to the case of a general
singular irreducible M-matrix was given in Harrod (1982, pp. 76-78). If vT"z 1 and
b 0, then a solution is given by z.

If vz 1 while b 0, then there are two cases to consider. The underlying principle
is that for consistent systems Ax b, a solution is A-b where A- is any inner inverse
of A, i.e. AA-A A. Inner inverses are often called {1}-inverses (see e.g. Ben-Israel
and Greville (1974)).)

Case 1. If the range of AT" contains v, then since Az =y and vz 1, it follows
after some manipulation that any inner inverse of A, A-, is an inner inverse of A.
Thus x A-b is a solution of the consistent system A b.
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Case 2. If v is not in the range of At, then setting B I- A-A where A- is any
inner inverse of A implies vrB O. It follows that

1
A- BBT-vv TA

vT-BB T-v
is an inner inverse of A, and therefore

1: x-(BB7-vv 7-

v T-BB T-v )x

is a solution of (1.3).
Though the above discussion on updating is already more general than necessary

for our purposes, more could be said. When a rank one matrix is subtracted from a
given matrix, the rank of the resulting matrix may only differ by at most one from that
of the given matrix. For example the condition v T-z 1 implies that the rank of, A-yv 7- is one less than the rank of A (cf. Case 1 above) if and only if v is in the
range of A, see e.g. Householder (1964,.p. 33, ex. 34). Therefore when the rank of A
is less than that of A, the null space of A is generated by the null space of A and the
vector z. This raises the question, which we shall not pursue, of characterizing com-
pletely the solution spaces for =/ depending on whether rank(A) is one less, one
more, or the same as that of A. For a further discussion of how the rank of a matrix
A differs from the rank of a difference A-S, see Cline and Funderlic (1979).

Finally, we mention that Meyer and Shoaf (1980) have studied the general problem
of updating Markov chains by updating the group generalized inverse of A. Our
approach is different in that we update a triangular factorization of A instead.

1.3. Homogeneous systems. The main application we have in mind here is the
solution of homogeneous systems of the form

(1.5) Ax 0

where A is a Q-matrix. Our purpose is to compute the unique stationary probability
distribution vector x (xi), xi > 0 Y x 1, which solves the homogeneous system (1.5).
Here A might be considered to be the transfer rate matrix for a finite, homogeneous,
ergodic Markov process. Both iterative and direct methods for computing x have been
extensively studied in the literature (see, e.g., Kaufman (1983), Funderlic and Mankin
(1980), and Harrod and Plemmons (1984)). A combined direct-iterative method was
studied by Funderlic and Plemmons (1984). Our interest here is in direct methods for
c.omputing x, based upon an LU factorization of A. In particular, if A is updated to
A given in (1.1), then the updated L and U can be used to compute the updated
stationary distribution vector which solves

A =0.

A typical application in compartmental analysis would be where one needs to

change the rates at which a material leaves a compartment. For example, the carbon
model depicted by Fig. 1 (Gardner, Mankin and Emanuel (1980) and Funderlic and
Mankin (1981)) could have a transfer rate matrix given by

.50 -.090 0 0 0

-.50 .47 -0.061 -0.080 0

0 -.20 0.061 0 0

0 -.18 0 .12 -.0011

10 0 0 -.04 .001
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FIG. 1. A carbon model.

A simple way, suggested by Funderlic and Mankin (1981), to solve for the
steady-state vector x from the system Ax 0 is to obtain an LU factorization of A"

1 0 0 0 0

-1 1 0 0 0

0 -.53 1 0 0

0 -.47 -1 1 0

0 0 0 -1 1

.50 -.09 0 0 0

0 .38 -.061 -.08 0

0 0 .029 -.042 0

0 0 0 .04 -.001

0 0 0 0 0

and solve the equivalent system Ux 0, to give

x 7" (.0020, .0113, .0370, .0254, .9242),

normalized so that Y. xi 1. Let the rates out of the second compartment be changed
so that the second column of A is

ti (-.15, .49,- 18,-.16, 0) 7".

Then if the second column of A is denoted as a, we have

,= a-ye,
where

y a ti (.06, -.02, -.02, -.02, 0).
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Then Az-y can be efficiently solved for the vector z using the LU factorization of
A" Lp- y, Uz- p. An unnormalized may be calculated from (1.4) from which the
normalized

: (.0038, .0127, .0374, .0253, .9209) r

is calculated. From premultiplying Uz p by Te,, it follows that p, =0. Thus the
back-substitution for z may be started with an arbitrary z, since u,, 0. If the new
second column of A is modified further, new vectors Y can continue to be efficiently
calculated from (1.4), with v e2.

Using the terminology of C. B. Moler, we define a flop to be a floating point
calculation consisting of one addition, one multiplication, and a little indexing, such
as cu s + aikbkj. Then assuming that the LU factorization of A has already been carried
out, O(n2) flops are required for the solution of Az u and a single flop is required
for (1.4), since v ek where the kth column of A is being changed.

1.4. Why update L and U? As long as only one column of A is to be modified
in sequence, the strategy of the previous section is quite appropriate. However, if we
now wish to follow a modification of column k by a modification of column j # k,
then there is a problem because we now have no LU factorization of A-ye. Though
in compartmental analysis the modification of only one column occurs frequently, in
many Markov processes several different columns need to be changed. Consider the
following simple queueing network given by Fig. 2, where ru is the probability that a
customer exiting station will proceed next to station j. At any instant the network is
in one of the six states of Fig. 2.

For example in state 3 there is one customer at station 1 and one customer at
station 3. The rate of transition from state 3 to state 5 is given by lr12, where/z is
the service rate of the server at service facility i.

The network of Fig. 2 leads to the following infinitesimal generator or transition
rate matrix (of order equal to the number of states)

Sll b[, 1/’12 ff,1 r13 0 0 0

/.2 r21 $22 /d,2 r23 12,1 r12 l. r13 0

//,3 r31 /.3 r32 $33 0 L$1 r12 ff,1 r13
0 /d2 r21 0 $44 2r23 0

0 /./,3 r31 /d,2 r21 /L,3 r32 $55 /2r23

0 0 /.,3 r31 0 /,/,3 r32 $66

3 SERVICE FACILITIES (STATIONS)
EACH CONTAINING A SINGLE
EXPONENTIAL SERVER.

2 CUSTOMERS

STATE NUMBER 2 3 4 5 6

STATE (2,0,0) (’1,4,0) (4,0,4) (0,2,0) (0,4,1) (0,0,2)
FIG. 2. J simple queueing network.
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where S has nonnegative off-diagonal elements and zero row sums. The off-diagonal
elements are determined from Fig. 2, i.e. sij is the rate of transition from state to
state j. The required stationary probability vector x is obtained by solving xrS 0 or
Srx 0. To determine an associated stochastic probability matrix Q, consider

ST Atx+x=x.

If the scalar At is chosen such that At--<_ d -, where d max Sij, then

Q=AtS+I.

Let A Sr. Observe that if r0 is changed, then 3 columns of A are altered. This again
illustrates the need to update LU factorizations to obtain updated solutions of. -0.

2. Updating LU factorizations of Q-matrices.
2.1. The algorithm. Bennett (1965) gave a general algorithm to update an LDU

factorization of a nonsingular matrix by a rank rn matrix XCYr, where X and Y are
n m matrices. Bennett credits J. C. Butcher with pointing out to him the triangular
factors of a matrix of the form I+xxr. Gill et al. (1974) and Fletcher and Powell
(1974) in the same volume of "Mathematics of Computation" published papers each
of which considered updating an LDLT factorization of a positive definite matrix after
a rank one update o-xx r. It was pointed out that even when a Bennett update of a
general matrix allowed an// factorization, the factorization could be unstable (e.g.
Gill et al. (1974)). In particular, the elements of/, and can become relatively large
in magnitude. Furthermore, even for symmetric positive definite matrices the given
matrix dictates branches of the algorithm to insure stability (see e.g. Fletcher and
Powell (1974, p. 1074)). For Q-matrices a similar situation occurs. This will be
elaborated on further in 3.

The Gill et al. (1974) discussion is particularly compact as they point out that

A+ o-zz T LDLT + O’ZZ
T L(D + o-vv T)LT L(EJET)LT,

where v is obtained from Lv z. Alternatively Fletcher and Powell (1974) write

A: l,d,l and .: a,’f.
i=1 i=1

They note that vectors ll, z2 and the scalars dl and o-2 can be determined so that the
first components of [1 and z: are respectively one and zero and

(2.1) d + o-zz r =dl "[, "[’ + o-2z2z

When equation (2.1) is subtracted from

d,lil+o-zzr= dlrri,
i=1 i=1

one is left with the update problem of dimension one less"

i=2 i=2

Carrying out the rocess used to determine ]’1, z2, al and o’2, n times gives the complete
factorization of A. A key observation here is that the reduced problem at each step is
that of updating the triangular factorization of a symmetric positive definite matrix.

We chose the Fletcher and Powell approach to derive the formulas for our situation.
To simplify the notation we write the analogue of (2.1) without subscripts and use
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primes for row vectors:

(2.2) lu’ + xy’= l’+ zw’.
"- l,u’ of A is to be updated by xy’. Note that we needThus an LU factorization

’-(0,..., 0). In this section and what follows, theonly sum to n 1 here since
vector x is associated with the update rather than with a solution to Ax 0. We require
column vectors " and z and row vectors ’ and w’ such that ez w’e =0 and e’= 1.
This gives a problem of dimension one less to be updated:

n--1 n--1

i=2 i=2

if l, u u, ’= ’ and tT’= t. Further, denote the first components of x, y’ and u’
by :, r/and/z. Then relation (2.2) implies

(2.3) a’= u’+ sCy ’,

and

(2.4) IJ, tzl + rtx,

where fi =/x + s/. These relations follow by premultiplying relation (2.2) by e( and
post multiplying by el. If there are vectors z and w’ that satisfy (2.2), then z must be
a linear combination of x, and and w’ of y’ and u’. Furthermore, z and w’ are unique
vectors up to scalar multiples. The choice

(2.5) z-- x- ,l

is effective and implies from (2.2) that

(2.6) Aw’=/zy’- r/u’.

The number of multiplications can be reduced in the algorithm by observing that

(2.7) +/3z

and

(2.8) w’= y’- fla’
where /3 r///.7,. Except for updating the final one-dimensional problem, must be
nonzero since it is a diagonal element of U. Thus if/3, rt,//x,, an algorithm can be
given from (2.3), (2.6), (2.5) and (2.4). Alternatively (2.8) can be used for (2.6), and
(2.7) for (2.4). Define the vectors x =x, y y’ and the scalars :, efxi, rt ye,, tx
ue and/i =/x, + :rt. The algorithm therefore takes the form for 1, 2, , n 1

(2.9a)

(2.9b, c) y, =/z,/, or /3, r/,//,,

(2.9d,e) y+ yy, or y+ y-/3,u,,

(2.9f) x,+ x,

(2.9g, h) l, y,l, +
We observe here that the reduced problem at each step is that of updating the

LU factorization of a Q-matrix, so that a stable factorization exists at each step. This
follows since after each step of Gaussian elimination on A, the unreduced part remains
a Q-matrix (see, e.g., Fundedic and Mankin (1981)).
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2.2. Interpretation as column exchanges and partitioning. In Gill and Murray (1977)
for example, an alternate procedure is discussed for the case where A is updated by
deleting and adding a column. This is known as a column exchange. Here, however,
it is necessary to add the column at the end and the algorithm requires increasingly
more steps as more columns are exchanged. In addition, some pivoting is gnerally
necessary to preserve numerical stability.

The formulas (2.9) can be thought of as being associated with matrices L, L, X,
U, /, and Y with the first three lower triangular and the last three upper triangularz
When the kth column of A is modified and k > ,I, then certain elements of L and L
are identical as are certain elements of U and U. To see this suppose we are given
the factorization A LU and wish to update A to/ A-ye[, where, as before, we
assume that the updated/ remains a Q-matrix. Further, let ak (S, a, t) T denote the
kth column of A where s has dimension k- I, a is a scalar and has dimension n k.
Also let k ak--y (u,/3, v) T be partitioned conformally with ak. Then partitioning
A,/, L, U, / and r conformally, we have the following block factorizations"

AI s A2 "Lll 0 Ull u U12
A= z wr LU= l 1 Ukk Uf

A21 A22 21 12 L22 0 U22

and

.,= z T fl wT == ’, 1 ffkk ff:l
A21 v A2_ /2, l 2 0 22J

Now observe that

1) Lll Lll and Ull Ull since

2) 12 L-I1A12
3) /,21 A21U-(1 L21,

4) ’ zT"U-(= l,

5) a w- IU12 u.
Then and have the block forms

= l 1 0

L2 12 L

Lll Ull uniquely,

Ull 1 U1210 u\, u[
0 0 0

This means that only the (n k)-dimensional vector ’2, the (k 1)-dimensional vector
if1, the scalar fkk and the (n- k)-dimensional matrices L22 and U22 need to be
recalculated in the updating process.

Bunch and Rose (1974) have also considered updating problems in conjunction
with partitioning, tearing and modification schemes for general linear sparse systems.

2.3. Simple Fortran implementation. Here a simple Fortran implementation of the
formulas (2.9) using. (2.9a, c., e, f, h) is given by Fig. 3. Let UN and LN be Fortran
arrays that denote U and L respectively. Further assume that UN and LN are the
same as U and L initially. It is assumed that xe is added to LU so that initially
y’ e" is in the Fortran Y vector and x in the Fortran X vector. As the algorithm
progresses the appropriate leading components ofX and Y are implicitly assumed zero.
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10

15
20
25

SUBROUTINE UPDATE(N,K,L,LN,U,UN,X,Y)
REAL L(N,N) ,LN(N,N) ,U(N,N) ,UN(N,N) ,X(N) ,Y(N)
NMI =N-I
DO 25 I=I,NMI

XI:X(1)
IF(I.LT.K)GO TO 5
UN(I,I)=U(I,I)+XI*Y(1)
BETA=Y(1)/UN(I,I)
CONTINUE
IF(I.LT.K)UN(I,K)--U(I,K)+Xl
IPI=I+I

DO i0 J=IPI,N
X(J)=X(J)-XI*L(J,I)

CONTINUE
IF(I.LT.K)GO TO 20

DO 15 J=IPI,N
UN(I,J)=U(I,J)+XI*Y(J)
Y(J)=Y(J)-BETA*UN(I,J)
LN(J,I)=L(J,I)+BETA*X(J)

CONTINUE
CONTINUE

CONTINUE
RETURN
END

FIG. 3. A simplified update subroutine.

Though the subroutine of Fig. 3 is not what would be implemented in a high
quality subroutine, it helps illustrate several points: it is not necessary to have matrices
to represent X and Y. If a flop is defined as in 1.3, then the algorithm, ignoring
lower order terms, takes between 2n2 and n2/2 flops as k varies from 1 to n. In the
final suggested algorithm the only array storage required is the original matrix plus
the x and y vectors. See 4.

3. Error analysis. Fletcher and Powell (1974) have given a complete a posteriori
error analysis for the symmetric positive definite update problem of an LDLr factoriz-
ation. This analysis is quite tedious, but it does carry over for LU factorizations of
diagonally dominant irreducible M-matrices.

A crucial point in the Fletcher-Powell error analysis (1974, inequality 5.16, p.
1080) is that the error term (at the ith stage) contains elements from the Cholesky
factorizations ofA and A. These elements are not unacceptably large since the Cholesky
factorizations of A and A are stable. Likewise the error term for the update of a
Q-matrix contains elements of the stable LU factorizations of A and A. What can be
inferred is that if any matrices A and A have given stable LU factorizations and differ
by a rank one matrix, then there is a stable update algorithm which will produce a
stable LU factorization for A from that of A. Following,the analysis of Fletcher and
Powell, when the economical (2.9e) and (2.9h) are used,/2i//zi occurs in the error term
where the bar indicates a calculated value. Thus when the ith diagonal element of U
is large compared with the ith diagonal element of U, unacceptable growth may occur.
To offset this we use the more expensive formulas (2.9d) and (2.9g) when y /z//2 < .
This is in line with the Fletcher and Powell choice. When the more expensive formulas
are used,/x//2i occurs in the error term. For most problems/z//2 is seldom less than
1/4, so that realistically the number of flops does not appreciably increase over that given
in the simplified subroutine of Fig. 3.

When/ is relatively large with respect to/x, ]’t’ tends to lose the contribution of
x when (2.9h) is used, and conversely when /2 is relatively small, cancellation can
occur when (2.9g) is used. Similar comments can be made with respect to xy’.

The Cholesky process can break down for a symmetric positive definite matrix A.
That is, if A is poorly conditioned, a zero or negative element may appear on the
diagonal of L, Wilkinson (1968). Similarly the update process may break down and
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much research has been done to alleviate that problem, e.g. Fletcher and Powell (1974),
Gill and Murray (1977) and Dax (1983). In the symmetric positive definite case no
difficulty can occur when the update is of the form crxx T with tr > 0. The difficulty
occurs when cr < 0 and has lately been called downdating. Stewart (1979) has shown
that when downdating breaks down or nearly breaks down in the Cholesky process,
L is an ill-conditioned function of L and the update. In any case the methods for
preventing or correcting a breakdown for Q-matrices are more complicated than that
for symmetric positive definite matrices. For Q-matrices the distinction of updating
and downdating cannot be made, but rather the analogue of cr can change signs at
each step. Though analogous strategies to those for the symmetric case can be made
for Q-matrices we will not pursue such strategies.

4. Implementation based on error analysis and storage. The purpose of this section
is to indicate a way to implement the update algorithm of (2.9) with error analysis
considerations in essentially nEd 2n storage locations. Again the problem is to update
an n n matrix LU by xe[ so that

1 LU+ xe[.
The algorithm depicted by Fig. 4 assumes that the matrices L and U are stored in the

For

(2.9b)

(e.ge)

(.gh)

=1,2 rt-1

If’/ < k, then

For j i+1, i+2 n

othese

t

I O, then error exit

otheise

7

y[l

If y < 1/4, then

For j

%.m+$t

a

otheise

For j

(4.2)

(4.3)

(4.4)

FIG. 4. The update algorithm.
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array A with the diagonal elements of U~ as dia,gonal elements of A and those of L
implicitly assumed to be 1. The matrices L and U will overwrite L and U in the array
A. In practice matrix sparsity or architecture considerations may suggest other data
structures. The vectorized formulas (2.9) derived in 2 are referenced down the left
side of Fig. 4. In the formulas (2.9), xi and yi denoted column and row vectors whereas
in Fig. 4 we start with y’= ek

7 and x is the kth column of --. The x vector is
overwritten at each step of the algorithm and the y’ vector is overwritten from the kth
step on. Thus in Fig. 4 xj and y are the jth components of the current x and y’ vectors.
The algorithm consists of one outer loop (4.1) with three inner loops. The first inner
loop is all that is executed until i->_ k. The choice between the other two inner lops is
made depending on how Uii/ lii compares with 1/4. The outer loop only goes to n- 1
because u,n t,, 0 for Q-matrices. If the algorithm were to be modified for nonsin-
gular matrices, the outer loop would go to n rather n 1. While < k, the vector y’= e
is unchanged so that from (2.9a), only the kth component of each of the rows of U
are changed by the ith component of x. This is depicted in (4.2). Since the diagonal
elements of Q-matrices are mathematically positive, an error exit is indicated at (4.3)
if t, =< 0. The loop at (4.4) depicts the same formulas that were used in the simplified
Fortran subroutine of Fig. 3.

5. A worked example. If the kth column of A, ak, is to be changed to k, then

=A+(k+ak)e,
and therefore in the notation of 2.1, the vector x dk ak. Alternatively we can start
with the kth column of A zeroed out so that x tk. The LU factorization to be updated
in the case of the zero kth column is the same as when ak 0 except the kth column
of the upper triangular matrix U has as its kth column a zero column. Let

5 -2 0 -2 -1

-2 5.8 0 -3.2 -4.6

-__11 -1 0 9.6-1.1

The triangular factors of A are

0

1

0

0

1

--.7

--.3

0

0

0

1

-1

0

0

0

0

1

and

5 -2
5
0

0

0

-2
-4

-4

6

0

-1

-5
-6

-6

0
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Let xr= (-2,-1, 8,-1,-4) and A+ xef. Then to 3 significant digits

1 0 0 0 0

-.4 1 0 0 0

/=-.2-.6 1 0 0

-.2 -.1 -.242 1 0

-.2 -.3 -.758 -1 1

and

5 -2 -2 -2
0 5 -1.8 -4

0 0 6.52 -4

0 0 0 7.83

0 0 0 0

-1

-5
-6

-3.25
0

-2 0 0 0 0

-1 -1.8 0 0 0

o8 7.6 6.52 0

-1 -1.4 -1.58 2.98 0

o-4 -4.4 -4.94 -2.98

and

0 0 1 0 0

0 0 1 0 0

o0 0 1 0

0 0 0 .613 .92

0 0 0 0 1.18

Notice that when . A+ xef, the first column of X is x and the first row of Y is e.
Since the first n- 1 column sums of L are zero, (2.9f) implies that the column sums
of X are zero. For the first k-1 steps of the algorithm,/3 and y are not calculated.
However,/33 .153, 3’3 =0,/34 .0783, and 3,4 .766.

Initially the L and U matrices are stored in the A array as

5
4

-2 0 -2 -1

5 0 -4 -5

-.2 -.6 0 -4 -6

122 -1 -.7 6-6

-.3 -.3 -1 0

and on return from the algorithm described in the last section the A array is overwritten
by

5 -2 -2 -2 -1-. 5 -1.8 -4 -16-.6 6.52 -4

-.3 -.758 -1
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THE GEOMETRY OF m-SEQUENCES: THREE-VALUED
CROSSCORRELATIONS AND QUADRICS IN

FINITE PROJECTIVE GEOMETRY*

RICHARD A. GAMES’

Abstract. Hyperplanes H and sets H of PG(n- 1, 2) are identified with pairs of binary m-sequences
of span n. If H is a quadric, then a three-valued periodic crosscorrelation function between the m-sequences
results. Conjectures concerning three-valued periodic crosscorrelation functions of binary m-sequences
specialize to conjectures concerning the degeneracy of quadrics of the form H r. The main result is that if
n 2kin, with m odd and k>=2, H

_
PG(n-1,2) is a hyperplane and H" is a quadric, necessarily a cone

of order 21 + 1, then 21+ >- 2k- + 1. This shows that when n 0 (mod 4), there are no m-sequences arising
from quadrics with preferred three-valued periodic crosscorrelation functions. Also, when n 2 k, m-
sequences arising from quadrics would have three-valued periodic crosscorrelation functions with values
determined by a cone of order at least (n/2)+ 1.

AMS(MOS) subject classifications. 05, 05B, 94, 94A

1. Introduction and summary. Maximum period linear recursive binary sequences
of span n and period 2n- 1 possess many nice autocorrelation and crosscorrelation
properties. For instance, these binary m-sequences, as they are often called, have
two-valued periodic autocorrelation functions, making them useful in applications
involving ranging, radar or spread-spectrum communications. In 11 the crosscorrela-
tion properties of binary m-sequences are surveyed. For instance, it is known [3, p.
82; 5] that the periodic crosscorrelation function of two distinct m-sequences has at
least three different values, and the problem of determining which pairs result in
periodic crosscorrelation functions with exactly three values has received much atten-
tion (see [11] for references, also [13]). The conjectures that motivate this study are"

CONJECTURE 1 [11]. Ifn =--0 (mod 4), then there are no pairs ofbinary m-sequences
of span n with a preferred three-valued periodic crosscorrelation function.

CONJECTURE 2 [5]. Ifn is a power of 2, then there are no pairs ofbinary m-sequences
of span n with a three-valued periodic crosscorrelation function.

In this paper, a binary m-sequence of span n is viewed as a hyperplane H in
PG(n-1, 2)--the finite projective geometry based on GF(2n), thought of as an n-
dimensional vector space over GF(2). Other m-sequences of span n (binary assumed
throughout) then correspond to H’= {P’IP H} for an integer r relatively prime to
2n- 1. The periodic crosscorrelation function of the sequences corresponding to H
and H is computed by intersecting all the hyperplanes of PG(n-1, 2) with Hr. A
three-valued periodic crosscorrelation function results if H" is quadric--a solution to
a quadratic equation--because in this case the hyperplanes of PG(n- 1, 2) intersect
H in sets of three sizes. Although not the only case when three values occur, it is the
case considered here. Such quadrics are necessarily cones of order 21 if n- 1 is even,
and cones of order 21+ 1 if n- 1 is odd [2]. Quadrics that are the least degenerate,
i.e., 0, yield pairs of m-sequences with preferred three-valued periodic crosscorrela-
tion functions.

As special cases of Conjectures 1 and 2, we have"
CONJECTURE lP. If n 0 (mod 4), H PG(n 1, 2) is a hyperplane, r is an integer

* Received by the editors November 17, 1983, and in revised form August 8, 1984.
t Department of Mathematics, Colorado State University, Fort Collins, Colorado 80523. Present address.

The MITRE Corporation, E-020, P.O. Box 208, Bedford, Massachusetts 01730.
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relatively prime to 2"-1, and H is a quadric, necessarily a cone of order 21 + 1, then
l-> 1; i.e., H is a cone of order at least 3.

CONJECTtJRE 2’. If n is a power of 2, H PG(n- 1, 2) is a hyperplane, r is an
integer relatively prime to 2"- 1, and H is a quadric, then H is completely degenerate;
i.e., H is a hyperplane and r=-2 mod 2"-1.

The main result of this paper bears on Conjectures 1’ and 2’. In 6 it is shown
that if n 2kin with k >-2 and m odd, H PG(n- 1, 2) is a hyperplane and r is an
integer relatively prime to 2 1; then if H is a quadric, it is a cone of order at least
21+ 1 >2k-l/ 1. In particular, for k_>-2, H is a cone of order at least 3, and so
Conjecture 1’ is true. Therefore, if there are any counterexamples to Conjecture 1, they
do not arise from quadrics. When n- 2k, this result says a quadric H must be a cone
of order at least (n/2)/ 1. Whether this implies that H must itself be a hyperplane
is, along with Conjecture 2’, still open.

Actually, the results ofthis paper suggest a new conjecture for three-valued periodic
crosscorrelation functions of m-sequences. Say that two m-sequences have a three-
valued periodic crosscorrelation function of type l, if the values agree with the values
obtained in the case of a hyperplane H and quadric H which is a cone of order 21
or 2// 1 for n-1 respectively even or odd. These values do not depend on the
hyperplane H. Now a preferred three-valued periodic crosscorrelation function is of
type 0. Then the conjecture is"

CONJECTURE 3. If tWO binary m-sequences of span n 2km, m odd, have a three-
valued periodic crosscorrelation function of type l, then 21 + 1 >- 2k-1 / 1.

Conjecture 3 generalizes Conjecture 1, but is a weakening of Conjecture 2. The
result in 6 shows that Conjecture 3 is true for binary m-sequences that arise from a
hyperplane H

_
PG(n 1, 2) and a quadric H, r relatively prime to 2" 1.

Section 2 shows how binary m-sequences can be viewed as hyperplanes in a finite
projective geometry and gives the geometric interpretation of the shift and decimation
operations. Section 3 discusses the periodic crosscorrelation function from three
equivalent points of view and shows that the periodic crosscorrelation function is
equivalent to hyperplane intersections in the geometry. The geometry of quadrics and
the relation to pairs of m-sequences with three-valued periodic crosscorrelation func-
tions is given in 4. Also included in this section are results on quadrics that are
needed in the proof of the main result. Section 5 contains material on linearized
polynomials and subspaces of GF(q) which are fixed by x --> xq. These results are also
needed in the proof of the main result, which is presented in 6.

2. The geometry of sequences. By considering the points and hyperplanes of
PG(r, q), the finite projective geometry based on GF(q)r+l, Singer defined a cyclic
difference set D_Zo, v=(qr+l--1)/(q--1) [4, p. 128]. If s(D) is the anti-incidence
vector of D, i.e., s(D)i =0 if D, s(D)i-- 1 if D, then s(D) corresponds to a binary
sequence of period v with a two-valued autocorrelation function. If q 2 and r n 1,
then s(D) is a binary m-sequence of span n [1, 14]. The nonzero elements of GF(2")
can be identified with the points of PG(n- 1, 2) and ordered using a primitive element
a: (aliZo, v =2n- 1). Then H ={c: iD} is a hyperplane of PG(n-I,2), and the
sequence s(D) is also denoted by s(H). So a binary m-sequence of span n can be
represented in at least these three ways" the sequence itself, as a Singer difference set
in Zv, v 2"-1, and as a hyperplane in PG(n- 1, 2).

These connections are made more explicit with the trace function Tr(x)=
X / X

2 /" / X2n-l, which maps GF(2") to GF(2). Regard GF(2") as an n-dimensional
vector space over GF(2). Then for fixed 3, GF(2"), the mapping x->Tr(),x) is
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a linear transformation from GF(2") to GF(2). If y0, then Hy=
{/3 e GF(2")ITr (y/3) 0} is a subspace of GF(2") of dimension n 1 (or a hyperplane
of PG(n- 1, 2)). The corresponding m-sequence is s(Hy) (Tr (ya), Tr (ya), ,
Tr (yav-1)), and y s(Hy) is the field isomorphism given in [7] between GF(2") and
the field formed by the 2"-1 shifts of the m-sequence and the all zeros sequence.

The shift operator E when applied to s (So, Sl," ", Sv_l) yields the sequence
Es (s_l, So,’’’, S-E). NOW consider a shift of s(H):

Es(Hv) (Tr (ya-1), Tr (ya), Tr (ya v-E))

(Tr ya --10 0), Tr ya -1 o1 ), Tr ya o v-1 ).

The associated hyperplane is H-, {/3 e GF(2")ITr (ya-1/3)=0}= {afll fl Hy}=
ally; i.e., Es(Hv) s(aHy) and the shift of the sequence corresponds to multiplication
of the associated hyperplane by a. This is why a shift to the right was used in defining
E. It follows that aHv is a hyperplane and all the hyperplanes of PG(n-1, 2) are
contained in {aiHy]i 0, 1, 2, , v- 1}. This is the basis of the Singer difference set
construction.

Let H c_c_ PG(n 1, 2) be a hyperplane and s(H) (So, Sl, , S_l) the associated
m-sequence. For an integer r consider the sequence s(H)[ r] (to, tl," , tv-1) formed
by taking every rth term of s(H), i.e., ti s,, 0, 1,. , v- 1 (subscripts modulo v).
The sequence s(H)[r] is a decimation of s(H) by r. It is well known that given one
m-sequence of span n, then, up to cyclic shifts, all m-sequences can be obtained from
it by decimating by integers r which are relatively prime to v [3, p. 78]. If (r, v)= 1,
then the m-sequence s(H)[r] equals s(Hr-’), and so all m-sequences of span n, up
to cyclic shifts, are obtained by considering s(H) for a fixed hyperplane H___

PG(n 1, 2) and r Z* { Zv[(i, v) 1 }.
Example 1. Consider the primitive polynomial f(x) x + x + 1 over GF(2). The

m-sequence in this case is s 1001011 which corresponds to the (7, 3, 1)-ditterence set
D= {1,2, 4}__c Z7. The nonzero elements of GF(23) (represented in terms of a E, a 1,
a coordinates) are: a 001, al 010, a2= 100, a3 =011, a4= 110, a5= 111, a6= 101.
The corresponding hyperplane is H {a , aE, a4}, and the other m-sequence of span
3 is obtained from H-5= H3--- {t 3, a 6, c 5} and is s(H3) 1110100. Figure 1 pictures
PG(2, 2) with the line H and the set H marked.

To end this section, the above example is used to show how quadrics of PG(n 1, 2)
are involved in this study of m-sequences. Consider the quadratic form Q(Xo, x, x2)
X3c X21 "31- X22 + XoX1. Then it can be checked that n {(Xo, x1, x2) Q(xo, x, X2) 0}, SO

H is said to form a quadric (or conic when n- 1- 2) in PG(2, 2). From Fig. 1 it is
seen that the lines of PG(2, 2) intersect H in sets of size 0, 1, and 2. This is implied
by a theorem given in 4 and will be seen to be equivalent to the fact that the
m-sequences s(H) and $(H3) have a three-valued periodic crosscorrelation function.

oo

H ={00, oo, 110}

011 [ H3: {011, 111, i01}

i00 :’ 001

I01

FIG. 1. PG(2, 2) with H and H3.
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3. Correlation of sequences. For vectors x=(xo, xl,. ",xv-1) and y=
(Yo, Yl,’", Yv-1) with complex entries, the periodic crosscorrelation function 0,,y is
defined by

O--1

0x,y(l) x,y*_,, l=O, 1,..., v-1
i=0

where y* denotes the complex conjugate of Yi and the subscripts are computed
modulo v. In the case of periodic sequences over GF(2), the same definition is used,
but the complex conjugation is dropped and the sum is computed over the integers.
In other words, if s (So, Sl, , so-l) and (to, tl," , to-l) represent two periodic
binary sequences, then the periodic crosscorrelation function 0 (1)s,t has values, for
l-0, 1,-.., v-1, given by

0(1)(1) number of positions that both contain l’s in the vectors s and Ett.S,t

In this paper an alternative definition of the periodic crosscorrelation function is used,
namely,

0(2s.t (l)= number of positions that both contain O’s in the vectors s and Et.
Actually, in most practical applications, yet a third definition of a periodic

crosscorrelation function is used. The binary sequence So (So, sl, , so-l) is replaced
by the sequence X(S) (-1 o, -1 , -1-) which has entries + 1. The crosscorrela-
tion function 0TM has values, for 0, 1,. ., v-1, given by$,

0(3)/’s,t 1) Ox(s),x(t)( l) Al Dt
where

A number of positions that both vectors s and Et agree

and

Dt number of positions that both vectors s and Ett disagree.

If the sequences involved all have the same weight, say w, i.e., the number of l’s
in one period is w, and if one of the values of 0(1)(1), (2) (3)

Ot (l) or (l) is known, then$,t S,t

the values of the other two can be computed using the formulas of the next proposition,
the proof of which is easy.

PROPOSITION 1. Let s (So, Sl, , so-l) and (to, tl, , to-l) be binary vectors
each of weight w and length v, and let 0i 0(i)tl), i= 1, 2, 3 Then specifying the valueS,t

of one of 01, 02, or 0 determines the values of the other two, namely,
(a) given 01,

02 v-2w+ 01,

0 v-4w+401;

(b) given 02,

01 2w v + 02,

03 =4W--3V+402;

(c) given 03,

01=(4W--Vq-03)/4,

02=(3V--4W+03)/4.
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From a geometric point of view, it is best to adopt the second definition of a
periodic crosscorrelation function. Suppose that s(H) and s(Hr) are m-sequences of
span n with H PG(n- 1, 2) a hyperplane and r with (r, v)= 1. Then, since the
crosscorrelation counts common O’s, for 0, 1,. ., v-1,

Now H, H,..., aV-lH represent all the hyperplanes of PG(n-1, 2) so that the
periodic crosscorrelation function 0sqr),sH) is exactly the hyperplane intersection distri-
bution OHr of the set Hr.

4. The geometry of quadrics and correlations of sequences. Quadrics of the form
Hr PG(n-1,2) for a hyperplane H and integer r with (r, v)= 1 yield pairs of
m-sequences s(H) and s(Hr) of span n with three-valued periodic crosscorrelation
functions. This is based on the results of [2], [6], and [16] about the hyperplane
intersection distribution of such quadrics.

In finite projective geometry PG(N, q) of dimension N and order q, a prime
power, the points can be taken as (N+l)-tuples x=(xo, xl,’",xr) where
XO, X1, XN are elements of GF(q) and the (N+ 1)-tuple lax (pXo, px, , pxv)
is regarded as the same point as x for any nonzero element t9 of GF(q). The null
(N + 1)-tuple (0, 0, , 0) does not represent a point. The set of points x which satisfy
an equation xC 0 where C is a matrix of size (N+ 1) k with elements in GF(q)
and rank k, k 1, 2,..., N, is called an (N-k)-flat.

A quadric Q in PG(N, q) is the set of all points x which satisfy an equation
xAx’ 0 where A is an upper triangular matrix of size (N+ 1) (N+ 1) with elements
in GF(q) and x is the transpose of x. If m is the largest integer for which there exists
a transformation of coordinates mapping Q onto a quadric Q’ with the equation
xCx’ 0, where C is an upper triangular matrix with all elements in the last m columns
equal to zero, then the rank of Q is N+ 1- m. If m =0, then Q is nondegenerate.
Otherwise, Q is called a cone of order m and has the form V+ QN-,,, where V is an
(m- 1)-flat called the vertex of Q and QN_, is a nondegenerate quadric in a com-
plementary (N-m)-flat to V.. Here "+" means that if P V and P2 Qv-m, then the
line P1P2 determined by P1 and P2 is contained in Q. See [10] for more on quadrics.

The next theorem shows why quadrics are involved in three-valued periodic
crosscorrelation functions.

THEOREM 2. Let N be a positive integer and q a prime power. Let Q PG(N, q)
be a quadric the size of a hyperplane, i.e., IQI- (qN_ 1)/(q-1). Assume that Q itself is
not a hyperplane.

a. If N 2k, then Q must be a cone of even order, say 21, and the hyperplanes of
PG(N, q) intersect Q in sets of three sizes with multiplicities given by

(i)

(ii)

(iii)

Size

q2k-I
A=

q-1

A_qk+l-I

k+l-1A+q

Multiplicity

q2k+l_

qk-(qk-t--1)
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b. IfN 2k + 1, then Q must be a cone ofodd order, say 21 + 1 and the hyperplanes
of PG(N, q) intersect Q in sets of three sizes with multiplicities given by

(i)

(ii)

(iii)

Size

q2k_
B-

B qk+l

B+q+

Multiplicity

q2k+2

qk-t(qk-t--1)

Proof. See [6], [16] for the nondegenerate case when N is even and [2] for the
remaining degenerate cases.

PROPOSITION 3. Suppose s(H) and s(Hr) are m-sequences of span n with H
PG(n- 1, 2) a hyperplane and r with (r, v)= 1. If H is a quadric, which is not a
hyperplane, then s(H) and s(H) have a three-valued periodic crosscorrelation function.
Furthermore, the + 1 crosscorrelation values 0 (3) definition earlier) and multiplicities are
given by

(i) -1 + 2(n+e)/2 occurs 2 n-e-1 + 2(n-e-2) times,
(ii) 1 occurs 2" 2 1 times,
(iii) --1--2(n+e)/2 occurs 2"--1--2("-e-2)/2 times.

2/+ 1, n odd andH PG(n- 1, 2) is a cone of order 2/,
e

21 + 2, n even and H
_
PG(n 1, 2) is a cone of order 21 / 1.

Proof. Since H is a quadric the same size as a hyperplane, the hyperplanes of
PG(n- 1, 2) intersect H in the three values given in Theorem 2. Thus, the sequences
s(H) and s(H) have a three-valued periodic crosscorrelation function Os(n),s(n). To

(3)
Hobtain the values of 0(), for the +1 case, the formulas of part (b) of Proposition

1 are used with the intersection sizes of Theorem 2 and w 2"-1. Only one of the
calculations is included for brevity.

Case 1. n is odd; n- 1 2k is even and H c_ PG(n-1, 2) is a cone of order 21
and e- 21+ 1. Then assuming part (aii) of Theorem 2 applies,

02- 2:k-- 1-2k+/-1 occurs 2k-1(2k-t- 1)/2 times.
Then (b) of Proposition 1 gives

03 22. 22k 3(22k+1 1) + 22(22k-’ 1 2k+/-’)
-1 --2k+l+l

-1 --2(n+21+1)/2

--1 --2(n+e)/2.

The multiplicity becomes

2k-l (2k-- 1)/2 22k-2/-1 2k-l-1 2n-e-1 2(n-e-2) [-i

Notice that for the values in Proposition 3, if e is large, ,,(n),(u) takes on large
values, but only very few times, while if e is small, a(3) takes on smaller valuesVs(Hr),S(H)
more frequently. In most instances, small values of e are desirable and in [11] a
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preferred three-valued periodic crosscorrelation function is defined to have the values
given in Proposition 3 for e 1 if n is odd or e 2 if n is even. A pair of m-sequences
is called a preferred pair if they have a preferred three-valued periodic crosscorrelation
function.

For a hyperplane H PG(n 1, 2) and integer r with (r, v) 1, if H is a quadric,
then the sequences s(H) and s(Hr) are a preferred pair of m-sequences exactly when
H is a cone of the least degeneracy. In the case that n is odd, e 1 :>21 =0:> =0
and H is nondegenerate. In the case that n is even, e 2:> 21 + 1 1 :> 0 and H
is a cone of order one. In general, say that a pair of m-sequences have a three-valued
periodic crosscorrelation function of type if the values agree with the hyperplane
intersection sizes of Theorem 2 for a cone of order 21, if n is odd, or 21 + 1, if n is even.

The construction of quadrics of the form H given in [6], [16] is related to [11,
Theorem 1], and it follows that if n is odd or n 2 mod 4, there exist values of r such
that H PG(n-1, 2) is a cone of the least degeneracy. But the data of [9] shows
that for n 0 mod 4 and n =< 17, there are no cones of order one of the form H, and
indeed, if n is a power of 2 in this range, then H is never a quadric, except possibly
the completely degenerate case of a hyperplane. Thus, Conjectures 1’ and 2’ of the
introduction are obtained for quadrics of the form H PG(n- 1, 2).

This section ends with two facts about quadrics that are needed in 6. Let
Q PG(N, q) be a quadric with equation xAxt=O. A point a PG(N, q) is a regular
point with respect to Q if a(A + At) O. Otherwise, a is called an irregular point. If it
is clear from context that a particular quadric Q is involved, then the phrase "with
respect to Q" is dropped.

THEOREM 4. If Q PG(N, q) is a nondegenerate quadric, then if q is odd or N is

odd, every point of PG(N, q) is regular. When N and q are even, there is a single point
of PG(N, q) which is irregular. This point is called the nucleus ofpolarity of Q.

THEOREM 5. For a cone Q PG(N, q) of order m, the set of irregular points of
PG(N, q) consists of the points of the vertex V if either q or N m is odd. When q and
N-m are even, the set of irregular points of PG(N, q) consists of the points of a flat
x + V of dimension m, where x is the nucleus of polarity of the nondegenerate quadric
QN-m obtained by the intersection of Q and a N- m)-flat which does not intersect the
vertex V. In any case, a point of the quadric is irregular ifand only if it is contained in V.

5. Linearized polynomials and subspaces fixed by x xq. It is well known that
given a binary m-sequence s, some shift of s, say s*, has the property that s*[2] s*;
i.e., s* is left fixed by decimation by 2 and is called the characteristic phase of s. See
[15] for a listing of characteristic m-sequences s* through span n 168. If H

___
PG(n 1, 2) is the hyperplane that corresponds to s*, so that s* s(H), then s*[2] s*
is equivalent to H2= H, so H is fixed as a set by the linear map x x2 of GF(2n).
Recalling the correspondence between the shifts of an m-sequence and the elements
of GF(2"), the characteristic phase of the sequence corresponds to 3’ 1 GF(2").
This is because the hyperplane Hl={ai GF(2): Tr(ai)=0} has H2= H1 since
Tr (x2) (Tr (x))2 Tr (x). That the linear map Tr (x) x + x2 +. + x-"- produces
such a fixed subspace of GF(2") is a special case of a more general situation involving
linearized polynomials.

A linearized polynomial F(z) over GF(q") is a polynomial of the form

h

F(z) E fzq’, f GF(qn), fh O.
i=0

If the coefficients of a linearized polynomial F(z) over GF(q") in fact belong to
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GF(q), then F(z) is called a linearized q-polynomial. Linearized polynomials are often
used in algebraic coding theory; see, for instance, [8, Chapter 4]. One application of
linearized polynomials is the characterization of the subspaces of GF(qn) that are
fixed by the linear map x xq.

THEOREM 6. Suppose F(z) is a linearized polynomial over GF(qn). The zeros of
F(z) form a subspace U_ GF(q) with Uq= U if and only if F(z) is a linearized
q-polynomial.

h fiziIf F(z) ih=o fzq’ is a linearized q-polynomial, then f(z) i--o a polynomial
over GF(q), is called the conventional associate of F(z). F(z) is the linearized associate

of f(z). The subspace U of Theorem 6 is called the fixed subspace of F (or f).
THEOREM 7. If F and G are linearized q-polynomials with conventional associates

f and g and fixed subspaces Uy and U, respectively, then
(i) Uf_ UoFIG.
(ii) F G
(iii) dim Ur degree off.
The next theorem bears on the crosscorrelation of s(Hr) and s(H).
THEOREM 8. Suppose n- 2km, with m odd and let H

_
GF(2") be the subspace of

dimension n- 1 satisfying HE-- H. If S is an integer with sin i.e., s 2t with 0 <- <-k
and tim then

(i) The subfield GF(2s)
_
GF(2") is contained in H if and only if i<= k-1.

(ii) If GF(2) c_ H and r is an integer with r, 2" 1) 1, then GF(2)
_
H fq Hr.

Proof. (i) H is the fixed subspace of the conventional associate (x 1)/(x- 1)
(X--1)Ek-I((xm--1)/(X--1))2k and GF(2) is the fixed subspace of the conventional
associate (xS-1)=(x-1)E’((xt-1)/(x-1))2’. So, by Theorem 7, GF(2)

_
H if and

only if (x 1)l(x 1)/(x 1) if and only if <_- k 1.
(ii) If GF(2)

_
H, then GF(2S) c_ Hr. But since (r, 2" 1) 1, GF(2) GF(2);

GF(2)c_ H f-I Hr. [3

COROLLARY 9. Let H
_
PG(n 1, 2) be a hyperplane with HE H and r an integer

with (r, 2" 1) 1. If n 2km, with k >= 1 and m odd, then the crosscorrelation function
Os(Hr),s(n) satisfies

Os(Hr),s(H)(O) 2(n/E) 1.

Proof. Let s 2k-lm in the theorem. Then

0%(0) IH HI--> 2 1 2(/2)- 1

since each nonzero member of GF(2) represents a point of PG(n-1,2) which, by
(ii) of Theorem 8, is contained in

6. Quadrics of the form H"
_
PG(n- 1, 2). This section contains the main result

of the paper on quadrics of the form H
_
PG(n 1, 2) when n is highly divisible by 2.

THEOREM 10. Let H
_
PG(n-1,2) be a hyperplane, r an integer with (r, v)= 1

such that H is a quadric. If n 2kin, with k >= 2 and m odd, then H is a cone of order
2/+ 1 with

21 + 1 >-2k- / 1.

Proof. Without loss of generality, assume that H2- H. Since N n 1 is odd, by
Theorem 2, H is a cone of order 21 / 1. Let the 2/-flat V denote the vertex of H and
suppose E is a complementary (n- 21-2)-flat to V. Then Q-2t-2 H f)E is a non-
degenerate quadric in E. Since E is a flat of even dimension in a projective space over
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a field of characteristic 2, by Theorem 4, Qn-21-2 has a nucleus of polarity x E with
x Qn-21-2; i.e., x : Hr. By Theorem 5, the set of irregular points with respect to H
contained in H is exactly V. But V2 c__ (Hr)2- (HE) H and x x2 is a nonsingular
linear transformation which preserves irregularity so that necessarily V2= V. Similarly,
Theorem 5 can be used to show that (V+ x)2- V+ x. Thus, as subspaces of GF(2"),
V and V/x are both fixed by xx2, have V_V/x, and satisfy dim(V/x)=
dim (V) + 1.

Now the results of linearized polynomials are applied. There is a one-to-one
correspondence between subspaces of GF(2n) fixed by x x2 and the divisors of
z" 1 z2k’- 1 (z 1)2k (z- 1)2((z 1)/(z- 1))2. Suppose jz" 1 has fixed
subspace V and g[z" 1 has fixed subspace V+ x, and so by Theorem 7 jqg, deg (f)
2/+ 1, and deg (g)= 2/+2. Iff(x)=(z-1)’h(z) with 0<-_i<-2k and h(z)l((z"-l)/(z-
1))2, then since ((z"-l)/(z-1))2 contains no linear factors, necessarily g(z)=
(z-1)’+lh(z).

If V+ x
_

GF(22k-1")
_
GF(2"), then by part (ii) of Theorem 8, V+ x

_
H f3 Hr;

i.e., x H, a contradiction. Thus, it must be the case that V/ x GF(22-1"). Now
GF(22k-") is the fixed subspace of the divisor (z-1)2-((zm- 1)/(z-1))2k-, and by
Theorem 7, V+x-GF(22-") if and only if (z-1)i+lh(z) does not divide (z-
1)2-((z"-1)/(z-1))2-. There are two possibilities" either i+1_-->2k-1+1 or h(z)
does not divide ((z"-1)/(z-1))2-.

Case i. If + 1 >-- 2k-1 / 1, then

2/+ 1 =dim V= i+deg (h(z)) >- i>-2k-l,

so 21 / 1 _>- 2k-1 / 1, since k_-> 2. (Only here is k >- 2 used.)
Case ii. If h(z) does not divide ((z"-l)/(z-1))2-, then since h(z)l((z"-

1)/(z-1))2, there is some factor k(z) of (z"-1)/(z-1), which must have degree at
least 2, such that k(z)E-+lh(z). Thus deg (h(z))>--2(2k-l+ 1) =2k+2 and

2/+ 1 =dim V= i+deg (h(z))_>- deg (h(z))>-2k +2,

so certainly 21 + 1 => 2k- + 1. 1
When k-1 in Theorem 10, then Case yields 21+ 1->_ 1, which is no constraint

on/. As was mentioned previously, there are quadrics H in this case with 0. When
k _>- 2, Theorem 10 shows that Conjecture 1’ of the introduction is true. More generally,
Conjecture 3 of the introduction about the type of a three-valued crosscorrelation
function of m-sequences is suggested.

A fact which follows from the proof of Theorem 10 that could be useful in settling
Conjecture 2’, is noted.

COROLLARY 11. Let H
_
PG(n 1, 2) be a hyperplane, r an integer with (r, v) 1

such that H is a quadric. If n is even, then H is a cone of order 21 + 1 with vertex
V_HfqH.

Proof. In the proof of the theorem, + 1 must be less than 2k i.e., _-< 2k 1. Thus,
the polynomial f with fixed subspace V divides (z"-1)/(z-1)nthe polynomial with
fixed subspace H. So by theorem 7, V

_
H; i.e., V c_ H fq Hr.

Finally, the proof of Theorem 10 is valid for PG(n 1, q) exactly when q is even,
i.e., of the form q 2. This is because the results on regular points, irregular points,
and a nucleus of polarity needed in the proof hold exactly in this case. Now, though
a hyperplane H with Hq-- H is considered, but the characterization of the fixed
subspaces of x--> xq is used exactly like in the case of q 2. The result when q is odd
is an open problem.
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ON THE NUMBER OF REAL QUADRATIC
FACTORS OF POLYNOMIALS*

ZALMAN RUBINSTEIN"

Abstract. A method for determining the number of real quadratic factors of polynomials with real or
complex coefficients is introduced. The method is based on formulating an equivalent problem of finding
the number of real solutions of a certain algebraic system in two variables. Criteria for the existence of
special quadratic factors are also introduced. The method consists of a finite algorithm realizable on a
computer. It can be applied to determine the general decomposition structure of a given real polynomial.
In particular the presence or absence of real or non-real roots can be ascertained.

AMS(MOS) subject classifications. Primary 12D10; secondary 26C10, 30C15

1. Introduction. As is well known, a monic polynomial of degree n having real
coefficients of the form

p(x) x" + alx’-I + + a,,

can be factored as follows"

(1) p(x) (X Xl)" (X Xk)(X yl) ’’ (x yt) ’’ H x2 + cix + di)
i=1

where k (k => 0) is the number of real simple roots of p, (I => 0) is the number of its
multiple real roots and m(m => 0) is the number of distinct irreducible real quadratic
factors of the polynomial p. Equation (1) indicates that p has k distinct simple real
roots, distinct multiple roots and m distinct pairs of conjugate complex roots. In
particular, aj >-_ 2 for j 1, 2, , and /3i >-- 0 for 1, 2, , m. A lot of attention
has been given to the enumeration of the various types of the linear factors of a
polynomial. Most especially, there are well-known criteria for the number (k / l) of
distinct real roots of p(x) in terms of the inner determinants or the Newton sums [4],
[7], [9], [10]. In addition, the theory of discriminants yields easily the number of
real multiple roots since it is equal to the number of distinct real roots of the greatest
common divisor of the polynomial p and its derivative p’. The greatest common divisor
of two polynomials can be calculated by known methods [12], [13].

The purpose of this note is to indicate a method of finding the number q of distinct
quadratic factors of p in (1). Obviously, since

k+l)(2) q=
2

+l+m

the determination of q combined with the knowledge of k and gives also the number
m, i.e. the number of distinct conjugate pairs of zeros of p. In (2) if k / l-< 1 then (k+t)2
is taken to be zero. One might mention some special cases of interest, namely when
m 0, i.e. p has only real zeros; or when m [n], i.e. p is of even degree and has no
real zeros or p is of odd degree and has a single simple real zero. The number q,
independently of m, can be thought of as a measure of simplicity of the roots of p
ranging from () when all the roots are real and simple to 1 when p has only one real

* Received by the editors April 24, 1984, and in revised form September 15, 1984.
t Department of Mathematics, University of Haifa, Mount Carmel, Haifa, Israel. Present address.

Department of Mathematics, University of Colorado, Boulder, Colorado 80309.
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multiple root, that is when p(x) (x- yl) or when p(x) (x2+ cx / d)/2 in equatio
(1), i.e. p has only one pair of conjugate complex roots.

The method is based on transforming the posed problem to an equivalent problel
of finding the number of solutions of an algebraic system of two equations in tw
independent variables. The latter problem can be treated by various methods recentl
proposed in [1], [2], [3], [12], [13].

2. The main results. Consider the relation

xn--1(3) (x"+ al +’’" +a,,)(x2+ctlX+O2)=x"+:+bx"+l+ + b.+2.
Equating coefficients of equal powers of x on both sides of (3) we obtain

a_ot2 / aoOt / a b,

aoa2 + aotl / a2--

(4)

an-lO.2 / anOl / an+l bn+l,

anO,2 / an+lO / an+2 bn+2
where we set a_ an+ a,+: 0, ao I and for simplicity we assume also that bn+2

We shall need the following lemma.
n--m+1LEMMA 1. Forfixed n let Pm= amOt2 m =0, 1, , n; Pn+.l --Pn+2-- 0- Ther

(5) Pm bm+22 --Pm+2Ot2--Pm+lOtl, m =0, 1,. ., n.

Proof For m n by (4)

p, a,,a2 b,,+2 p,,+2a2 p,,+ a b,+2.

For m n- 1 one has to verify that

p,_ a,_a bn+lOt2-Pn+la2-pnOt

bn+Ot2-PntX bn+ot2 bn+2a.
These relations follow using the last two equations of the system (4). Assume now th
(5) holds for n- k_-< m-<_ n, where k is a fixed positive integer. Consider the relatio

A at_in2 / atal + at+ bt+,
n--l+1B aa2 Pu

0l-lC at+l Pl+,

where l- n- k. Now

n--l+ n--I+ bl+ Pt+ 01"2.D An2 alB- a2C 32 Ptal

But also
n--l+2 n--l+l n--l+l n--l) n--/+l)olD: at_lOt 2 / alOtlOt 2 + a/+16g 2 (at+in 2 o2 (alot2
n-l+2

a1-1012 -Pl-1.

So (5) holds for m- n- k-1 and the induction is complete.
Remark. The recurrence relations (5) together with the initial conditions

(5’) P. bn+2, Pn-1 bn+lt2 bn+2tl
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determine uniquely the sequence Po, Pl,"" ", Pn as functions of the variables (1 and
Ce2 and the coefficients bl, b2," "’, bn+2. We are ready to state the main result.

THEOREM 1. Given a real polynomial of degree n + 2(n _-> 0)

p(x) x"+2+ blx"+ + + bn+2

where bn+2 O, the number of its distinct real quadratic factors equals the number of
distinct real solutions of the algebraic system

n+l b2otn+plCel+pzot2=O,Al(al, a2) a2 2
(6)

blOtn+pl=O,a2(Oll, O12)-- O11012-- 2

wherep =p(a, Ce2) is a polynomial in eel and Ce2 ofdegree at most n-1 in its variables
and P2-- P2(Cel, a2) i$ a polynomial in Cl and Ce2 of degree at most n- 2 in its variables.
Thep are obtainedfrom the second order difference equation (5) with initial conditions (5’).

n+l n+lProof. Put i=0 in (5) to obtain po b2ot2-p2ot2-pot. Also po aoce2 --a2
This gives the first equation of (6).

Next consider the relations p aa and al + al bl. These imply the second
equation of (6). Now it is easy to see that since bn+2 0 implies O2 0 each value of
O2 together with the sequence Pl, P2,’", Pn determine uniquely the coefficients
a,..., a,. Conversely each pair (al, teE) which satisfies the system (6), where the Pi
are defined by (5) and (5’), and where the a,, are defined by a,,=p,,a’--1, m
0, 1, , n, satisfies the system (4). Indeed the second relation of (6) implies al + al bl
since a2 0. The first relation of (6) implies, by (5) with m =0, that ao- 1. Hence

--n+lO2-- ala q- a2-- a2 q-plo-nal q- pEte 2

otn(pod-Plal q-p2ce2) b2"

Similarly by a straightforward induction one shows that the other equations of (4) are
satisfied.

As an application of Theorem 1 consider the case n 2. The system (6) reduces to

Ce93. bEa2 d- b4a2
q- b3al ce2 b4al2 0,

(7)
b-b+(b4-) 0.

Applying a standard elimination procedure 1], [2], one arrives at

f(a2) a6 b2a+ blb3- b4)a+ (2bEb4- b- b4b)t32
(8)

+ blbab4- bE4)aE2- bEba2+ b34 O.

Equation (8) can be also derived by calculating the resultant [1] of the polynomials
in (7) regarded as polynomials in the variable a with coefficients depending on the
parameter a2. One assumes obviously that a2 b4 # 0.

Since in our example deg p 4, the degree off has to be (24) 6, the extremal case
being that of p having six distinct quadratic factors and four simple real roots. In this
case f has all simple real roots.

Below we indicate several examples of polynomials p(x) and their corresponding
f(a) of equation (8) and the number q defined by (2). One notices that since the
second equation of (7) is linear in a the number of solutions of the system (6) is
equal to the number of distinct real zeros of f(a) provided a2- b4 # 0. This can be
verified by the examples of Table 1.
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TABLE

p(x) f(a) q

(x2-1)(x + 1)(x+ 2) (a 1)(a 2)2(a + 1)2(a + 2) 4
(x + 1)(x- 1)(x + 2) (a + 1)(a 1)(a + i)2(o i)2 2
(X-- 1)3(X +2) (a 1)3(a +2) 2
(x--l)4 (a--l)
(X + 1) (a 1)2(a --i)2(a + i)2
(X 2)(X + 2)(X + 1) (a --2)2(a + 2)2(a 1)(a + 4) 4
(x--1)(x--E)(x--3)(X--4) (a 2)(c 3)(a 4)(a 6)(c 8)(a 12) 6
(x-- 1)2(x + 2) (a 1)(a + 2)4(a --4) 3

The factorization of f(a) in Table 1 is done only for illustration of Theorem 1. In
general, the number of simple real zeros off(a) can be found via rational operations
by well-known classical means such as those mentioned in the introduction. In the
general case the system (6) is a two-by-two algebraic nonlinear system. Such systems
were considered recently in [2], [3]. In [1] a method of enumeration of the solutions
is suggested based on successive lowering of the degree of one variable of the system.
One should also note that the main purpose of these methods is to avoid the calculation
of the roots of p(z) which is an infinite process. Instead, the above procedure and the
ones ahead are all finite algorithms realizable, for moderate n, on computers.

The question of multiple nonreducible real quadratic factors will not be treated
here. Nonetheless we shall develop below a necessary criterion for the existence of
such factors.

Recall that if r(x) rmx" + + ro and s(x) s,x" + + So, rmS, # O, have a
common linear factor l(x), then it follows from the equations r lr*, s ls* that

(9) rs* sr*

where degs*=n-1, degr*=rn-1. If s*(x)=s*,_lx-+...+s*o, r*(x)=
r’m-iXm-1 + + r*o, then equating coefficients of equal powers of x in (9) one obtains
a system of (rn + n) by (rn + n) homogeneous linear equations in the (rn + n)
unknowns So*," ", s,*_l; ro*," ", r*_ and thus one obtains the well-known condition
Res. (r, s)= 0. Now if instead of linear factors we are looking for quadratic factors
q(x), then (9) is satisfied with s*_l r’m-1 0, s,-2r,,,_2 O. This time we have (rn + n
1) equations in (rn + n- 2) unknowns of the above type, whose matrix

(10)

0 rm r_ ro 0 0

0"" 0 r r,,_ ro

0 Sn Sn- SO

0 0 S, S,_ So
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has (n- 1) rows with the ri and (m- 1) rows with the si. This matrix is obtained from
the well-known resultant matrix by deleting the last column and the nth row and
(m + n)th row. For a nontrivial solution to exist, rank M =< m + n- 3. In particular if
p(x) has a multiple quadratic factor the polynomials p(x) and p’(x) have a common
quadratic factor. Consider the example p(x) x + x x2 + 2, m 5, n 4, m + n 3
6. The seven-by-eight matrix M has the rows (1, 0, 1, -1, 0, 2, 0, 0),
(0, 1, 0, 1, -1, 0, 2, 0), (0, 0, 1, 0, 1, -1, 0, 2), (5, 0, 3, -2, 0, 0, 0, 0),
(0, 5, 0, 3, -2, 0, 0, 0), (0, 0, 5, 0, 3, -2, 0, 0), and (0, 0, 0, 5, 0, 3, -2, 0). Its rank is seven
and hence p(x) has no pair of multiple roots.

Returning to the general procedure described earlier we consider the example

p(x) x + x + 1.

Here bl--b3=b4---O, b2=b5 1, P3--1, p2=-Cl and pl=o12--a2 The system (6)
becomes in this case

4-- O32+ 31--212 0

alO-’]- a 12 O2 0.

This system can, by the standard elimination method mentioned before ([ 1 ], [2], 12],
[13]), be brought to the form

al-a9-2a5+a4-a3+1 =0,

We are led to the problem of the determination of the number of distinct real roots
of the polynomial

(11) Z10- Z
9 2z + Z4- Z -]" 1 0.

The number of distinct real zeros of (11) can be found by the inners procedure [4],
[9], 10]. The number of real roots is found to be two. We have q 2, k 1 and 0.
Thus m 2 by (2) and the decomposition pattern of p(x) can now be determined
according to formula (1). Obviously one has to apply the computer procedures available
for the inner determinants to deal with the polynomial (11).

In conclusion we shall discuss a criterion for the existence of a quadratic factor
of p(x) of the form x2+ c. This is helpful in situations where there is importance to
whether (0, a2) is a possible solution of the system (6). Assume that

p(x)=(xZ+c)q(x)=xn+plx"-l+ +p..

Define ps(x)=(p(x)+p(-x)), p,,(x)=1/2(p(x)-p(-x)). Then

ps(x) (x2+ c)q(x) and pa(X) (X2+ C)qa(X).

Thus p(x) and pa(X) have a quadratic factor in common. Conversely if p(x) and
pa(x) have a quadratic factor in common, then so does p(x). These observations
combined with the previous results imply the following theorem.

THEOREM 2. For a polynomial p(x)= x +plxn-l+...+p, to have a quadratic
factor of the form x2+ c it is necessary and sufficient that the n- 1)-by-(n- 1) matrix
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(12)

P2 P4 P2[n] 0

0 P2 P4 P2[1/2n]

0 0 P2 P4

Pl P3

0

P2[1/2n]

0 pl P3 P2t,+-l- 0 0

0... 0 Pt P3 P2t,+l-I

be singular
To illustrate condition (12) consider p(x) x + 2X + X2 d- X q- 1. The corresponding

singular matrix has rows (1, 2, 1, 0), (0, 1, 2, 1), (0, 1, 1, 0), (0, 0, 1, 1,). p(x) has the
factor x2 + 1.

3. An alternate approach. The former procedure of finding q by Theorem 1 using
elimination theory has one serious drawback. In some cases the elimination process
introduces extraneous zeros. This is a result of the elimination being in general
nonreversive. In such cases this method is not applicable to finding q through Theorem
1. The alternative of finding q by a combination of classical methods via separate
calculations of k, l, and rn in (2) is theoretically possible. However, this procedure is
quite laborious and encounters some of the previously mentioned difficulties.

The unique advantage of the present method of Theorem 1 is that it can be used
both in conjunction with elimination theory as illustrated above or with the classical
method of Kronecker integrals. For a recent detailed account see [14]. This method
of finding the number of simple zeros of multivariate systems is based on Gauss’
theorem for multiple integrals. It gives an explicit integral representation of q (ibid.
(20)-(23)) provided a domain in the (al, a2)-plane containing all the zeros of the
system (6) can be determined. This indeed can be done for algebraic systems. The
polynomial (11) has all its roots in Izl < 3. The possibility of this polynomial having
extra roots compared to the set of a2 in the original system is irrelevant to the final
conclusion.

Now the equation a21 + o32a1--a2--0 in the variable al has all its roots in the
region [all <l+max [la213, It21]. Since Ic21 <3 we have Ic11 <28 so that all the zeros
of our system lie in the rectangle R in the (a, c2)-plane defined by la11<28 and

la21 3. The calculation of q can be done by evaluating the Kronecker integral with
respect to R. Obviously since the result of integration is an integer, the problem of
accuracy is mild when using approximate calculations.

4. Conclusions. It is clear from the method and examples indicated above that
the price of substituting an infinite procedure of finding all the roots of a polynomial
by a finite procedure to solve the problem of determining the number of quadratic
factors of a real polynomial is the relatively large order of the polynomial obtained
at the end of the elimination procedure. In addition, procedures for manipulation of
multivariable polynomials are required. Fortunately such procedures have been worked
out, e.g. [12], [13].
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One might add in passing that although this discussion has been centered around
polynomials with real coefficients there is no difficulty to treating polynomials with
complex coefficients. In this case the system (6) is an algebraic system with complex
coefficients. It is easy to extend the method of enumerating the distinct real zeros of
real polynomials to complex polynomials. Indeed if p(z)=pl(z)+ ip2(z), where p(z)
and p2(z) are real polynomials, every real zero of p(z) is a real zero of both p(z) and
p2(z) and hence a real zero of the greatest common divisor of pl(z) and p2(z) and vice
versa. Thus the problem of finding the number of distinct real roots of the complex
polynomial p(z) is equivalent to finding the number of the distinct real roots of an

easily computable real polynomial.
Enumeration problems for polynomials have a definite applied character (see for

example the introduction of [14]; [1], [2], [5]). Recently progress has also been made
to tackle some of the more difficult theoretical questions such as the problem posed
by S. Karlin to characterize all the finite zero diminishing transformations on a given
polynomial 11 ], [6].

Acknowledgment. The author wishes to thank Mr. Simcha Brudno for some valu-
able conversations and several suggestions relating to this note.
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LABELLED GRAPHS WITH SMALL VERTEX DEGREES
AND P-RECURSIVENESS*

I. P. GOULDENf AND D. M. JACKSONf

Abstract. We show that the number of labelled graphs with vertices of degrees 1, 2, 3 or 4 only satisfy
linear recurrence equations, and are therefore P-recursive. We conjecture that the number of labelled graphs
with vertices whose degrees belong to a given finite set is also P-recursive.

AMS(MOS) subject classifications. 05C30, 05A15

1. Introduction. A sequence {a, In => 0} is said to be P-recursive if it satisfies a
homogeneous linear recurrence equation of finite order, with polynomial coefficients.
Such sequences are of interest because the n-th term can be computed in time that is
linear in n, and space that is independent of n. The formal power series A(x)=
,,>=o a,x"/nl, called the exponential generating function for {a, In->_0}, is said to be
D-finite if A satisfies a linear homogeneous differential equation of finite order, whose
coefficients are polynomials in x. Stanley [8] discusses the equivalence of the D-
finiteness of A and the P-recursiveness of {a, In->_ 0}, as well as showing that many
combinatorially defined power series are D-finite.

For a c {0, 1,... }, let Go, be the set of labelled graphs, each of whose vertex
degrees lies in a, and let GI, denote the set of simple graphs in Go,. Suppose that
the number ofgraphs on n vertices in Gi, is denoted by gi,,, (n), and that the exponential
generating function for G,,, with respect to vertices is Gi,(x)= Y’,,>-_o gi,(n)x"/n!, for

0, 1. A p-regular graph is one in which each vertex has degree p, and corresponds
to the choice a {p} above.

Read [5] has shown that G1,{3) is D-finite, and it is implicit in Read and Wormald
[6] that G1,{4 is D-finite. Goulden, Jackson and Reilly [2] have shown that G0,3) and
Go,{4} are D-finite. Stanley [8] has asked whether G,p) is D-finite for all p. In this
paper we consider sets a of vertex-degrees with more than a single element. Applying
the methods developed in Goulden, Jackson and Reilly [2], we construct differential
equations which demonstrate that G, is D-finite for 0, 1 and all choices of a whose
maximum element (denoted by rn(a)) is less than or equal to 4.

Throughout this paper we denote the coefficient of x x2 in the formal power
series f(xl, x2,’’’ by/x x2 If. For details of the sum and product lemmas for
labelled configurations see Goulden and Jackson [1].

2. Preliminary cases. Certain G, can be obtained immediately by elementary
combinatorial arguments, using only the sum and product lemmas for exponential
generating functions. The first simplification is to note that G,ou e’G,,,, for 0 a,
=0, 1. Thus Gi,{ou,, is D-finite if and only if G, is D-finite, and so it is enough to

consider only the case a c {1, 2,.. } in the remainder of this paper.
For the case m(a)= 1, we immediately have Gi,l =exp (x2/2) for i=0, 1 since,

for labelled graphs with only vertices of degree 1, the connected components are single
edges, each of which has generating function x2/2.

* Received by the editors August 25, 1983, and in revised form September 17, 1984. This work was

supported by the Natural Sciences and Engineering Research Council of Canada under grants U0073 and
A8235.

t Faculty of Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1.
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For the case m(c) 2, we consider labelled graphs whose connected components
are paths or cycles. Thus

( x24]’ ( x2)2Go,{2} (1 X)-1/2 exp + G1,{2 (1 x) -1/2 exp

)Go,l,/= (1 x)-/ exp +--+
4 (--GI,ll,t (l-x)-1/ exp

2 4 2(l-x)
so for m() _-< 2 and 0, 1, we have directly obtained an expression for G,. Differen-
tiating these expressions once, we immediately obtain the first order differential
equation d(d/dx)G, + boG, =0, where 41 and 4o are given explicitly for each such
and in Table 1.

TABLE
Differential equations for Gi,,(x) with m(a) <- 2.

{1}
{1}
{2}
{2}
(1,2}
{1,2}

2(l-x)
2(1 -x)
2(1 -x)
2(l--x)

tO

-x
--X

x2- 2
--X

--X q" 2X 2
x(x2-2)

For the cases m(a) 3 and m(c) 4, we have no explicit expression for Gi, (x),
so we cannot proceed as we have in the previous cases m(a)- 1, 2. Instead, we follow
the indirect procedure given in the next section.

3. Symmetric multivariate generating functions for m(t)= 3, 4. Suppose that we
are interested in the sequence {cp(n)ln->0} where Cp(n)=[tt tP,]T(t), and T(t) is
a symmetric function in the indeterminates t= (tl, rE,""" ). We say that Cp(n) is a
regular coefficient of T(t). Further suppose that T(t) is expressed in terms of the power
sum symmetric functions si j_->l tj as T(t) E (s), where s (Sl, s2," ). Then Cp(n)
[y/n!]V(yl,’.’,yp), by the H-series theorem (Goulden, Jackson and Reilly [2])
where V( H(E), the H-series of E) is the solution to a system ofp partial differential
equations derived from a system of partial differential equations for E itself. If these
equations for V can be manipulated in a way that eliminates all differentiation with
respect to Yl,’",Yp-1, we can then set Yl Yp-1 =0 to obtain an ordinary
differential equation for V(0,..., O, yp)=n>__o Cp(n)y/n!, and hence deduce the D-
finiteness of V(0,..., 0, yp). This procedure has been followed for 3- and 4-regular
graphs in [2]. The following result enables us to carry it out for sets c with more than
a single element.

PROPOSITION 3.1.

gi,(n)=[t’). t’)] I-I ( Y, t(a)-k) Ti fori=O, 1
j>=l keo

where
To I-I (1 ht)-l, T1 I-I (1 + tit ).

l<--lj l<--l<j
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Proof [td td"]T is the number of labelled graphs in which the vertex with
label k has degree dk, for k= 1,..., n, when i=0. In the case i= 1, we have the
number of such graphs that are simple. Thus

gi,(n)= Y, [td dt."]T
dea

2 Z [t(’)’’" tT()]t’()-d’’’" t’(’)-d"Ti
divot dn

and the result follows, since (Ek t;"()-k)[,j=o= 1. El
This result gives the required numbers ofgraphs as regular coefficients in symmetric

power series. For each and a, with re(a)= 3 or 4, we denote the expression for this
symmetric power series in terms of s by Ei,(s) and determine Ei.(s) by applying
exp log to the generating function in Proposition 3.1. For example,

so that

t})Togo,(,2,4}(n) =It41 t4] 1-I (1 + t +
j_>_

3 -1=[t4"’" t4] I] (l+t)(1-tj) To

=[t4"’" t4,] exp { j->l log (1 + t})+ log (1- t})-I +
t_<-j

log (1 ht) -1 }
1 2k 1 }=[t2"." t4] exp ((--1)k-lt) + t}k)+ -tkttj>- k>= l<--j k

1
)k-1 }Eo,{1,2,4}($) exp Y’, (s3k + (-1 szk + (S2k + S_k)/2)

k_>l

Similarly, for all a with m(a)=3 or 4, N,(s)= exp {a+b}, where

ao 2 (s+s2k)/2k, a,= 2 (--1)k-(S--S2k)/2k
kl kl

and the b, for re(a)= 3 or 4, are given in Table 2.

TABLE 2
Power sum representationsfor log (G,,,) at with m(a

3,4.

{3}
{1,3} ,k_l SEk/k
{2,3} ,k_l (--1)k-lsk/k
{1,2,3} ,k_ (Sk--Sak)/k
{4}
{1, 4} Yk_ s3k/k
{2, 4} k_l (--1)k-l$2k/k
{3, 4} Ek (--1)k-sk/k
{1,2, 4} k (S3k +(--1)k-SEk)/k
{1,3, 4} k (S3 S4 +(--1)k-sk)/k
{,3, 4} E (s-s3)/k
{1,2,3,4} (s-s4k)/k
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Of course, g,,,(n)=[t31 t3]E,,,(s) for m(a)=3, and g,,,(n)=[t4 t4,]Ei,,(s)
for m(a) 4.

4. Univariate generating functions for m(a)=3, 4. It is now a straightforward
matter to obtain a system of partial differential equations for E,, (s). For example

I(4--2(--1)k/2+Sk)Eo,{1,2,4}, k=0 (mod6)

k--0 Eo,{1,2,4} =)(3
/ Sk)Eo,{l,2,4}, k 3 (mod 6)

OSk ](1--2(-- 1)k/2+ Sk)Eo,tl,2,4), k= 2, 4 (mod 6)
SkEo,(l,2,4), k 1, 5 (mod 6).

Carrying this out for all a with m(a)- 3, we find that the H-series V(yl, Y2, Y3)-
H(Ei,) satisfies the system

V1 (c +yl) V/y2V1 / y3 V2,

(1) 2V2- Vl,=(d+fy)V+fy3V1,

3 V3-3 V2+ V,,=(e+y3)V,

where Vi... denotes O/Oy O/Oy. V, and the values of c, d, e, f corresponding to each
(i, a) are given in Table 3.

TABLE 3
Parameter values for system (1).

a c d e

{3} 0 f 0
{1,3} 0 2+f 0
{2,3} -l+f
{1,2,3} l+f 2

f

0
-1

For m(a) 4, the H-series V(y, Y2, Y3, Y4) satisfies the system

V1 c + y,) V+ y2 V1 / y3 V2 + y4 V3,

(2)
2V2- Vl d + gy2) V/ gy3 Vl / gy4 V2,

3 V3- 3 V12+ VI,,-"(e+y3)V+y4V1,

4V4-4V3-2V22+4V112- Vllll=(f/ gy4) V,

where the values of c, d, e, f, g corresponding to each (i, a) are given in Table 4.

TABLE 4
Parameter values for system (2).

a c d e f

{4} 0 g 0
{1,4} 0 g 3
{2, 4} 0 2 + g 0
{3,4} -l+g 0
{1,2,4} 0 2+g 3 -1
{1,3,4} -l+g 4 -4
{2,3,4} l+g -2 2
{1,2,3,4} l+g -2

g

0
-1
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The two special cases of system (1) corresponding to 3-regular graphs and simple
graphs have been given in [2]. If we remove all partial derivatives with respect to
and Y2 from system (1) by means of the elimination scheme given in [2], and then set
Yl--y2--0, we obtain a second order differential equation for Gi,(x) V(0, 0, x). If
this equation is denoted by

2(x) dx--SG,.,(x)+ ,(x) G,. (x) + o(x)G,,,(x)=0,

then the values of 0, 1, 2 for each (i, a) with m(a)= 3 are given in Table A of the
Appendix. The values of g, (n), n 0, , 10, deduced from the differential equations
are given in Table B, for checking purposes.

Similarly, two special cases of system (2) have been given in [2]. The elimination
scheme which was used in [2] to obtain a second order differential equation for
G.,(x)= V(0, 0, 0, x) will only work in 4 of the 16 cases that arise from rn(a)=4
(including the two cases reported in [2]). This is because our elimination scheme
involved finding linear equations in derivatives with respect to Yl and Y4. For 4 sets
of values of c, d, e, f, g, the two equations given in [2] involve only V44, V, V,
so Vll is eliminated to yield a second order ordinary differential equation. For the
other 12 sets of parameter values, the two equations involve V44, V4, V, Vll, V1. Thus
we derive a third equation from these, involving V444, V44, V4, V, VI, V1, and eliminate
Vii, V1 between these three equations to yield a third order differential equation.

Since these third order differential equations have large polynomials as coefficients,
we do not give them here. The four cases with second order differential equations are
i=O, 1 and a {4}, {2, 4}. The cases with a {4} have been reported in [2], so we
omit them, and give the values of o, 1, , for the differential equation

d2 d
(xl-xa,,(x)+ ,(X)x a,, (x) + Co(X),,(x)=0

with a {2, 4} in Table C of the Appendix. The values of gi,{2,4}(n) for n =0,. , 10
are given in Table D.

5. A conjecture. In general, for any a, it is routine to derive a system of m(a)
partial differential equations for V(yl, Y2,""", Ym(o,)). These can, of course, be trans-
formed into a system of simultaneous recurrence equations in m(a) dimensions, which
can be used to give the required number, g,,(n)=[y/n!]V, in time which is of
order n". To enable us to calculate gi, (n) in time which is linear in n, we must first
reduce the system of partial differential equations for V(yl,’", y,,) to a single
ordinary differential equation for V(0,... 0, Ym,), as we have done in the previous
section when re(a) 3, 4. When m(a) >_- 5, we can find elimination schemes to perform
this reduction, but the computation becomes very lengthy. For example, for the 5-regular
simple graphs, with i= 1, a {5}, we have carried out the very time-consuming
elimination, and have obtained a dillerential equation for Gl,5}(x). Unfortunately, it
is of sixth order, and the degrees of the polynomial coefficients exceed 100. The first
20 values of gl,{5}(n), deduced from this equation, agree with the results of McKay
[4]. This differential equation demonstrates that Gl,{5}(x) is D-finite, but there is
certainly no guarantee that it is the lowest-order ordinary differential equation with
polynomial coefficients which can be found for GI,{5}(x).

The differential equations that we have obtained lead us to make the following
conjecture.

CONJEC’rURE 5.1. The numbers go,(n) and gl,,,(n), of labelled graphs and simple
labelled graphs, respectively, with n vertices, each with degree in a, are P-recursive for
any finite a.
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From the results of this paper, it seems that k-regular graphs are computationally
equivalent to graphs whose vertex-degrees lie in a, where a has maximum element k.
It might be that certain choices of c, say a {0, 1, , k} would be more convenient
to work with, in proving P-recursiveness, than k-regular graphs because of more
"freedom" in constructions, while yielding equivalent results.

6. Plane partitions. If p(il, in) is the number of plane partitions with ij copies
ofj for j= 1,. ., n, then

p(il,’’’, in)=[tl tn] I-I (1 tj) -1 H (1 tltj) -1
j>=l l<j

=[tl t,n] I-I (1 + tj) [I (1- tltj) -1
j>=l l<-j

from Stanley [7] or Macdonald [3]. Thus if qm(n) is the number of plane partitions
with m copies of each of 1, 2,..., n, then

qm(n)=go,{m-,,m}(n).

Thus, we have demonstrated that {qm(n)ln >= 0} is P-recursive for m -<_ 4, and conjecture
that it is P-recursive for all m.

Appendix.

TABLE A
Polynomial coefficients in ordinary differential equations for Gi, (x) when m(a)= 3.

a j dj

0 {3} x(x10- lOx + 24X6--4X4--44X2--48)
--3(xl--6X8+9x6+ 18x4+ lOx2-- 8)
9X3(X4--2X2--2)

{1,3} x(x1- 18x8+ 120x6- 272x4- 324x2-120)
-3(x1- 14x + 41x + 36x4 + 2x2- 8)
9X3(X4--4X2--2)

{2,3} X1 -F x 6X 4x + lx 15x + 8x 2x + 12X 24x 24
-3(x1-2x + 2x6- 6x + 8X / 2X + 8x + 16x 8)
9X3(X4- X X 2)

{1,2,3} x 2x 14x + 24x + 74x 61X 99x
55x4-180x -48x2-96x- 24

-3(x- 10xS- 6x + 22x + 8x + 20x4 + 26x + 16x 8)
9X3(X + 2)(X3- 2X + X- 1)

{3} --X3(X4+2X2--2)
3(X + 6X + 3X6-- 6X4- 26X + 8)
9X3(X4+2X2--2)

{1,3} --X(X4--4X + 2)(X6-- 2X + 12)
3(X-2X 5X6-18X -t- 8)
9X3(X4--2)

{2,3} -x2(x9- xSq 8x -I- 14x6+ 15x +9X4- 24X3- 22X2+ 16X + 12)
3(x1+ 10x -4x + 16x6- 2x 14x4 + 34x 24x2-16x + 8)
9x3(x4 + 3x + X--2)

{1,2,3} --X(X-2x9-- 6x 12X + X x4 + 39x 10x + 24)
3(X1 + 2X + 2X --4X + 8X 2X4 + 10X 16X2-16X + 8)
9X3(X4 + X "- X-- 2)
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TABLE B
Initial values for gi., (n) when m(a) 3.

{g,,,(n)lO<=n<-lO}

{3}
{,3}
{2,3}
{1, 2,3}
{3}
{,3}
{2,3}
{1,2,3}

1, 0, 2, 0, 47, 0, 4720, 0, 1256395, 0, 699971370
1, 0, 5, 0, 186, 0, 22960, 0, 6831650, 0, 4071581010
1, 1, 4, 23,214, 2698, 44288, 902962, 22262244, 68446612, 21940389584
1, 1, 7, 47, 521, 7233, 129443, 2811701, 73203561, 2229207953, 78389689559
1, 0, 0, 0, 1, 0, 70, 0, 19355, 0, 11180820
1, 0, 1, 0, 8, 0, 730, 0, 188790, 0, 102737670
1, 0, 0, 1, 10, 112, 1760, 35150, 848932, 24243520, 805036704
1, 0, 1, 4, 41,512, 8285, 166582, 4054953, 116797432, 3912076929

TABLE C
Polynomial coefficients in ordinary differential equations for Gi.{2,4}(x), =0, 1.

j bj

0 0

0

(--X14 + 6X13 + 2X12 76 + 112X + 96X + 356X 1320X
568X + 768X + 9248X4+ 12224X 2496X2- 3968X 768)

4(X3 4X12-- 6Xt + 36X0-- 6X9+ 24X8- 352X + 380X
+ 152X + 2104X4- 1472X3 688X + 256X +96)
16(x 2)2x2(x / )2(x5 2X4+ 2X 2X + 12X + 4)

xE(xE/6xl/ 14X+ 12X 16X8 + 24X7 + 116X6- 184X
456x4+ 480x + 512x2-- 704x + 192)

4(X3 + 4X2 2Xl 20Xlo + 2X + 40X 104X 204X
+ 200X / 328X4- 288X 208X / 320X --96)
16(X-- 1)2xE(x + 2)2(X + 2X--2)(X + 2)

TABLE D
Initial values for go.{z,4}(n) and g,{2,4}(n).

{g,,{2,4}(n) IO<--- n <_-- 10}

1, 2, 9, 65,751, 13044, 320803, 10609256, 453774440, 24375801464, 1607240682376
1, 0, 0, 1, 3, 38,730, 20670, 781578, 37885204, 2289786624

Acknowledgments. The calculations were carried out by the symbolic algebra
system called VAXIMA at the University of Waterloo. VAXIMA is based on the
MACSYMA system developed at the Massachusetts Institute of Technology.
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AN ANALOGUE OF THE SHANNON CAPACITY OF A GRAPH*

MARTIN FARBER"

Abstract. The Shannon capacity of a graph G is the value as(G)= sup, a(G"), where a(G") is the
independence number of the strong product of n copies of G. We introduce an analogue of the Shannon
capacity, namely Ks(G)= inf, K(G"), where r(G") is the independent domination number of the strong
product of n copies of G. The Shannon capacity measures how rich a language can be, where the language
is to be transmitted through a noisy channel. The parameter s, on the other hand, measures how sparse
such a language can be, if it is maximal with respect to inclusion.

AMS(MOS) subject classifications. 05C70, 90C05

Introduction. In 1956 Shannon 11 posed a problem in information theory which
has led to many interesting graph theoretical questions. Suppose that we wish to
transmit messages using letters from an alphabet M. Due to noise in the channel,
certain letters can be confused when transmitted. To be precise, when we transmit a
letter, say j, any letter in a nonempty set Sj might be received. We say that two distinct
letters, j and k, can be confused if Sj f3 Sk is nonempty. Let bn be the maximum number
of n-letter words between which there is no confusion, where two distinct words can
be confused iff their ith letters are the same or can be confused for each i. Shannon’s
problem is to evaluate supn /b--.

Shannon’s problem can be stated in graph theoretical terms. Consider the graph
G (V, E) which has one vertex for each letter in M and in which two vertices are
adjacent iff the corresponding letters can be confused. Recall that the independence
number of any graph H, which we will denote by a(H), is the maximum number of
pairwise nonadjacent vertices of H. Thus bl a(G). Also, the strong product of the
graphs H V, El)," , H V, E) is the graph H1 x H2 " H on the vertex
set V V2 " Vn in which two distinct vertices are adjacent iff their ith coordinates
are equal or adjacent in Hi, for each i. It follows that b a(G), for each n, where
G is the strong product of n copies of G, and that Shannon’s problem is to evaluate

,() -= sup 4,().

The parameter as is known as the Shannon capacity.
The determination of the Shannon capacity of an arbitrary graph appears to be

quite difficult. Indeed, the Shannon capacity of the 5-cycle, C5, was not determined
until 1978 [7], and the Shannon capacity of each odd cycle of length greater than 5
is still unknown. There has been a recent surge of interest in the study of the Shannon
capacity, and numerous analogues have been introduced (see, for example, [5]). The
purpose of this paper is to study another interesting analogue of the Shannon capacity.

A set S of vertices of the graph G V, E) is dominating if every vertex in V\S
is adjacent to some vertex in S. The domination number of G, denoted y(G), is the
cardinality of a smallest dominating set in G, and the independent domination number
of G, denoted K(G), is the smallest possible cardinality of a set which is both

* Received by the editors November 29, 1983, and in revised form August 13, 1984. The material in
this paper is taken from the author’s Ph.D. thesis which was written under the supervision of Dr. Pavol Hell.

f Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario, Canada
N2L 3G1.
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independent and dominating. Notice that r(G) is the cardinality of a minimum
cardinality maximal independent set in G. We define

ys(G)=-inf/y(G") and rs(G)=-infr(G").

The parameter ys has been studied previously [8] and is, in fact, easy to evaluate (see
below). We are interested in studying the parameter rs, which we refer to as the
K-capacity. Other work on the independent domination number of strong products of
graphs can be found in [9]. It is straightforward to verify that r is submultiplicative,
and hence

rs(G) lim r(G’).

It is worth noting that, while the Shannon capacity of G yields an upper bound
on the cardinality of a set of n-letter words which are pairwise nonconfusable, the
K-capacity of G yields a lower bound on the size of a maximal such set. In other
words, the K-capacity of Ga yields a lower bound on the size of a worst-possible set
of pairwise nonconfusable n-letter words, where we are not obviously wasteful, i.e.,
where we would add another word to the set if possible.

Several related parameters are useful for the study of the Shannon capacity and
its analogues ys and rs. For a given graph G (V, E) let c be the set of all cliques
(i.e., maximal complete subgraphs) of G; and, for each vertex v, let N[ v] be the closed
neighborhood of v, i.e., the set consisting of v together with all vertices adjacent to v.
(For graph theoretical definitions which are not given here, see [1].)

Consider the following "fractional" versions of the parameters a, y, and r"

as(G)---max{v xv" y’cxo<- I VC e ’x>-OVve V}’
YY(G)=min{ y’vvxv:

ov[,,]

y x>=lVue V’xv>-Olve V},
rs(G)=-min{vE xo’vcE xo<=lVCe, Xv >- 1Vue V, and xo>_-0Vve V}.vN[u]

We note that as(G) is usually referred to as the Rosenfeld number of G.
It is known that as( G) <= as( G) [10] (cf. [11]) and ys(G)= ys(G) [8] (cf. [5]),

for every graph G. (Since linear programs can be solved in polynomial time [6], it
follows that ys(G) can be evaluated efficiently. Also, the quantity a(G) has been
shown to be computable in polynomial time when G is perfect [4]. Since a(G) as(G)
when G is perfect it follows that as(G) can be computed efficiently for a perfect graph
G.) In light of these facts, one might expect that rs(G)-> rs(G) for every graph G.
Unfortunately, this fails to be true even for trees. The problem is that, unlike as and
), rs is not multiplicative. (The multiplicativity of as and Ys follow easily from the
duality theorem of linear programming.) It is known that r(G)= rs(G whenever G
is chordal [3], and hence, whenever G is a tree. On the other hand, there are infinitely
many trees T for which r(T) < r(T) (see Theorem 1).

In the remainder of this paper we will present lower bounds on the K-capacity
and use them to evaluate the K-capacity for several classes of graphs. As is common
in the study ofthe Shannon capacity, we will use linear programming duality. However,
we do so in a novel way (see the proof of Theorem 1).
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The bounds. Notice that 3’(G)<= r(G), for every graph G, and hence 3"y(G)=
3’s(G) =< rs(G)-< r(G). Since 3’y(G) is easy to evaluate, it provides a practical lower
bound on r(G). In general, this bound is not tight. However, it suffices to obtain
exact values for several classes of graphs. For example, it is straightforward to verify
that yy(C,) n/3 and r (C,) n/3 ], for each n. Thus, rs (C3n) n, for every n. As
another example, we show that 3’y(T)= r(T)= r(T) for each tree T which contains
no edge each of whose ends has degree at least 3. (On the other hand, 3’y(T) < rs(T) <
r(T) for the smallest tree T which does not satisfy these conditions--see Theorem 1.)
It is known that 3’(T’)= 3’y(T’) for every tree T’ [2]. Thus, it suffices to show that
r(T) 3’(T). Choose a minimum cardinality dominating set D in T which minimizes
the number of edges in the subgraph induced by D. If there are no edges in this
subgraplv, then r(T) 3’(T). Otherwise, there is an edge uv with u, v E D. At least one
of its ends, say u, has degree at most 2. Since D\{u} is not a dominating set, u has
exactly one neighbor, say x, which is not dominated by D\{u}. Thus (DU{x})\{u} is
a dominating set which induces one less edge than D induces, contradicting the choice
of D.

We now present another lower bound on r(G) and use it to obtain exact values
for the K-capacity of certain trees which do not satisfy the condition 3’s(G)= r(G).
This bound is, in general, tighter than 3’s(G).

We define

ry( G) inf .’/ry( G").

By definition, rye(G) -< r(G). Also, 3’s(G) =< rye(G), since 3’y is multiplicative.
For each m-> 1, let H, be the tree on the vertices Uo, Ul,’’ ",

depicted in Fig. 1. Notice that for each m, 3’y(H,) 3’(H,,) 2 and r(H,) m + 1.

V2 0 U U 2

FIG.

THEOREM 1. For each m, rs(H,)= 2/-, where H, is the tree depicted in Fig. 1.

Proof. Let m _-> 1 and let

I,, ={(Uo, ui): i- 1, 2,..., m}LJ{(v,, Uo): i= 1, 2,..., m}

I..I {(Vo, vi): i= 1,2,..., m} I..J {(u,, Vo): i= 1,2,..., m}.

It is straightforward to verify that I,, is an independent dominating set in H2 of
cardinality 4m. Consequently, r(H,,)<-2x/. It remains to show that r(H,,)->_ 2/-n.
It suffices to show that rye(H,,)->_ 2x/, i.e., that ry(H)>-(4m)/2 for every n. To do
this, we will utilize the dual of the linear program associated with rs(G), namely:

P(G): Maximize , Yu- Y. Zc
uEV

subject to: , yu Zc <--1, VveV,
uEN[v] Cgv

y,,>=O, Vu V,

Zc >=O, VC .
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By the duality theorem of linear programming, it suffices to show that the optimal
value of P(H) is at least (4m)n/2, for each n. We will do this by giving a canonical
feasible solution to P(H) of value (4m) "/2, for every n.

Let C* be the clique (edge) of H, induced by {Uo, Vo}, and let n > 0. We will call
a vertex of H, a p-vertex if exactly p of its coordinates are endvertices of H,, and
we will call a clique of H a p-clique if it is a product of n-p copies of C* and p
other cliques of H,,. (Notice that every clique of H is a product of n cliques of H,,,
and vice versa.)

The following facts about H are easy to verify:
(1) There are exactly (2m)" n-vertices.
(2) There are exactly n(2m)"- (n-1)-cliques.
(3) Each p-vertex is equal or adjacent to exactly mn-p n-vertices.
(4) Each p-vertex is in exactly (n-p)m"-p- (n-1)-cliques.
Using these facts we will show that the following is a feasible solution to P(H,)

of value (4m)"/2:
m-"/2)(1 + (n/2) In m)

Yo-- 0

if v is an n-vertex,
otherwise

In m if C is an (n- 1)-clique,
Zc otherwise.

(Here, In m denotes the natural logarithm of m.)
If v is a p-vertex then, by (3) and (4), we have

Z y,- ., zc=m"-Pm-’/z l+-lnm -(n-p)m"-P-m-"/)lnm
ueN[v] Cgv

n ) m(n/2)_p(m(n/2)-p 1+-In m n-p) In m
2

m(n/2)-P(1--(--p) In m)
--<1.

Note that the last inequality follows from applying the first derivative test to the
function f defined by f(x)= mX(1-x In m). Since each Yv and Zc is nonnegative it
follows that this is a feasible solution to P(H). Finally, using (1) and (2), we see
that this solution yields an objective value of

( n )y,, Y’. Zc (2m)"m-’/2 1 +- In m n(2m)"-am-’/2) In rn
uV C

(4m)n/2(1 +ln m)-(4m)n/2n-lnm2
=(4m)"/2. I-1

Now, for each m=>l and k>-l, let Gin,k be the tree on the vertices
{r, v, v2, ", Vk, Wl, W2, ", W.,, X, X2," X,.2} depicted in Fig. 2. Notice that

Ys(G,.,k) Y(G,.,k) m + 1 and K (G,.,k) m + k for all m and k.
THEOREM 2. For each m >-k >=2, Ks( G,.,k)= m + k, where G,.,k is the tree depicted

in Fig. 2.
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x Xm XrnZ-m +1 XmZ

FIG. 2

Outline ofproof. The proof is similar to that of Theorem 1. Since K(Gm,k)---- m + k,
it suffices to show that Ks(G,,,k)>----m + k. We establish this inequality by giving a
canonical feasible solution to P(Gn,k) of value (m + k)", for each n.

We will call a vertex of Gn,k an (a, b, c, d)-vertex if a of its coordinates are in
{x, x2,’’’, x,,2}, b of its coordinates are in {v, v2,"" ", Vk}, C of its coordinates are
in {w, WE,’’’, W,,}, and d of its coordinates are r. Also, we will call a clique of Gn,k
an (a, b, c)-clique if it is a product of a cliques induced by some wi and xj, b cliques
induced by r and some vi, and c cliques induced by r and some w.

The following facts about Gn,k are easy to verify:
(1) For each a-0, 1,2,..., n, there are exactly ()mEak (a, n-

a, 0, 0)-vertices.
(2) For each a =0, 1, 2,. , n 1 there are exactly n(")mEa+k--1

a 1, 1)-cliques.
(3) The number of (a’, n-a’, O, 0)-vertices which are equal or adjacent to a

specific (a, b, c, d)-vertex is
mCkd if a’= a + c,

0 otherwise.

(4) The number of (a’, n a’- 1, 1)-cliques containing a specific (a, b, c, d)-vertex

cmC-kd if a’ + 1 a + c,

dmC+kd-1 if a’= a + c, and

0 otherwise.

Using these facts, together with the fact that k _-< m, one can show that the following
is a feasible solution to P(G,,k) of value (m + k) ""

m-(l+alnm) if visan(a,n-a,O,O)-vertex, a=O, 1,2,...,n,
Yv= 0 otherwise,

[m-lnm ifCisan(a,n-a-l, 1)-clique, a=0,1,2,...,n-1,
Zc O otherwise.

We leave the details to the interested reader.

Concluding remarks. Notice that every graph G considered in the preceding section
satisfies

(3.1) Kfs(G)=Ks(G).

If (3.1) were true in general then the K-capacity of many other graphs could be



72 MARTIN FARBER

evaluated. For example, this would imply that Ks(Cn)= n/3 for every n. Although we
know of no counter-example to (3.1), we suspect that it does not hold in general.
Indeed, we conjecture that Ks(C4)= 3x/. To see that 4/3<_--Ks(C4)_--<, notice that
Ys(C4) 4/3. On the other hand, if we number the vertices of C4 by 0, 1, 2, 3 so that
[ i,j] is an edge iff +j is odd, then {(0, 0, 0), (1, 2, 3), (2, 3, 1), (3, 1, 2)} is an independent
dominating set in C.

It would be interesting to determine classes of graphs which satisfy (3.1). We
conjecture that (3.1) holds for trees.

Since ys appears to be a poor lower bound on Ks, and Ks is not multiplicative,
the most obvious problem which comes to light is to find a good multiplicative lower
bound on K.

Acknowledgment. We would like to thank Dr. Pavol Hell who suggested the
problem of studying the K-capacity, and who supervised the Ph.D. thesis from which
this paper was extracted.
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PROBABILITIES FOR INTERSECTING SYSTEMS AND
RANDOM SUBSETS OF FINITE SETS*

P. C. FISHBURN’, P. FRANKLt, D. FREED, J. C. LAGARIAS" AND A. M. ODLYZKOf

Abstract. Let k be a family of subsets of {1, 2, , n}, each two of which have at least k elements in
common, and let S be a random subset (sample) of {1, 2,. , n} obtained by choosing each =< n indepen-
dently with probability p. Assuming that > Pl >- P2 ">- P, > 0, we investigate the problem of determining
an :k that maximizes the probability that at least one of the sets in k will be included in S.

Complete solutions are obtained for the following cases: for k 1, p p for all i, or variable p with
1/2 => P2 or p, > 1/2" for k -> 2, p p >- 1/2 for all i, and small Pk+ I. A partial solution is given for k 2 when p p
for all i.

1. Introduction. Let k be a family of subsets of n={1, 2,..., n} for which
l <=k<n and

(1) [Af3BI >- k for all A, B =k,

and let p (Pl, P2,""", Pn) be a probability vector with

1 >pl>=P2_>- >-p, > 0.

Our aim is to determine intersecting families k that maximize the probability P(k, P)
that at least one member of k will be included in a random subset S of n that
independently contains each <= n with probability Pi. We thus add a probabilistic
dimension to the theory of intersecting systems initiated by Erd6s, Ko and Rado (EKR)
[3] and surveyed recently by Deza and Frankl [2].

Let

:+ {B n: A B for some A :}.

Clearly, k satisfies (1) and P(, p) P(k, P). It is also easily shown that if p -> p’
(pi>-p for all i), then P(k, P)=> P(k, P’). Unless it is stated otherwise, all :k in
what follows will be maximal intersecting systems, i.e., :k : and no set can be
added to :k without violating (1).

The simplest case of probabilistic EKR theory has k 1 and p constant, say Pi P
for all i. To illustrate, suppose each card in a 52-card deck is to be independently
chosen with probability p for a sample S of the deck. 1 is a maximal family of
subdecks, each two of which have at least one card in common, and P(, p) is the
probability that some subdeck in : will be included in S. The following results were
first established indirectly by Ahlswede and Katona 1 in their Theorem 4.2 and were
independently derived by the present authors. If p < 1/2, then the maximum of P(I, P)
over 1 equals p, and this value is realized when :1 consists of a one-card subdeck
and all of its supersets. Ifp > 1/2, then max P(:I, P) > P, and any maximizing 1 contains
all subdecks with more than half the cards plus half the subdecks with exactly 26
cards. If p 1/2, then max P(:, p)= 1/2, and this is realized by every maximal .

The results for constant p and k 1 are discussed along with two variable-p
generalizations for k 1 in the next section. The first generalization has 1/2 >-p2; the
second has p, > 1/2. Definitive results for k 1 are not presently known for other cases.

* Received by the editors July 26, 1983.

" AT & T Bell Laboratories, Murray Hill, New Jersey 07974.
: Centre National de la Recherche Scientifique, Paris, and Consultant, AT & T Bell Laboratories.
University of California, Berkeley, California 94720. This work was done while this author was a

summer employee at AT & T Bell Laboratories, Murray Hill, New Jersey 07974.
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Later sections consider k-> 2. Section 3 shows that a P-maximizing k consists
of {1, 2,. ., k} and its supersets if Pk+l through p, are small. Section 4 proves that
collections of large subsets of n maximize P when p is constant and p->_ 1/2. Section 5
gives a partial result for all constant p when k 2. It is hoped that further research
will add substantially to these results.

Several notations apply throughout the paper. If not indicated otherwise, A and
B are subsets of n, and A= n\A. k* denotes an k that maximizes P(k, P), and
k** is an k that uniquely maximizes P(k, P)-

2. Probabilistie EKR theory for k = 1. We assume k 1 throughout this section
and will omit the subscript on 1 for convenience. Given k 1, a maximal must
contain A or A, else there would be B, C rwith B A and C

_
A, thus contradicting

B f’l C . Since both A and A cannot be in , we have the well-known
LEMMA 1. Every maximal contains exactly 2"-1 subsets of n.
We begin with the constant-p cases. Since all S’s are equally likely when p =

for all i, every maximal is an * for this case, and P(*, (1/2,. 1/2)) =2"-1/2"--
Other values of p are covered by

TUEORE 1. Suppose p p for all i. en
p < * {{i}}+;

[p > , n oddl** A: IAI e 2

p > , n even

A IAI > hag of the A ith IA , one from each {A, A} pair

The values of P(*, ) are easily determined from the theorem and reveal an interesting
discontinuity in the limit:

ifp >

enp > , the probability that S contains more than half the elements in approaches
1 aS n.

Although Ahlswede and Katona’s results [1] yield a proof of Theorem 1, we
present a full proof to show the application of a basic result of Erd6s, Ko and Rado
[3]. Ingenious sho proofs of the following are given by Katona [8] and Greene and
eitman [6].

LNMA 2 (Erd6s-Ko-Rado). For each 1N < n/2, the larges collection oft-elemen
subsets of that are pairwise nondisjoint has cardinality -(,_). is maximum is realized
by the collection of all t-element subsets of that contain a fixed N n, and this is unique
up to the choice of i.

To prove Theorem 1, let a be the number of t-sets (t-element subsets) in . By
the proof of Lemma 1,

with Y a,=2"-1. Let w, =p’(1-p)"-’ so that

P(, P) =Z a,w, with p= (p,...,p).
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If p < 1/2, then Wl > w2 >" > w,, so, by Lemma 2 and a, + a,_, (7), a,w, + a,_,w,_, for
< n/2 is maximized if and only if the t-sets in are those that contain a fixed i. It

then follows that atwt is maximized if and only if some is in every A
If p > 1/2, then w, > w,,-1 >’" > Wl, and therefore Y, atwt is maximized by making

the at for > n/2 as large as possible, namely (’). If n is odd, this yields the unique
maximizer ** shown in the theorem. If n is even, then all maximal have (,72)/2
(n/2)-sets, and any such that contains every A with [A[> n/2 is a maximizer of P.
This completes the proof of Theorem 1.

We now consider variable p with l>p>-_pz>-...>-_p,>O, as we assume
throughout. Our first result in this case pertains to relatively small Pi.

THEOREM 2. Suppose >-p2. Then ,*= {{1}}+, and **= {{1}}+ iffpl
Proof Given 1/2 >-_ P2, let M {{1}}+ and let : be any other maximal intersecting

family. Consider p’= (p, P2, ",P2). By Theorem 1, M is an * for p’, so P(M, p’) >-
P(, p’). Let p"= (P2, P, P3,""", P,). Since P(M) is not affected by values of the pi

beyond the initial value, but P() cannot increase as those values decrease, P(M, p")
P(M, p’) _-> P(:, p’) _-> P(r, p,,), so P(M, p") _>- P(SF, p"). If
and--by symmetry--{{2}}+ are *’s for p.

Suppose then that p > P2. As we change from p" to p, P(M) increases from P2 to
p. If B 6 5, then Pr(B

___
S) does not change when p" changes to p if 1 B, and it

increases by a factor of Pa/P2 if 1 B. Since { 1} :, it follows that

Thus M is the unique maximizer if p > P2.
Our second generalization of Theorem 1 for k 1 takes all p, > 1/2. In this case,

each * is determined by the greedy algorithm that chooses A from {A,A} if
P(A) > P(A) and chooses either if P(A)= P(A), where

P(A) Pr(A
_

S) when p applies.

THEOREM 3. Suppose p, > 1/2. Then * {A" P(A) > P(A)} t_J {half of the A with
P(A) P(A), one from each such {A, A} pair}.

Remark. As in the final part of Theorem 1, either A or A can be chosen for *
in Theorem 3 when P(A)= P(A). The ensuing proof shows that intersections of
chosen sets will be nonempty. If p, > 1/2 is replaced by p,-> 1/2, slight modifications in
the proof show that 5F* equals {A" P(A) > P(A)} plus one set from each {A, A} that
has P(A)= P(AC). The latter choices may require explicit consideration of nonempty
intersections if some p .

Proof of Theorem 3. Given p, > 1/2, let : be an * as designated in the theorem.
Contrary to the theorem’s conclusion, suppose A, B and Af’)B . Let C
n\(A U B). This is not empty, since otherwise B A, contrary to the definition of .
By that definition, P(A)>-_ P(A) and P(B)>-P(B), so

P(A)P(B)
>

p(Ac p(-) 1.

However, the P ratio here equals 1-Ic [(1 _p)/pi]2, which is strictly less than 1 since
p > 1/2, so a contradiction obtains. Hence A, B implies A

In contrast to the final conclusions of Theorem 1, where * consists entirely of
A with IAI _-> n/2 when p is constant and p > 1/2, suppose Pl 1 e and p 1/2 + e for all
i>_-2, e positive and small. Theorem 3 then implies that :**= {{1}}+. However, if e
is held fixed and n increases, we will eventually get to an n where :* no longer
contains { 1 }.
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3. Small Pk+l for k->2. We assume k->2 henceforth. The following theorem
generalizes Theorem 2 for small Pk+l. The Pi for i--< k can of course be large.

THEOREM 4. Suppose 2 <-- k < n. If either

2 <- k <- 14 and Pk+l 2(k+ 1)’

or

1
k >= 15 and Pk+ <-

k+ 1’

then P( ;*k P) <=P P2 Pk.
We suspect the conclusion also holds for 2=<k -< 14 when pk+<--l/(k+ 1), but

lack proof. At any rate, P(*k, P) <---- P P2" Pk clearly implies that k* {{ 1, 2, , k}}+

and that this is k** iff Pk > Pk+. When Pk/ > 1/(k+ 1), the conclusion of the theorem
is not generally true. For example, if p P2 Pk/2 P > 1! (k + 1) and k
{A: [Af’){1,’’’, k+2}l>- k+l} then

P(k, P) (k + 2)pk+’(1 --p) +pk+2 pk+X(k + 2 -p(k + 1)) > pk.

Our method of proving Theorem 4 is essentially the same as a method used
by Frankl and Fiiredi [5]. The main tool is the following extension of the
ErdBs-Ko-Rado theorem.

LEMMA 3 (Frankl [4]). Suppose k <- r <= n and k,r is a maximum-cardinality set of
r-sets for which IA CI B[ >-k for all A, B in the set. Let

,r {A" Iml-- r and (1, 2,..., k}
_
A},

’ ={a’lal=r and laf3(1 k+2}l>k+l}.k,

Then, up to permutations on 1, , n,
2 k 14, n >- Ck r k 4-1 k 4-1 for some constant

1 Ck 2 that depends only on k]::: k, ,;
[k_-> 15, n>(r-k+ 1)(k+ 1)]==> k,, ,;
[k_-> 15, n=(r-k+ 1)(k+ 1)]k,r {,,, ,};
[k >_- 15, Ck(r-- k + 1)(k + 1) _-< n < (r- k + 1)(k- 1) for some

constant ck < 1 that depends only on k] ;k,, k,,.
We also use two other results.

FACT 1. If Theorem 4 is true whenever Pk+l Pn, then it is true in general.
Proof. Let eO:k={{1,’’’,k}}+. Let p=(p,’’’,Pk+l, Pk+E,’’’,p,) and

(Pl,’’’, Pk+, Pk+,’’" ,Pk+l)" If Theorem 4 is true whenever Pk+I Pn, then,
since Pk+l >- Pk+2 >=’’" > Pn, and in view of the second paragraph in the introduction,

P(k, P) Pl’’" Pk P(k, P’) -> P( ,.k, P’) ----> P(k, P). I"]

FACT 2. Given p (Pl, ",Pk, P, ",P) and P* P( *k, P with n components),
it follows that Pn*+I >- P*, and hence that lim,_ P*, exists.

Proof. Just consider the trivial extension of fig* at n to n 4-1 by adjoining to k*
the set {ALJ{n+I}:A,*k}.

By Fact 1, it suffices to show that Theorem 4 holds when Pk+l Pn "-P,
SO assume henceforth that p= (Pl,’", Pk, P,’’’, P). Then Fact 2 yields the desired
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result of
lim P* PIP2" Pk.

We prove this for k_-> 15 in Theorem 4. The proof for 2_-< k_-< 14 is simpler since it
involves only the central limit theorem.

Given k -> 15 and Pk+l =P <---- 1/(k + 1), let k be an arbitrary maximal k-intersecting
system, and let k,s- {A k: IAI s} for s -> k. Also let as IO%k,sl, b=pl’’’pk, and
f(k, n) k 1 + n/(k + 1) ]. Then, for large n, and in view of the first result of Lemma
3 for k >- 15, namely (s-k)"-k I,sl----> as for s <f(k, n), and Ck < 1 in the final result of
the lemma, we have

P(k, )= P(,s, P)<---- b Gp-k(1
s=k s=k

s=k

f(k,n)+[n2/3]
<-- b+ bp-k Z ,sl [k,s[I PS(1 --P)

=f(k,n)

s>f(k,n)+[n

The final sum vanishes as n- oo by the central limit theorem, and it is easily checked
that

f(k,n)+[n 2/3]

s=f(k,n)

0(/’/-1/3),

which also vanishes in the limit. Therefore lim P(, p)-<_ b.

4. Large Pi for k>_-2. Our main result for k -> 2 and p, >-_ returns to the constant-p
context of Theorem 1. We shall comment briefly on variable p shortly.

The following theorem of Katona [7] and Kleitman [9] illustrates another facet
of standard EKR theory. Let

n+k}A" [A -> if n + k is even,
2= n-l+k}A: [A f’l {1 n 1}1 > if n + k is odd.

2

LEMMA 4 (Katona, Kleitman). Suppose k has maximum cardinality. If n / k is
even, k- k. If n + k is odd, then k is either k or an isomorph of k obtained by
replacing {1,..., n- 1} in its definition by any other n- 1)-set in n.

THEOREM 5. Suppose k >- 2 and Pi p -> 1/2 for all i. Then *k* k if n + k is even,
and *k fag if n + k is odd.

Proof Immediate from Lemma 4 and the fact that p t(1 _p),-t is nondecreasing
in when p -_> 1/2.

Two factors suggest that the variable-p case for p, -> 1/2 is more complex. First,
specific applications of Theorem 3 for k 1 show that o%* can vary considerably as
the pi->1/2 change. Second, unlike k= 1, maximal k for k->2 can have different
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cardinalities. For example, with Mk {{1, 2,-.., k}}+,

However, k’s size advantage over k may be offset under P if Pl through Pk are near
1 while later Pi are near .

We illustrate this for k 2 with p P2 1 e and P3 Pn 1/2 + & Regardless
of n, P(42, P) (1 e)2. If is fixed, then P( 2, P) approaches 1 as n gets large, so that

P( q2, P) > P(M2, P) for n > no(e, ).

However, if 8 varies with n and approaches 0 sufficiently rapidly, then P(d2, p) will
approach 1/2 as n gets large, so that

P(M2, p) > P(d=, p) for large n.

5. Constant p for k 2. We conclude with observations for constant p and k 2
that augment the small-pi results of Theorem 4 and the large-pi results of Theorem 5.
Our prime question is what happens to 2" for p between e2 and 1/2. The answer we
give is incomplete since it deals only with a small number of maximal :. However,
it does suggest what the general :* solution may look like when k 2 and p is constant.

For each 1 <- t<=[n/2] (the integer part of n/2), let

;2(t)={A:lAl=t+l andA_{1,2,--.,2t}}+,

the family of (t + 1)-sets in 2t and their supersets in n. It is easily checked that each
2(t) is a maximal ;2 set. In previous notation, 2(1) is 2, and 2([n/2]) is 2. Our
partial answer to the question of the preceding paragraph is

THEOREM 6. Suppose pi pfor all i, and 2 is restricted to {fiE(l),""", 2([n/2])}.
Then P(2, P) is uniquely maximized by

t-1
r_(t) if <p<2t-1 2t+l for 1,2,. ., In/2];

[n/2]-1rE([n/2]) if < p < 1.
2[n/2]- 1

Thus, as p increases with r2 confined to the 2(t), the optimal 2(t) changes
from 2(1) to 2(2), then to 2(3), and so on, up to ([n/2]) just before p=1/2. The
only p where we definitely know that the designated 2(t) is an * are p <- e2 and p >-- 1/2.

Our proof of Theorem 6 is based on a lemma that seems interesting in its own
right. For the lemma let

(t) {A" IAI + 1 and A {1, 2,..., 2t}}

for 1, 2,... without specific reference to n, and let P,(p) denote the probability
that a random S chosen from {1, 2,-.., 2t} with probability p for each i-<2t will
include a set in (t).

LEMMA 5. For each >-1,

2t ) t+Pt+(P)- Pt(P) + 1
p (1 -p)t[(2t + 1)p- t]/t.
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Proof (outline). The lemma claims that
2,+2 (2t2) p)2t+2-k

2t (2kt)pk(1 ,, pk(1 _p)2t-k
k t+2 k t+

t+l
p (1-p)’[(2+l)p-]/.

This can be verified by expanding both sides to obtain polynomials in p and showing
that the coetticients ofp are the same on both sides for s + 1, , 2t + 2. The latter
step makes extensive use of the identity

=o j
(-1)

We omit the details. [3

ProofofTheorem 6. Since 2(t) (t)+for t<-[n/2],it follows that P(2(t), p)=
Pt(P). The identity of Lemma 5 shows that the curves of Pt(P) and Pt/I(P) cross at

P-2t+l’
with Pt(P)> Pt+(P) when p < t/(2t + 1), and Pt+(p)> Pt(p) when p > t/(2t + 1). The
theorem follows directly from these observations.
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ON THE REDUCTION OF A MATRIX TO TRIANGULAR OR DIAGONAL
FORM BY CONSIMILARITY*

YOO PYO HONG" AND ROGER A. HORN

Abstract. We study the problem of reducing a given n-by-n complex matrix A to triangular or diagonal
form by a transformation of the form A-> SA-1, where S is a nonsingular n-by-n complex matrix. We also
consider the special case of this reduction in which S is unitary, and a generalization to the problem of
simultaneously reducing a family of matrices in this way. Natural analogues of eigenvalues and eigenvectors
arise in this context; they have both familiar and unfamiliar properties.

AMS(MOS) subject classifications. 15A21, 15A23

1. Introduction. In the theory of univalent complex analytic functions in the unit
disc, an important role is played by quadratic inequalities of the form

(1.1) x*Ax >= ]xT"Bxl for all x C",

where A and B are n-by-n complex matrices, A is Hermitian and positive semidefinite,
and B is symmetric 1 ]. Under a nonsingular change of variables x --> Sy, the matrices
transform according to the laws A--> S’AS, B--> S’BS, and it is easy to show that if A
is nonsingular (and hence is positive definite), there is always a nonsingular S that
transforms A and B simultaneously into diagonal form in this way.

Now suppose that A and B are n-by-n matrices, not necessarily related by (1.1),
with B symmetric and A Hermitian and nonsingular, but not necessarily definite. If
there exists a nonsingular $ such that both S’AS A and STBS M are diagonal,
then A-1/ (SA-IS*)((S*)-a7I-) S(A-1/0r)-1, i.e., A-1/ has the property that
there is a nonsingular R such that R(A-I)I- is diagonal. This necessary condition
is also sufficient to ensure that A and B can be reduced simultaneously to diagonal
form by these mixed congruences [3]. It is an example ofhow the notions of consimilar-
ity and condiagonalizability arise naturally.

A second example is an old, and often rediscovered, result about complex sym-
metric matrices. If A is an n-by-n complex symmetric matrix, there is a unitary matrix
U and a nonnegative diagonal matrix such that UAU= .. This may be thought
of as a theorem about diagonalization by unitary congruence, or it may be thought of
as a singular value decomposition, but if we write it as UA/.Sr-= E, we see that it is
of the same form as the first example, but with a unitary consimilarity matrix R U.

In the next section, we introduce the basic concepts involved with the theory of
consimilarity. In the third section, we treat the problem of reducing a given matrix to
upper triangular from by consimilarity, and in the last section we consider reduction
to diagonal form by consimilarity.

2. Basic notions. We denote by Mn the set of n-by-n complex matrices. Two
matrices A, B Mn are said to be consimilar if there is a nonsingular R M, such that
A RB-. Like ordinary similarity, consimilarity is an equivalence relation on M,,
and we may ask which equivalence classes contain triangular or diagonal representa-
tives. A matrix A M, is said to be contriangularizable if there exists a nonsingular
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R M, such that R-AK is upper triangular; it is said to be condiagonalizable if R
can be chosen so that R-1AI is diagonal.

If A M, is condiagonalizable and R-1A A =diag (A, , A,), then A/
RA. If R=(rl,..., r,) with each riC", this identity says that Ai=hir for i=
1, 2,..., n. A nonzero vector x such that A= Ax is said to be a coneigenvector
of A; the scalar A is a coneigenvalue of A. The identity AR RA says that every
nonzero column of the matrix R is a coneigenvector of A. Since the columns of R are
independent if and only if R is nonsingular, we see that a matrix A M, is con-
diagonalizable if and only if it has n independent coneigenvectors. To this
extent, the theory of condiagonalization is entirely analogous to the theory of ordinary
diagonalization.

But every matrix has at least one eigenvalue, and it has only finitely many distinct
eigenvalues; in this regard, the theory of coneigenvalues is rather different. IfA Ax,
then e-iA=A(eix)=e-Ax=(e-ZA)(ex) for all 0R. Thus, if A is a coneigen-
value of A, then so is eiA for all 0 R. On the other hand, if A Ax, then A,Yix
A(A) A(A--)= A$ Ax=
is an eigenvalue of A. The example A (o -o), for which AA -2I has no nonnega-
tive eigenvalues, shows that there are matrices that have no coneigenvalues at all; iA
is an example of a 2-by-2 Hermitian matrix with no coneigenvalues. It is known,
however, that if A 6 M, and n is odd, then A must have at least one coneigenvalue
[4], a result analogous to the fact that every real matrix of odd order has at least one
real eigenvalue.

Thus, in contrast to the theory of ordinary eigenvalues, a matrix may have infinitely
many distinct coneigenvalues or it may have no coneigenvalues at all. If a matrix has
a coneigenvalue, it is sometimes convenient to select from among the coneigenvalues
of equal modulus the unique nonnegative one as a representative.

The necessary condition we have just observed for the existence of a coneigenvalue
is also sufficient.

PROPOSITION 2.1. Let A M, and let A >-0 be given. Then A is an eigenvalue of
A. if and only if +x/- is a coneigenvalue of A.

Proof. If h >-_0, x/->_-0, and A=x/-x for some x0, then Ax=A(AY)=
A(x/" x) A)2 x Ax.

Conversely, if AAx Ax for some x 0, there are two possibilities:
(a) A2 and x are dependent, or
(b) A2 and x are independent.

In the former case, there is some /x C such that A =/zx, which says that /z is a
coneigenvalue of A. But then hx Ax A(A) A(lxx) =/2A =/2/zx [/z[2x, so
I/x[ +x/-. Since e-2/z is a coneigenvalue associated with the coneigenvector eix
for any 0g, we conclude that +x/X is a coneigenvalue of A. Notice that
AA(A) A(AAx) A(hx) A(A) and AAx hx, so if h is a simple nonnegative
eigenvalue of AA, (a) must always be the case.

In the latter case (b) (which could occur if h is a multiple eigenvalue of AA), the
vector y A+ x is nonzero and is a coneigenvector corresponding to the coneigen-
value +x/- since A)7 A.x +

We have seen that to each distinct nonnegative eigenvalue ofAA there corresponds
a coneigenvector of A, a result analogous to a familiar fact in the ordinary theory of
eigenvectors. The following result extends this analogy a bit further.

PROPOSITION 2.2. Let A M, be given, and let Xl, x2, , Xk be coneigenvectors of
A with corresponding coneigenvalues hi, h,. ., Ak. If [Ail Ihl whenever 1 <- i, j <-_ k
and #j, then {x,..., Xk} is an independent set.
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Proof. Each xi is an eigenvector ofA, with associated eigenvalue IAil2. The vectors

xl, , Xk are independent because they are eigenvectors of the matrix AA and their
associated eigenvalues IA I=, IA I= are distinct by assumption, lq

This result, together with Proposition 2.1, gives a lower bound on the number of
independent coneigenvectors of a given matrix, and yields a sufficient condition for
condiagonalizability that is analogous to a familiar sufficient condition for ordinary
diagonalizability. We give a more general condition in Theorem 4.3.

COROLLARY 2.3. Let A Mn be given. IfAA has k distinct nonnegative eigenvalues,
then A has at least k independent coneigenvectors. If k n, A is condiagonalizable. If
k 0, A has no coneigenvectors at all.

These bounds on the number ofindependent coneigenvectors are sharp. For A Jn,
an elementary Jordan block

1 0

Mn,
1

1

A j2, has 1 as its only nonnegative eigenvalue. The coneigenvector equation J,g x
is easily seen to have only real solutions, so every coneigenvector is also an eigenvector,
and the subspace of eigenvectors is one-dimensional. Direct sums of elementary Jordan
blocks can therefore be used to give examples of matrices A M, such that AA has
k distinct nonnegative eigenvalues and A has exactly k independent coneigenvectors,
for any n => k -> 1.

For a given matrix, the set of coneigenvectors corresponding to a given coneigen-
value is not generally a subspace of C" over C, but is a subspace of C" over R.

The notion of consimilarity can be generalized by replacing the complex field
with an arbitrary field F and replacing the operation of complex conjugation by an
automorphism on F [7, p. 27].

3. Contriangularization and unitary condiagonalization. Any complex matrix can
be reduced to upper triangular form by a unitary similarity, but an analogous reduction
is not always possible for consimilarity. If A M, is given, and if there is a nonsingular
SM, such that A=SA-1 for some upper triangular AMn, then Afi=
SA-IS-1= S(A)S-, and hence A, is similar to A. But A has nonnegative
real main diagonal entries, so a necessary condition for a given matrix A to be
contriangularizable is that all the eigenvalues of AA are nonnegative. This condition
is also sufficient to ensure that the contriangularization can be accomplished with a
unitary transformation. Given Proposition 2.1, the proof is similar to the proof of
Schur’s ordinary unitary triangularization theorem.

THEOREM 3.1. Let A M, be given There exists a unitary U M, and an upper
triangular A M, such that A- UAU7" if and only if all the eigenvalues ofA. are real
and nonnegative. Under this condition, the main diagonal entries of A may be chosen to
be nonnegative.

Proof. The necessity of the eigenvalue condition has already been shown. To show
that the condition is sufficient, assume that all the eigenvalues ofA are nonnegative,
and let A be an eigenvalue of A. By Proposition 2.1, there is a coneigenvector v of
A corresponding to the coneigenvalue +x/-. Since vv*v is also a coneigenvector,
there is no loss of generality if we assume that v is a unit vector and At +x/-v.
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unitary matrix that has these vectors as its respective columns. The first column of the
matrix VTAIT’I has entries v*A=+x/-v*v=+,f-Si because of orthonormality and
the relation A /x/-v. Thus, all but perhaps the first of the entries in the first column
of I?A? must be zero. If we write this matrix in partitioned form as

(3.2) IT"A I?
W
T

W E C n-l, 32 E Mn_l,

we see that

The eigenvalues of AA (all nonnegative by assumption) are therefore h together with
the eigenvalues of A2A2. Thus, the matrix A2 Mn-1 obtained by this process of
reduction also has the property that all the eigenvalues of AEA2 are nonnegative.

The process of reduction can now be repeated with A2 and its successors at most
n- 1 times to obtain

--T t.. A,Vn-1 f"f (r A (/, ("2 n-l:
"On

where each V is unitary and A is upper triangular with nonnegative main diagonal
entries tri. If we set U- V V2"" V,_, we have A UAUT as desired.

Not every matrix A M, has the property that all the eigenvalues of AA are
nonnegative, but Hermitian positive semidefinite matrices and symmetric matrices do
have this property. If A e Mn is Hermitian and positive definite (nonsingular), then it
has a Hermitian positive definite square root A/2 and A/ is similar to A-/E(A,XI)A1/2=
AI/EIA1/, which is positive definite (and hence has positive eigenvalues) because it
is congruent to the positive definite matrix A. A limiting argument now shows that if
A M, is Hermitian and positive semidefinite, then all the eigenvalues of AA are
nonnegative and hence A is unitarily contriangularizable. The example A ( ) shows
that it is not sufficient to assume that A is merely Hermitian. If A is complex symmetric,
however, it is always unitarily contriangularizable because A/ A/T AA*, and AA*
is Hermitian and positive semidefinite for any A E M,. But if A is symmetric and
A= UAUT for some unitary U, then A= U*AO= U*ATJ=(U*AJ)T=AT, so A
must be symmetric, too. Since a symmetric triangular matrix must be diagonal, we
conclude that every symmetric complex matrix is unitarily condiagonalizable.

COROLLARY 3.3. A matrix A M, is symmetric if and only if there are a unitary
U M, and a nonnegative diagonal , M such that A U, U.

This result is often attributed to Schur [8], but earlier proofs were offered by Hua
[5], Seigel [9], and Jacobson [6]; historical priority must apparently be given to Takagi
[10]. In the setting of consimilarity, complex symmetric matrices are analogous to
normal matrices in the sense that complex symmetric matrices can be reduced to
diagonal form by unitary consimilarity and normal matrices can be reduced to diagonal
form by unitary similarity. Corollary 3.3 may be thought of as an analogue for
consimilarity of the spectral theorem for normal matrices.
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Although our proof of Corollary 3.3 is completely elementary, it may be useful
to have another elementary proof that proceeds directly to the diagonalization without
first proving the triangularization Theorem 3.1. If A M, is a given symmetric matrix,
then A AA* is Hermitian and hence AA* VA V* for some unitary V M, and a
real, (in fact, nonnegative) diagonal A M,. Notice that the matrix B =- V*AV is also
symmetric, and B/-- V*A,’VT.ff,V- V*AA*V-A is real. If we denote the real and
imaginary parts of B by B and BE, respectively, then B B1 + iB2, B1 and BE are real
symmetric matrices, and B (B21 + B)- i(B1B2- B2B1) A, so BB2- B2B =0, i.e.,
B and B2 are commuting real symmetric matrices. There is, therefore, a real orthogonal
Q M, such that B= QA1Q" and B2 QA2Q r, with A and A2 both real diagonal.
But then B- B + iBE= Q(AI + iAE)Q= V’A(, so A-(VQ)A(VQ)= WAW with
a unitary W-VQ and a diagonal A- A1 + A2. This is almost the factorization in
Corollary 3.3, and the argument is completed by observing that A ED2= DED with
E IA[ a nonnegative diagonal matrix and D a diagonal matrix with main diagonal
entries with unit modulus. Then D is unitary and A WAW= WDXDWr= UEU"
with U WD. The heart of this argument is due to Siegel [9], but it seems to be
little-known. The same sort of argument can be used to deduce a normal form for a
complex skew-symmetric matrix under unitary consimilarity.

Symmetry is a necessary and sufficient condition for unitary condiagonalization
and is a sufficient, but not necessary, condition for condiagonalizability. We consider
necessary and sufficient conditions for general nonsingular condiagonalizability in the
next section.

One might be interested in conditions under which a family -{Ai: 5} c Mn
of complex symmetric matrices is simultaneously unitarily condiagonalizable, i.e., there
is a single unitary U Mn such that UAiU is diagonal for all #. A necessary and
sufficient condition is that AiAj- AjA for all i,j , i.e., each product AiA is
Hermitian. This result and more general results about simultaneous unitary contriangu-
larization of a family of matrices may be found in [2].

4. Condiagonalization. Our objective is to give a simple condition for a given
matrix to be condiagonalizable, and as a first step we prove the following lemma. The
motivation for this result is that if a given matrix A Mn is consimilar to a scalar
matrix, then A S(AI)-1= AS-1 and A, AS-S-1--IA]2I. Matrices with this
property (that AA is a scalar matrix) are the basic building blocks from which
condiagonalizable matrices are constructed.

LEMMA 4.1. A matrix A M has the property that AA I ifand only if there exists
a nonsingular S M,, such that A Sg-1.

Proofi We have just seen that the stated condition is necessary. To show that it
is sufficient, define So =-- eA+ e-I for any 0 and observe that

(4.2) AS-o A(e-i,+ eiI) e-iA,ff + e’A eA+ e-iI So.

Since A has only finitely many eigenvalues, there is some 00 R such that -e-2i is
not an eigenvalue of A. For this value of 0, Soo e(A+ e-2iI) is nonsingular and
,4 --1SooSoo from (4.2).

We can now state and prove a necessary and sufficient condition for con-
diagonalizability.

THEOREM 4.3. Let A M,. There exists a nonsingular S M, and a diagonal A M.
such that A SA-1 if and only if_A, is a diagonalizable matrix with real nonnegative
eigenvalues and rank A rank AA.
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Proof The stated conditions are clearly necessary since A/= SAq-lgS-I=
SlA[=S- and the rank of both Afi and A is the number of nonzero diagonal entries
in A. Conversely, if AA is diagonalizable and has nonnegative eigenvalues there is a
nonsingular S M, and a nonnegative diagonal A M, such that Afi SAS-. There
is no loss of generality to assume that like diagonal entries in A are grouped together
and that A=hlln,th2InE( (hklnk, where I., M., and hl> h2> /3 >’" "> /k 0.
We then have

S-1AdS S-1A-1Xs (S-’A)(S-’A) A.

If we set B S-A, then (since consimilarity is an equivalence relation) it will suffice
to show that B is condiagonalizable if BB A. Since A is real, A A (BB) BB BB,
so B and B commute. Thus, BA= B(BB)= BBB=(BB)B=AB, so B and A also
commute. If we write B in block form as

Bll

Bkl

B12 Blk
B22

Bkk

with block sizes conformal to those of

then the equation BA AB says that hiBu ,jBu for all i= 1, 2,..., k. Since hi hj
if iS j, we conclude that B0 0 if j and hence B is block diagonal

I ,l 010 B

with diagonal blocks the same size as those of A. The equation BB A means that
each B,B, I for 1, 2,..., k. Notice that B, must be nonsingular if i > 0. If
I > 0 we can write this equation as

VAi 3

and we can use Lemma 4.1 to conclude that there is a nonsingular S M,, such that
B, S(I,);. If h =0, then

rank (B) + rank (B) +. + rank (B) rank (B)

rank (A)= rank (AA)= rank (A)= n + n+..-+ n_.

This means that the rank of B, is zero, so the last block B must actually be a zero
block if h 0. In this event, we can write 0 B Sg(I), where S M, is
an arbitrary nonsingular matrix. If we set S S. S, we have shown in all cases
that B=S(I,...I)- and we are done.

The special case in which A is a complex symmetric matrix is handled easily by
the theorem, since AA AA* is Hermitian in this case and hence is diagonalizable.
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Moreover, rank A rank AA* for any A M,, so the hypotheses of the theorem are
satisfied whenever A is a symmetric matrix. The theorem implies that every symmetric
matrix can be condiagonalized but does not yield directly the fact that the con-
diagonalization can be accomplished with a unitary transformation.

If A M, is Hermitian and positive definite, then AA is similar to the Hermitian
positive definite matrix A1/2.A1/2 and is therefore diagonalizable and has positive
eigenvalues. Since rank (A)=rank (AA)= n in this case, the theorem guarantees
that every Hermitian positive definite matrix is condiagonalizable. The condiagonali-
zation can be accomplished with a complex orthogonal transformation, though this
does not follow directly from the theorem. A Hermitian positive semidefinite matrix
need not be condiagonalizable, as the example A=(_ ) shows; rank(A)= 1
rank (AA) O.

Theorem 4.3 is a special case of a general theorem about consimilarity: Two
matrices A, B M. are consimilar if and only if (a) AA is similar to BB, and (b) rank
(A) rank (B), rank (AA) rank (BB), rank (AAA) rank (BBB),. , and so on, for
all n such alternating products with at most n terms. Using this characterization of
consimilar matrices, one can deduce the following for every A M," A is consimilar
to a real matrix, A is consimilar to A,/, and A*, and A is consimilar to a Hermitian
matrix [4].

We have a simple necessary and sufficient condition for a single matrix to be
condiagonalizable, but what about simultaneous condiagonalization of more than one
matrix ?

If a given family {Ai" } c M, has the property that there is a nonsingular
S M, such that A= SAi-1 and A is diagonal for all i 5, then each A,ff.
SA-XS-= SAXS-. The family = {afi" i,j } is, therefore, a commuting
family of diagonalizable matrices. Moreover, ai. + _Afi S(A+AX)S-’=
S(2 Re (A_))S- has only real eigenvalues and aifi,-Aa S(2i Im (A*))S- has
only imaginary eigenvalues. These necessary conditions are also sufficient.

THEOREM 4.4. Let o= {A" } M, and c= {AA" i,j }. There exists a
nonsingular S M, such that SA- is diagonal for all if and only if

(a) Ai is eondiagonalizable for all o, i.e., for each
(al) AA is diagonalizable,
(a2) all the eigenvalues ofAA are nonnegative, and
(a3) rank (A) rank (AiA);

(b) AA is diagonalizable for all i,j ;
(c) is a commuting family; and
(d) for all i, j , AA +AA has only real eigenvalues and AiA-AA has only

imaginary eigenvalues.
Proof The necessity of these four conditions is easily verified; we proceed to

show that they are sufficient. Conditions (b) and (c) imply that is simultaneously
diagonalizable, so there exists a nonsingular S M, such that S-A,S A is diagonal
for all i,j. Condition (d) implies that A =Xi. If we set B=-S-’A, then B is
consimilar to A and the family {B’i 5} has the properties

(a’) B is condiagonalizable for all ,
(b’) Bi/ S-A-S A,..i is diagonal for all i,j ,
(c’) Ao A for all i, j .

Moreover, the family {B} is simultaneously condiagonalizable if and only if the family
{A} is simultaneously condiagonalizable.

Since each B is condiagonalizable, we know that BiB A, has only nonnegative
diagonal entries and that rank (B) rank(A,). If all A, 0, then all B- 0 and we are
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done. If some Aoo # 0, there is a (real) permutation matrix P such that

AI 0

(4.5) PAoop_l A212
/ M,j

Oo
0 ,klk

nl + n2 +" + nk n, A > A2 > > Ak-1 > Ak 0, for some k with 1 -<_ k _-< n. Since P
is real, we have PAoP-1= PBij_-l=(pBiP-)(ff}ff-1) for all i,j. Observe that

PAoP-1 is diagonal, PAoP-=/5ji/5-1, and PBiff’- is consimilar to B. Thus, there is
no loss of generality to assume that Aoo has the block form (4.5) as a direct sum of k
distinct nonnegative scalar matrices.

Notice that BoAoo BoAoo BoBoBo AooBo, so Aoo commutes with Bo. Partition
each B conformally with (4.5) so that

B Bk 1(4.6) B,= B6M,,j, j=l,2,...,k.

By equating the i,j blocks of both sides of the identity BoAoo AooBo, we obtain the
identities BAI=A,LB, or (A-A,)B 0. Since A, A if ij, Bg=0 if ij, and Bo
has the block diagonal form

(4.7) Bo ".. B M,,.
0 Bk

Since Bo is condiagonalizable, rank (Bo) rank (BoBo) rank Aoo. If ’k 0, then
lkok’- O. If Ak > 0, then lkok is nonsingular. In either event, B is nonsingular for all

1, 2, , k 1. Now let and equate the corresponding i, j blocks of the identity
BoBi Ao/. We find -,o--,1 =0 if isj for all l#. Since each B is nonsingular for

1, 2, , k- 1, this implies that B’ 0 for all j i, 1, 2, , k- 1. By applying
the same reasoning to the last block row ofthe product BtB-o o, we find that Btkj/ 0
for all j 1, 2, , k and hence B/k 0, j 1, 2, , k- 1. Thus, every B! is in block
diagonal form with the block structure of (4.5) and (4.7).

If k n, i.e., Bo has n distinct coneigenvalues, our argument shows that every Bt
is diagonal and we are done. If k < n, there is at least one scalar matrix of size two or
greater among the diagonal blocks of Aoo, and we must make a further argument.
Because every Bt is a direct sum of smaller matrices in the same way, it suffices to
consider the case in which k 1, i.e., Aoo AooL Since we are assuming Aoo rs 0, Aoo> 0
and Bo is nonsingular. Consider BoBt Ao for 0, and suppose not all the matrices

Ao are scalar matrices. If Ao is not a scalar matrix, then it can be put into block scalar
diagonal form like (4.5) by a permutation similarity which, since it is real, is also a
consimilarity. Now apply the same permutation (con)similarity to every Bt. Although
Bo may be altered by this transformation, the scalar matrix BoBo Aoo is not altered.
But AoBo BoBBo BoAo BoAo, so Bo commutes with Ao and hence Bo is block
diagonal with the same block structure as Ao, and all the diagonal blocks of Bo are
nonsingular. If we examine the i, j blocks of the identity BoBt Ao as before, we find
that each B has the same block diagonal structure as Ao and Bo. For each diagonal
block of Aol, look at the corresponding diagonal block of each Aol. If they are all
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scalar matrices, stop. If any one is not a scalar matrix, then focus on that block,
permute, and argue again that the resulting sub-blocks are found in all the Bi’s.

In at most n- 1 steps, this process of successive refinement into diagonal blocks
results in a new family of matrices {Ci} in which each C is consimilar to B (and
hence to the original Ai) by a single permutation (con)similarity. Moreover, each Ci
has the same block diagonal structure

Cl) 0

Oo

nl + n2+’’ "+ n,, n, and C(oJ)J)= hJ)I,, I, Mn.. Each C(o) is condiagonalizable, so
there is a nonsingular Sj Mn. such that SC(o)qj h,I, with h, > 0. Then C(o)C=

--1 --(j) (j) --j) --1 (j) --1 (j)S AISCi hi /, and SjC, S =(hi /A)SIS =(h, /h,)/. Ths shows that the
matrix $103’’ " S, simultaneously condiagonalizes every C.
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Abstract. The connection between line-connectivity concepts ofgraphs and indices ofnetwork reliability
is well-known. Of particular interest in such studies are the circulant graphs because the connected ones
have the largest possible value of line-connectivity A of p-point, degree r, regular graphs, namely A r. In
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bound are called super-A. In this work we determine the necessary and sufficient conditions for a circulant
to be super-A. In addition we determine a lower bound on N for A <= -<_ 2r- 3. It is shown that a special
class of circulants, known as Harary graphs, achieve this lower bound for all these values of i.
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Harary graph, super line connectivity, super edge connectivity, vulnerability
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Introduction. To study the vulnerability of a communication network it is cus-
tomary to represent the network by an undirected graph. In this work we consider
certain graph theoretic optimization problems related to the design of invulnerable
networks. The terminology and notations of the graphs follow the book by Harary [7].
In this graph model one usually assumes that the graph of the network is connected
and the network is said to have failed if the graph becomes disconnected when a set
of lines called a disconnecting line set fails. A measure of the vulnerability of a graph
to line failure is the line-connectivity A which is the minimum order of a disconnecting
line set.

Suppose now that the cost of building a network is proportional to the number
of lines employed. Then the following optimization problem describes the design of
invulnerable graphs:

Determine the minimum number of lines q among all
graphs having A >_- n for given values ofp and n.

It is easily verified that q>- [np/2] where Ix] denotes the smallest integer not less
than x. To verify that this lower bound is in fact the solution to the stated optimization
problem, it suffices to show that for any p and n (p -> n + 1) there exist graphs having
[np/2] lines and A n. The solution was originally given by Harary [8] who constructed
a special class of graphs having these properties. However there are many graphs
which achieve this optimal, and we refer to them as A-graphs. In fact when either p
or n is even, the necessary and sufficient condition for a p-point graph to be a A graph
is that it be regular of degree 8 A n. Examples abound which show that an arbitrary
regular graph need not be a A-graph. However many classes of regular graphs are
A-graphs. Hence one might wish to impose further constraints to enable a comparison
of the vulnerability of A-graphs. An obvious possibility results from the observation
that some A-graphs have the property that removing a minimum disconnecting line
set may divide the graph into two parts having p/2 points each, while other A-graphs
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can only have a single point isolated by the removal of a minimum disconnecting line
set. This motivates the following definition.

DEFINITION 1. If 8 denotes the minimum degree of any point in a graph G, then
G is said to be super-A if every disconnecting line set of order A is the incidence set
of a point of degree &

We note that if G is a regular graph of degree 8 on p points, then a super-A graph
has the maximum possible value of A for given values of p and 8, namely A &
However, the example K2 x Ca serves to verify that A 8 is not sufficient to insure that
a graph is super-A.

We now turn our attention to a special class of regular graphs which includes
those shown to be A-graphs by Harary. In order to define them, we assume that the
points of a graph are labelled 0, 1, 2,..., p-1, and we refer to point instead of
saying the point labelled i.

DEFINITION 2. The circulant graph Cp(nl, n2,’’’, nk) or briefly Cp(ni) where
0 n . nk (p q- 1)/2 has +/- n, +/- HE," + nk(mOd p) adjacent to each point
i. The sequence (Hi) is called the jump sequence and the ni are called the jumps. The
earliest connectivity result for circulants is due to Harary [8] who showed that
Cp(1,2,..., k), which we call Harary graphs, has both point and line-connectivity
equal to & A generalization of the line connectivity property of circulants is given in
[2] where it is shown that the circulant Cp(nl, t12,"" ", nk) is super-A if nl 1 and
k >-2. However, it may be noted that these conditions are not necessary for a circulant
to be super-A as shown by Co(2, 5) which is super-A but not even isomorphic to a
circulant having a jump of unity.

Herein we determine the necessary and sufficient conditions for a circulant to be
super-A. We then turn our attention to the problem of determining N, the number of
disconnecting line sets of order (where > A) for the Harary graphs.

The reason for considering such numbers is that the problem of finding the
probability of disconnection for a network having equal and independent line failures
can be reduced to finding all the Ni values of the corresponding graph. A complete
discussion of the connection between these two problems is given in [3]. Here we
merely note that in order to minimize this probability of disconnection over all p-point,
regular degree 8 graphs, one must first maximize A and then minimize all the N.
Graphs which are super-A are of interest because a regular degree 8 graph G with
A 8 has Nx ->_ p, with equality achieved if and only if G is super-A. Further discussions
of these reliability problems can be found in [4], [5].

The super-, class of circulants. Clearly Cp(nl) has A-0, or 2, but it is never
super-A. We proceed to establish a sequence of lemmas that will determine when any
circulant is super-A. However we need two preliminary results. Theorem 1 follows
immediately from number theory. Theorem 2, which apparently has never been stated
in English, is due to Mader [9]. His result applies to the class of point-symmetric
graphs, which include all circulants.

THEOREM 1. The circulant Cp(nl, nE,’’’,nk) is connected if and only if
gcd (p, n, n2, nk)-- 1.

THEOREM 2 (Mader [9]). Every connected, point-symmetric graph has A -8.
LEMMA 1. Let n >--3, m >--3 and G be the union of m point-disjoint cycles of length

n, say Co, C, , Cm-1, together with n-independent lines between C and C+l(mOd m)
for all i, 0 <- <- m 1. Then G is super-A.

Proof. Note that G is regular of degree 4. One possible structure for G with m 3
and n 3 is illustrated in Fig. 1.
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Let U be a minimum order disconnecting line set of G. First it is claimed that
since Ci is a cycle, U must contain at least two lines from Ci for some i. Otherwise,
each Ci is connected and can be coalesced into a single point. In this case U must
disconnect an n multiple line cycle C,,, or lU] _-> 2n > 4= 8(G), which is impossible.
Now let these two lines be el {Xl, Yl}, e_ {x2, Y2}. Suppose el and e2 are not adjacent.
Without loss of generality, it can be assumed that xl, x2 are in one component and Yl,

Y2 are in the other component.
From Fig. 2 it is clear that there are two line-disjoint paths from x, x2 through

Ci+l to y, Y2 and two line-disjoint paths from x, x2 through Ci_ to Yl, Y2. Consequently,
there are four line-disjoint paths from Xl, x2 through Ci+ or C_ to y, Y2. Thus
]U]-> 2 + 4 > 4 8(G), a contradiction.

x Yl

Ci-I Ci+

FG. 2

Hence el and e2 have to be adjacent to one point w, and so e {x, w}, e2 {x2, w}
(see Fig. 3). It is now claimed that w should be isolated by U. Suppose not. Without
loss of generality, it can be assumed that there exists another point w’ in Ci+l such
that w’ and w are adjacent. And it follows that x, x2 are in one component and
w are in the other component. But (see Fig. 3) there exist two line-disjoint paths from

i-1

x

Ci+l

FIG. 3
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Xl, X2 through C+ to w’ and there exists a third path, line-disjoint from the other 2
paths, that connects xl, x2 through Ci-1 to w. Thus UI >= 2 + 1 + 2 5 > 4, a contradiction.

Therefore w is isolated by U and the result is established.
LEMMA 2. If G Cp(n, n2) is connected, then G is super-h for n2 < p/2.
Proof. If max {gcd (p, n), gcd (p, n2)} <- 2 then since G is connected, it follows

that gcd (p, nl) and gcd (p, n2) cannot be equal to two simultaneously. Therefore,
min {gcd (p, n), gcd (p, n2)} 1. Hence there is some number r such that either rnl or

rn l(mod p), where gcd (r, p) 1.
Assume without loss of generality that rn= l(modp) and that rn(modp)=

x(2 =< x _-< p 1). Let a denote the minimum of x and p x.
It follows from the work of ,dfim [1] that Cp(n, n2) is isomorphic to Cp(1, a).

Thus by the theorem of Bauer, Boesch, Suffel and Tindell [2], G is super-h.
Now if max {gcd (p, nl), gcd (p, n2)} m -> 3, then G can be viewed as the union

of m point-disjoint cycles of length p/m together with p/m independent lines between
Ci and Ci/l(mod m) for all i, 0=< -< m-1 (see Fig. 4). Therefore, by Lemma 1, G is

super-h.

C o
0 8

\,

C 3 3

C2

FIG. 4. C2(3 4), m =4.

LEMMA 3. Let G= Cp(nl, n2," ., nk) be connected, k >_-2, nk <p/2. Then G is

super-A.
Proof. Let U be a minimum disconnecting line set. The basic step for a proof by

induction on k is provided by Lemma 2. Assume k >= 3 and Lemma 3 holds for the
circulant graph with fewer than k jumps. Obviously U must contain at least one line
from Cp(ni) for some i, l<-i<=k. Since Cp(ni) is a line-disjoint union of cycles,
U contains at least two lines from Cp(ni). This is true because if x={u, v}
U then u and v should be in different components. But u and v are in the same
cycle2 thus at least one other line in this cycle should be removed. Now
let U { e e in U but not in Cp (n,)} and G’ G Cp (n,). Thus G’ G Cp(n,)
Cp(nl, n2, ni_, n+, nk). There are two cases.

Case 1. G’ is disconnected. By Theorem 1, gcd (p, nl, n2,..., n_l, n/,. .,
nk) m_>--_ 2, and since G is connected, gcd (hi, m)= 1. In this case G’ consists of
rn components C. Each C is isomorphic to

(see Fig. 5) and there are p rn independent lines between C and C+ for all j, 0-<j-<
rn- 1, if m-> 3. There are 2p!m lines when m 2. By the induction hypothesis, G is
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FIG. 5. C20(3, 4), G’= G- C2o(3).

super-A and so are all Cj. It is claimed that t) must disconnect at least one Cj for
some j, 0-<_j _-< m 1. Otherwise, since G- U is disconnected,

gl-- 2P> 22rig=> 4(k 1)= 4k-4_-> 2k,
m m

which is impossible.
Now we know U disconnects at least one C and since C is super-A, [ _-> A (C)

(C) =2k-2. But^[t)[-<[U[-2=2k-2, thus [[=[U[-2=A(C)=2k-2.Hence it
is concluded that U is a minimum line disconnecting set for C. Therefore U isolates
a point (say w) in C. Since the number of independent lines joining C and C+1 is
p/m>2 if m_->3, and is p if m=2, and since [UI =[[+2, each point in V(C)-{w}
is connected to C_1 and C/1 in G-U. It follows that all points in G except w are
in the same component of G-U. Therefore G is super-A.

Case 2. G’ is connected. By induction hypothesis, G’ is super-A and since is
a disconnecting set in G’, I/)l-> A (G’) 2k- 2. But 11-<-IUI- 2 2k- 2, so [1
[U[- 2 2k- 2. Thus is a minimum disconnecting line set. Hence isolates a point
(say w) in G’, and so all the points in V(G’)-{w} are in the same component of
G’-. Since U is in the union of U and two lines not in G’, U cannot disconnect
G’-w. It follows that all the points in V(G)-{w} V(G’)-{w} are in the same
component. Thus G is super-h. [3

LEMMA 4. Let G Cp( nl, n, , nk) be connected, with k >-_ 2, p even, and nk p/2.
Then G is not super-A if and only if

k=P’2/+1 and
2 ni 2i for all i, l <= <- k-1.

Proof. Let p be even, nk=p/2, k=(p/2+l)/2 and ni=2i for all i, l<=i<-k-1.
Let U be the set of all the lines joining point and point p/2 + for all i, 0 -<_ -<_ p/2 1.
Then G- U Cp(2, 4, 6, 8, , 2(k- 1)) becomes disconnected. Each component of
G-U has p/2 points. Since G has A 3,

A(G)=2k-I=2
p/2+l

-1=-.
2 2

But [UI p/2, thus U is a minimum disconnecting line set for G. Now as U does not

isolate a point, it follows that G is not super-A.
It remains to show that if k# (p/2+ 1)/2 then G is super-A, and if k (p/2+ 1)/2

but ni 2i for all i, 1 <-i -< k-1, is not true, then G is also super-A.
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Case 1. k # (p/2/ 1)/2. Let U be a minimum disconnecting line set for G. First
it is claimed that at least one line of U is in Cp(p/2). Suppose not, and let G1 be the
multi-graph obtained by coalescing points <p/2 and i/p/2 into a single point of
G1. There is one line between points and j (where i,j <p/2) in G1 for each of the
following possible lines of G:

{i,j}, {i,j+p/2}, {i+p/2,j}, {i+p/2, j+p/2}.

It follows that G contains either 0, 2, or 4 of these lines for each i, j < p/2. Thus there
are an even number of lines between each pair of points of G1, and A (G1) will be
even. However it follows from the path version of the min cut-max flow theorem that
A(G) <_-A(G1). But by assumption there was a minimum disconnecting line set of G
that did not contain any of the coalesced lines which implies A (G)= A (G). This is a
contradiction as A (G) is the odd number 2k-1.

Now let 0={ele in U but not in Cp(p/2)} and G2 G-Cp(p/2). Obviously
OI_-<IUI-1 =2k-2.

There are two subcases.
Subcase 1. G2 is disconnected. If G2 is disconnected then by Theorem 1,

god (p, nl, n2,’’’, nk-1)-- rn-> 2. And since G is connected, god (p/2, rn)= 1. Now as
p is divisible by in, let p =jrn. Ifj were even, then rn would be a factor of p/2, which
contradicts p/2 and rn being relatively prime. Now as p is even and j is odd, rn 2s
for some s. Hence god (p/2, rn) gcd (js, 2s) s 1. It follows that rn 2 and p/2 is
odd. Moreover, each component of G2 is isomorphic to (see Case 1 of Lemma 3)

/’/1 /’/2
G3-- Cp/2 2’ 2’

nk-1) and nk-----Z < p/2.
2 ] 2 2

By Lemma 3, each component of G2 is super-A. Since k(,,p/2+l)/2 and since

nk =p/2> nk-1->2(k-1), it follows that 2k-1 <p/2. Now if U does not disconnect
one component of G_, then in order to disconnect G, U must consist of all the lines
in Cp(p/2). This implies IUl=p/2> 2k-1 6(G), a contradiction. So 11=> A(G3)
2k 2, and since 101--<luI- 1 2k- 2, it is concluded that Ol 2k 2 u[- 1. There-
fore U is a minimum disconnecting line set for a component of G2. It follows that
isolates a point (say w) in this component. Now we know U is the union of U and
one line (say e) in Cp(p/2). If e is not adjacent to w then G- U is still connected, a
contradiction. (See Fig. 6). Thus U isolates a point in G, and so G is super-A.

FIG. 6. G2-O=C, UC2U{w}, G2=G-Cp(p/2).

Subcase 2. G2 is connected. If G2 is connected, then must disconnect G2.
Suppose not, then

G- U= [G2U Cp(p/2)]-[Ut.J{some lines in Cp(p/2)}]

G2- U] t_J {some lines in Cp(p/2)},
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i.e., G-U is the union of connected graph (G2-) and some other line set. This
means that G-U is still connected, a contradiction.

Then using arguments similar to Subcase 1, we obtain that U is a minimum
disconnecting line set for G2. Consequently, U isolates a point in G, and G is super-A.

Case 2. k (p/2 + 1)/2 but ni 2i for all i, 1 _-< _-< k- 1 is not true.
In this case, we first show that G2--G-Cp(p/2) is always connected. Suppose

G2 is disconnected. Then from the proof of Subcase 1, gcd (p, Hi, n2," , nk-1) m 2.
It follows that ni _-> 2i for all i, 1 _-< -< k- 1. But by the assumption k (p/2 + 1)/2,

i.e., 2(k-1)=(p/2)-1 -nk-l>--nk_l. Thus nk_l<--_2(k--1), and since all n are even,
1 _-< -< k- 1, it follows that/’/k_2 rig-l--2 2(k-2), nk_a<=2(k--3) etc. Finally we
obtain n _<- 2i for all i, 1 _-< _-< k- 1. Thus we have 2i _-< ni --< 2i for all i, 1 _<- _-< 2k 1, a
contradiction.

Now we know G2 is connected. Then following the proof in Subcase 2, G is
super-A, l-3

THEOREM 3. A connected circulant is super-A unless it is Cp a or

C2n(2, 4, 6,. ., n- 1, n) for n odd.
Proof. The theorem follows immediately from Lemmas 3 and 4.

Higher order line-connectivity measures. We define Ni as the total number of
disconnecting line sets of order i. In general it is difficult to determine all the N values
of a graph; in fact Provan and Ball [10] have shown that the problem is NP-hard.
However, for the class of circulants known as Harary graphs we shall evaluate many
of the N explicitly.

THEOREM 4. Let G Cp(1, 2,..., k), 2_-< k < p/2, and U be a disconnecting line
set. If lU and A <-_ <- 4k-3 then U isolates exactly one point and

Ni= i_2k]P

where q is the number oflines in a p-point graph G, and N is the number ofdisconnecting
line sets of order i.

Proof. Let the p points of G be labeled as 0, 1,...,p-I, and let C be any
component of G-U. We shall assume IV(C)I- m->_ 2 for all such C. Now let C be
decomposed into n contiguous parts (a part of G whose points are labeled contiguous)
say C, C2, , Cn and let V(C)I m for all 1 -< -<_ n, and the gaps between C and

Ci+ mod are denoted by g. Assume the C are maximal.
First it is claimed that m _>-k + 1. Otherwise, if m _-< k then every point in C has

degree at most m-1. Thus Ul_->(2k-m+l)m=2km-m2/m, and let b-

UI- (4k 3) _>- 2km mE / m -4k+ 3; then it can be easily verified that
ifm=2then b_->l>0;
ifm=3thenb>_-2k-3>0;
ifm_->4thenb>-m(k-m)+(m-4)k+m+3>0.
All the above show UI > 4k-3, a contradiction.
So we know that the points of any component of G-U are at least k+ 1 in

number, if that component has two or more points.
Second, it is claimed that not all the gaps are trivial, i.e., at least one g will have

at least two points. Suppose not; then every gap only has a single point and note the
union of all gaps (gi U g2 I,.J" Ugn) are also components of G- U, and this union of
gaps must also have at least k + 1 points, i.e., n ->_ k / 1. Then it can be shown that the
number of lines from each g to C, is not smaller than 2 if k 2, and the number of
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lines from each gi to C, is at least 4, if k => 3. So

[Ul>-2n>-2k+2=6>5=4k-3 if k=2,

IUl>=4n>=4k+4>4k-3 if k>-3.

All the above are contradictions.
Thus without loss of generality, it can be assumed that gl has two end points

labeled x and y. Let the points in C adjacent to x and y be labeled as u and v,
respectively. (See Fig. 7).

Consider now the following definitions"
Since the points of a circulant are labelled 0 to p- 1 we assume they are located

in clockwise increasing order on a circle.
Let hxl, hx2 denote the number of lines from x to C in the clockwise and

counterclockwise direction, respectively.
Let hyl, hy2 denote the number of lines from y to C in the clockwise and

counterclockwise direction, respectively.
Let hul, hu: denote the number of lines from u to G-C in the clockwise and

counterclockwise direction, respectively.
Let hvl, hv2 denote the number of lines from v to G-C in the clockwise and

counterclockwise direction, respectively.
Then [U] >_- hxl -I- hx: + hyl d- hy2-1- hu + h,2 + hvl -}- ho2- d where d is the number of

lines which overlap in the above count.
Note d-<.4, and 4 is the worst case when the lines {u, x}, {u, y}, {v, x}, {v, y} all

overlap.
In order to determine the value of d, there are three subcases discussed below:
Case 1. (see Fig. 8). If there exist some Ci for i>_-3, then there are at least two

lines from Ci to G-C-{x}-{y}. The two lines are {m, n} and {0, p}.
Case 2. (see Fig. 9). If there are no C for i>_-3, then n 1 or 2. When n is one,

then ]V(gl)l >-k + 1 (since gl becomes a component) then the lines {u, y}, {v, x}, are
never counted, and there are two lines {u, x}, {v, y}, which are counted twice.

Case 3. (see Fig. 10). The remaining case is n-2 and there is another gap g2

between C and C2o If IV(C1)[ +IV(C2) 4 then there are at least two lines from g
to C-{u}-{v}.

If V(C)I +IV(C:)I 3 then k 2, and counting the number of lines from C to
G C, we obtain UI > 5 4k- 3.

Now note k- h,: is the number of lines from x to G-C in the counterclockwise
direction, since the jump sizes are contiguous; so hu:_-> k-hx2 h:+ h,:_-> k. And
k-h is the number of lines from u to C in the clockwise direction, again because
the jump sizes are contiguous, h,, -> k-h hx +h => k.

Similarly, ho + hy >= k, hv-k hy2 >= k. Therefore we have UI->- 4k d. And in Case
1, UI ->- 4k 4 + 2 4k 2, in Case 2, UI >-- 4k 2, and in Case 3, UI >= 4k 3. All are
contradictions.

This completes the proof that every component of G- U has two or more points
is impossible; hence U isolates a point.

Now suppose U isolates two or more points, say points; if =< 2k then UI-->
2kt-t(t-1)/2. Let r= UI-4k+ 3 and then it can be verified that

if t=2 then r_->2>0;
if t=3 then r=>2k>0;
if t>=4 then r>0;
if >- 2k + 1 then UI >- 2kt 2kt/2 kt >= 2k2 + k > 4k 3.
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All the above are contradictions, so 1. Now let U1 and U2 be two disconnecting
line sets, and A-<1UI[ U2] _-<4k-3. If U1 isolates point x, U2 isolates point y x,
then U1 U2. Otherwise U1 U2 will isolate more than one point, which is impossible.
Thus we have

N= i_2kjP and 2k=

Conclusions. In conclusion we note that any regular degree 2k graph on p-points
will have

N>-\ i_2kjP
as this lower bound counts only those order disconnecting line sets which are obtained
from line incidence sets at points. Hence we have extended the result in [2] to show
that Harary graphs not only minimize N, but all N for A _-< i_-< 4k-3. For larger
than this, the analysis used in the proof of Theorem 4 cannot be used. In fact, it can
be shown that the Harary graphs do not minimize all the N; for example Ca (1, 3)
has Ng= (1/2)-4,096 while Ca (1,2) has N= ()-3,528.

Finally we note that Theorem 3 may be viewed as giving the two forbidden
circulants in the class of all super-A graphs which are circulants. However, these two
graphs do not characterize the class of nonsuper-1, point-symmetric graphs. Namely
K2 x K4 is point-symmetric but not super-h. However, it is not isomorphic to either of
the two forbidden circulants; in fact K2 K4 is not isomorphic to any circulant.
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Abstract. We are interested in the development of algorithms, based on iterative methods, and software
for the solution of large sparse systems of linear algebraic equations with emphasis on systems arising in
the numerical solution of partial differential equations. The objective is to develop algorithms and software
which are effective when used with a vector computer such as the Control Data CYBER 205 or the CRAY
1. A package of programs, known as ITPACK, has been developed for use on conventional, or scalar
machines. A number of "short-range" modifications to ITPACK, including changes in the data storage
format and changes in the programming, but not in the algorithms used, have been made and tested on a
number of numerical examples. Preliminary work is described on "long-range" modifications which will
involve extensive changes in the basic algorithms in order to achieve efficient vectorization.

AMS(MOS) subject classification. 65F10

1. Introduction. The advent of high-performance vector computers such as the
Control Data CYBER 205 and the CRAY 1 is having a profound effect on the areas
of numerical analysis and mathematical software. This is true, in particular, for iterative
algorithms and software for solving large sparse systems of linear algebraic equations.
While there is a large potential gain achievable for many problems by using a vector
computer as compared with using a scalar computer, nevertheless this potential gain
can often only be realized by a careful choice of algorithms. It is often the case that
an iterative algorithm which is effective when used with a conventional or scalar
computer may not be as effective as expected on a vector machine. At the same time,
an algorithm which is very inefficient for a scalar machine may turn out to be surprisingly
efficient when used with a vector machine.

Normally, only a small part of the potential gain in using a vector computer can
be realized by making a direct conversion from a scalar program to a vector program.
Sometimes, however, it is possible to realize a substantial portion of the potential
improvement by making "short-range" modifications to a program such as, for example,
changing the data structure and the programming but not changing the basic algorithm.
In many cases, however, a complete restructuring of the entire computer program,
including both the algorithm and the programming, is needed before the true potential
of a vector computer can be achieved.

In this paper, we describe some of our work on the development of iterative
algorithms and software which are designed to be effective when used on vector
computers. As our starting point, we consider a package of subroutines, known as
ITPACK 2C, which we developed for solving sparse linear systems by a variety of
iterative methods. (See Kincaid, Respess, Young and Grimes [1982].) This package,
which is described briefly in 2, has been developed for a scalar computer. In 3, we
discuss the iterative algorithms currently included in ITPACK from the standpoint of
vectorization. In 4, we describe short-range modifications of ITPACK. These
modifications, which primarily involve the use of a different storage scheme have been
incorporated into a new package, ITPACKV 2C (Kincaid, Oppe, Respess, and Young
[1984]). The result of numerical experiments and the effectiveness of various changes
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supported in part by the National Science Foundation under grant MCS-8214731, by the U.S. Department
of Energy under grant DE-A505-81ER10954, by the North Atlantic Treaty Organization under grant 648183,
and by Control Data Corporation, under grant 84PCR54B with the University of Texas at Austin.

t Center for Numerical Analysis, University of Texas at Austin, Austin, Texas 78712.
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to the package are also given. In 5, we give a brief description of our work on
long-range modifications.

2. The ITPACK package. The ITPACK software package has been developed
over a period of several years at the Center for Numerical Analysis of the University
of Texas at Austin. The package provides for the iterative solution of the linear system

(2.1) Au=b,

where A is a given N N matrix, b is a given N 1 column vector and the N 1
column vector u is to be determined. The matrix A is assumed to be nonsingular and
sparse. While the routines of ITPACK 2C often work in more general cases, they are
primarily designed to handle cases where A is symmetric and positive definite.

The ITPACK package provides for the solution of (2.1) by any one of seven
alternative iterative algorithms. Each algorithm involves a basic iterative method and,
except for one algorithm, an acceleration procedure. Each basic iterative method has
the form

U
(n+l) Gu(n) + k,

where for some nonsingular matrix Q we have G I-Q-1A and k- Q-lb. The basic
iterative algorithms used in ITPACK include the Jacobi method, the successive over-
relaxation (SOR) method, the symmetric SOR (SSOR) method, and the RS method. The
RS method is applicable to the case where the matrix A is a red-black matrix ofthe form

(2.2) A=(DR H)K De
where DR and De are square diagonal matrices. If we write (2.1) in the form

K

then the reduced system is

(De KD1H)ue be KD hR.
Consequently, the RS method is defined by

Un+l) (DIKD1H)u(") + D’be DIKDlbR.
The acceleration procedures used in ITPACK include Chebyshev acceleration and
conjugate gradient acceleration. In each case the procedure is defined by

(2.4) U
(n+l) pn+l{u (n) + yn+18(n)} + 1 Pn+l)U(n-l),

where the pseudo-residual vector 6(n) is defined by 6(n) C,u (n) + k- u(n). For Chebyshev
acceleration 71 y2 3’; the numbers y, p, P2," can be determined in terms
of re(G) and M(G) which are estimates of the smallest and largest eigenvalues of G,
respectively. (See Hageman and Young 1981, p. 48].) For conjugate gradient acceler-
ation the values of 71, 72, and pl,/92, can be computed in terms of certain inner
products involving 6") and 6,-1). (See Hageman and Young [1981, p. 147].)

The seven algorithms of ITPACK include the Jacobi, SSOR, and RS methods,
each with Chebyshev and conjugate gradient acceleration, and the SOR method without
acceleration. The algorithms include automatic, or adaptive, procedures for determining
the necessary iteration parameters. They also include realistic procedures for deciding
when u"+1) is sufficiently close to the true solution of (2.1) so that the iteration process
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can be terminated. Detailed information on the algorithms can be found in the book
by Hageman and Young [1981]; see also Grimes, Kincaid, and Young [1979]. The
usage of the software package is described in the paper by Kincaid, Respess, Young
and Grimes [1982].

3. Vectorization of ITPACK routines. In this section we discuss the programs
currently in ITPACK from the standpoint of vectorization. We will discuss both the
storage schemes and the algorithms themselves.

Let us now look first at the routines of ITPACK from the standpoint of vectoriz-
ation. Evidently, the acceleration procedures defined by (2.4) are vectorizable provided
that the basic iterative method is vectorizable.

The Jacobi method is clearly vectorizable and the RS method is also highly
vectorizable. To see this, we rewrite (2.3) in the form

U(Rn+l) -D1Hu"+D bR,
(3.1) un+= -D KURn++D ba.
Assuming DR and D are of approximately the same size, the vector length will be
approximately N/2.

The SOR method is not in general vectorizable. The basic step in the SOR method
involves the solution of an auxiliary linear system with a lower triangular matrix. The
solution of such a system can be carried out by a forward substitution procedure. This
is efficient for a scalar machine but is clearly not efficient for a vector computer since
in order to get the ith component of the solution of the auxiliary system one must
have available the kth component for k 1, 2, , i- 1. There is, however, an impor-
tant case where the SOR method can be vectorized. If the matrix A of (2.1) has Property
A, (see Young [1971]), then one can permute the equations and relabel the unknowns
so that one obtains a red-black system of the form (2.2). The SOR method is defined
by R+ to{-DHu + DflbR} + (1 to)utl R

u"/= to{-D1KUR/+D ba} + 1 to)u.
Thus the computation of UR"/1 is vectorizable with vector length approximately N/2.
Similarly, the computation of un/l is vectorizable.

An important case where one obtains a matrix with Property A is when one is
solving a five-point difference equation for a square mesh, derived from an elliptic
boundary-value problem, for a two-dimensional region. Thus, if we consider the
solution of Laplace’s equation uxx + Uyy 0 on the square 0_-< x -<_ 1, 0 y _-< 1 with a

g h

d e f

aT b c

FIG. 3.1. Nine-point grid.
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mesh size of h , we have the grid shown in Fig. 3.1. With the usual natural ordering
of{a=1, b=2, c=3, d-4, e=5, f=6, g=7, h=8, 9}, the matrix of the system
has Property A. However, if we designate the red points as a, c, e, g,i and the black
points as b, d, f, h and label the points accordingly {a 1, c 2, e- 3, g--4, i= 5,
b 6, d 7, f-8, h 9}, then we get the following red-black matrix:

4 0 0 0 0 -1 -1 0 0\
0 4 0 0 0 -1 0 -1 0

0 0 4 0 0 -1 -1 -1 -1

0 0 0 4 0 0 -1 0 -1

0 0 0 0 4 0 0 -1 -1

-1 -1 -1 0 0 4 0 0 0

-1 0 -1 -1 0 0 4 0 0

0 -1 -1 0 -1 0 0 4 0

/ 0 0 -1 -1 -1 0 0 0 4

The SSOR method with the natural ordering is also not vectorizable. (We remark that
one step of the SSOR method can be regarded as one iteration of the (forward) SOR
method followed by one iteration of the backward SOR method.) If the matrix A has
Property A, one could consider the corresponding red-black system. However, it is
well-known, (see, for instance, Young [1971]), that the SSOR method is not effective
when applied to a red-black system. This is in contrast to the SOR method which is
no less effective for a red-black system than for the original system. Consequently, if
one applies the SSOR method to a red-black system, one achieves vectorization but
there is an increase in the number of iterations required for convergence which may
not be off-set by the increase in speed.

For a five-point difference equation, it is possible to achieve some vectorization
with the SSOR method without sacrificing the convergence rate. This can be done, as
shown by Hayes 1977], by the use of the "ordering by diagonals". Here one lets a 1,
b 2, d 3, c 4, e 5, g 6, f 7, h 8, 9. It can be shown that the ordering by
diagonals is "equivalent" to the natural ordering for the SOR method. (See Young
[1971].) Similarly in the backward sweep, we have equivalence. Thus, applying the
SSOR method with the diagonal ordering gives the same convergence rate as with the
natural ordering. On the other hand, there is now much greater vectorization than with
the natural ordering since all values on a diagonal can be modified independently.
Thus, the average vector length is the same as the average length of the diagonals.

The choice of the data structure for the coefficient matrix A has a significant
impact on the vectorization of the routines of ITPACK. The scalar version of ITPACK
uses the same data storage format as the Yale Sparse Matrix Package (YSMP) which
uses three singly dimensioned arrays A, JA, and IA. (See Eisenstat et al. [1977].) In
this data structure, A contains the nonzeros of the matrix stored by rows, JA contains
the corresponding column numbers, and IA contains pointers into A and JA for the
beginning locations of new rows. This data structure has great generality and can
efficiently represent sparse matrices of random structure. However, this data scheme
inhibits vectorization of basic operations such as computing a matrix-vector product
because of the need to do indirect addressing and the short vector lengths involved.
For example, in scalar ITPACK, a matrix-vector product for a system of size N was
computed using N inner products applied to the condensed rows of the matrix, which
are typically short.
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To avoid this bottleneck on vector computers, it was decided to adopt the column
oriented structure used in the ELLPACK software. (See Rice and Boisvert [1985].) In
this data structure, two doubly dimensioned arrays, COEF and JCOEF, are used to
store the matrix A. Each row of COEF contains the nonzero coefficients corresponding
to a single equation and JCOEF contains the corresponding column numbers. Clearly,
COEF and JCOEF must be dimensioned at least N by the maximum number of
nonzeros per equation over all equations. This data structure is not as general as the
YSMP structure since the possibility exists of storing a great number of zeros if one
equation has many more nonzeros than the remaining equations. However, the matrix-
vector product operation vectorizes with the use of gather/scatter instructions on the
CYBER 205 and with the use of assembly-coded gather/scatter routines on the CRAY
1. Other operations, such as forward (back) substitutions using lower (upper) triangular
matrices do not vectorize.

Another storage scheme we have investigated is storing the matrix A by diagonals.
In this data structure, each column of COEF contains a diagonal of the matrix and
JCOEF contains its corresponding distance from the main diagonal. With this structure,
a matrix-vector product vectorizes without the use of gathering routines and operations
such as forward (back) substitutions and factorizations vectorize to some extent.
However, this storage format is the most rigid of the three since it can efficiently
represent only matrices with a diagonal structure. Again, it is easily possible to store
a great number ofzeros ifthe matrix does not have a diagonal structure. This observation
illustrates a trade-off we have frequently encountered--namely, increased vectorization
often comes at the expense of more rigid storage requirements and more computations,
many of which may be operations involving zeros.

4. Short-range vectorization of ITPACK. We now describe the short-range
modifications of ITPACK and the numerical experiments which were run on the
CYBER 205 and CRAY 1 vector computers.

We decided to investigate the vectorization of ITPACK by modifying the code in
the following ways.

Make a minimum number of changes to the current scalar ITPACK package
to allow as much vectorization as possible. This generally meant re-rolling DO loops
which had been unrolled for efficiency on scalar computers and using the available
dot product routines on the vector computers. The tightly rolled loops were recognized
by the compiler as vectorizable, thereby gaining improvement in the speed.

Change the data structure of scalar ITPACK to one allowing greater vectoriz-
ation of certain matrix-vector operations. This major rewriting effort was deemed
necessary when it was discovered that the computations associated with the basic
iterative method constituted a time-consuming bottleneck for vector computers. The
resulting rewritten package will be referred to as "vector ITPACK".

Make use of the vector syntax extensions to Fortran available on the CYBER
205 computer. It was hoped that the use of this syntax would improve the efficiency
of the package.

These changes resulted in four different versions of the package which were used
in the timing tests to be presented here.

Scalar ITPACK # 1 is the standard scalar version as in Kincaid, Respess, Young,
and Grimes [1982]. This version uses unrolled DO loops in basic vector operations
for increased performance on scalar computers.

Scalar ITPACK # 2 is the standard scalar version but with re-rolled DO loops
and a few minor changes such as the use of the special dot product routines available
on vector computers.
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Vector ITPACK # 1 is the package rewritten to use the ELLPACK data structure.
This version uses standard Fortran primarily. The special dot product routines were
used as well as the gathering and scattering instructions available on the CYBER 205
and the corresponding software routines on the CRAY 1 computer.

Vector ITPACK # 2 is the CYBER 205 version of vector ITPACK # 1 with heavy
use of the vector syntax available in the CYBER Fortran.

The following test problem was used in this numerical experiment. A five-point
finite-difference stencil was used to discretize the partial differential equation:

uxx(x, y) + 2Uyy(X, y) 0, (x, y) 6 S (0, 1) (0, 1),
u (x, y) 1 + xy, (x, y) boundary(S).

The mesh size chosen in the first experiment was h 1/64, resulting in 3,969 unknowns.
The stopping criterion was 5.0E-6. Both a natural ordering and a red-black ordering
of the unknowns were used. While this is a rather simple problem, the timing results
are felt to be representative ofthose from more complicated problems since the software
does not take advantage of the constant coefficients in the partial differential equation.

Tables 1 and 2 give the iteration times for the CYBER 205 and CRAY computers,
respectively. The time necessary to scale the system and permute the matrix (if red-black
ordering was requested) is presented in Tables 3 and 4.

A number of observations can be made based on these results:
(i) A slight increase in speed resulted from removing scalar optimization tricks

such as unrolling DO loops from the original scalar ITPACK. The increase was small
since the bulk of the computations is the performance of the basic iterative method,
which remains nonvectorizable in scalar ITPACK # 2.

(ii) There was a considerable improvement in performance from scalar to vector
versions of ITPACK. The ELLPACK data structure allowed the matrix-vector product
operation to vectorize to a considerable extent, and this was the dominant computa-
tional kernel for many of the methods (the Jacobi methods for natural ordering and
all methods for red-black ordering). The SOR and SSOR methods are predominantly

TABLE
Iteration time (secs.), CYBER 205 (h- 1/64).

Method Iterations

Scalar Scalar Vector Vector
ITPACK ITPACK ITPACK ITPACK

#1 #2 #1 #2

Jacobi CG
Jacobi SI
SOR
SSOR CG
SSOR SI

Jacobi CG
Jacobi SI
SOR
SSOR CG (to 1)
SSOR SI
RS CG
RS SI

(Natural ordering)
178 2.470 2.224 0.257 0.247
362 5.628 4.561 0.573 0.554
216 4.698 4.644 2.484 2.476
34 2.128 1.790 0.843 0.839
43 1.879 1.765 0.984 0.980

(Red-black ordering)
178 2.343 2.117 0.261 0.252
362 5.357 4.332 0.583 0.562
196 4.110 4.084 0.488 0.470
70 3.785 3.123 0.209 0.194
196 8.125 7.540 0.690 0.654
90 1.456 1.358 0.116 0.108
182 3.132 2.780 0.220 0.203
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TABLE 2
Iteration time (secs.), CRAY (h 1/64).

Method Iterations

Scalar Scalar Vector
ITPACK ITPACK ITPACK
#1 #2 #1

Jacobi CG
Jacobi SI
SOR
SSOR CG
SSOR SI

Jacobi CG
Jacobi SI
SOR
SSOR CG (to 1)
SSOR SI
RS CG
RS SI

(Natural ordering)
178 2.577
362 5.418
216 4.399
34 1.771
43 1.660

(Red-black ordedng)

2.564 0.716
5.252 1.415
4.356 3.112
1.725 1.143
1.651 1.343

178 2.198 2.176 0.710
362 4.632 4.448 1.402
196 3.729 3.691 0.743
70 3.000 2.909 0.612
196 6.810 6.793 1.632
90 1.590 1.574 0.328
182 3.292 3.231 0.656

TABLE 3
Total time-iteration time, CYBER 205 (h 1/64).

Method

Scalar Scalar Vector Vector
ITPACK ITPACK ITPACK ITPACK

#1 #2 #1 #2

(Natural ordering)
Jacobi CG .091 .082 .030 .030
Jacobi SI .091 .081 .031 .030
SOR .090 .082 .060 .060
SSOR CG .091 .083 .060 .060
SSOR SI .091 .082 .060 .060

(Red-black ordering)
Jacobi CG .714 .704 .068 .066
Jacobi SI .714 .704 .067 .067
SOR .713 .703 .068 .067
SSOR CG(to 1) .715 .704 .068 .067
SSOR SI .714 .704 .067 .066
RS CG .721 .709 .069 .067
RS SI .722 .710 .068 .068

recursive for natural ordering, and the improvement in performance was not as great
in the vector versions of ITPACK.

(iii) There was a marginal improvement in speed in going from the standard
Fortran version of vector ITPACK # 1 to the CYBER 205 vector syntax version of
vector ITPACK # 2. For our applications, there were very few computations which
could not be recognized as vectorizable by the CYBER 205 compiler when written in
standard Fortran. The small savings in time resulted when calls to vector subroutines
were replaced by in-line vector instructions.

(iv) Comparisons of methods based upon the number of iterations are misleading
on vector computers. Methods which are slow to converge but are susceptible to
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TABLE 4
Total time-iteration time, CRAY (h 1/64).

Method

Scalar Scalar Vector
ITPACK ITPACK ITPACK

#1 #2 #1

(Natural ordering)
Jacobi CG .091 .090 .046
Jacobi SI .091 .090 .045
SOR .090 .090 .082
SSOR CG .091 .090 .082
SSOR SI .090 .090 .082

(Red-black ordering)
Jacobi CG .717 .715 .106
Jacobi SI .716 .715 .106
SOR .716 .716 .106
SSOR CG (to 1) .717 .715 .105
SSOR SI .717 .716 .106
RS CG .725 .724 .108
RS SI .726 .724 .108

vectorization can be more efficient than methods which have good convergence proper-
ties but involve recursive calculations. Hence, the JACOBI CG and JACOBI SI methods
seem to be preferable to the recursive algorithms of the SOR, SSOR CG, and SSOR
SI methods in the case of natural ordering. For red-black ordering, the RS methods
seem to be the most efficient. It is interesting to note that SOR, SSOR CG, and SSOR
SI methods vectorize with red-black ordering, thus performing better than with natural
ordering. This remains true for the SSOR methods in spite of the greater number of
iterations.

(v) The total time for each method is not significantly greater than the iteration
time in the vector version, as can be seen from Tables 3 and 4. This result is due to
the fact that the scaling and permuting operations on the matrix are also vectorizable
with the ELLPACK column-oriented data structure.

Tables 5 and 6 give the time per iteration for each method using natural and
red-black ordering for the CYBER 205 and CRAY computers, respectively.

Both the CYBER 205 and CRAY computers perform at about the same speed for
this problem using the scalar versions of ITPACK. There seems to be less of an
improvement in speed in going to the vectorized version of ITPACK for the CRAY
computer than for the CYBER 205. For those methods which vectorize well (i.e., those
methods whose basic iterative step is a matrix-vector multiply), the CYBER 205
achieves an order of magnitude improvement in speed for this problem size, while the
CRAY 1 improves by a factor of three to five. This may be due to the CYBER 205’s
efficiency in processing long vectors and its hardware gathering and scattering instruc-
tions. For the data structure of vector ITPACK, gathering operations are a significant
part of the matrix-vector multiply.

For both computers, there was not as significant an improvement in speed for the
SOR and SSOR methods for the natural ordering of the unknowns. These methods
require forward or back solutions through sparse triangular factors which are recursive
with the ELLPACK data structure.

It was also decided to test vector ITPACK on the test problem listed above for
various mesh sizes to determine the effect of the vector length on the performance.
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TABLE 5
Time per iteration (secs.), CYBER 205 (h 1/64).

Method

Scalar Scalar Vector Vector
ITPACK ITPACK ITPACK ITPACK

#1 #2 #1 #2

Jacobi CG
Jacobi SI
SOR
SSOR CG
SSOR SI

(Natural ordering)
.0139 .0125
.0155 .0126
.0218 .0215
.0626 .0526
.0437 .0410

(Red-black ordering)

.0014

.0016

.0115

.0248

.0229

.0014

.0015

.0115

.0247

.0228

Jacobi CG .0132 .0119 .0015 .0014
Jacobi SI .0148 .0120 .0016 .0016
SOR .0210 .0208 .0025 .0024
SSOR CG(to 1) .0541 .0446 .0030 .0028
SSOR SI .0415 .0385 .0035 .0033
RS CG .0162 .0151 .0013 .0012
RS SI .0172 .0153 .0012 .0011

TABLE 6
Time per iteration (secs.), CRAY (h 1/64).

Method

Scalar Scalar Vector
ITPACK ITPACK ITPACK

#1 #2 #1

(Natural ordering)
Jacobi CG .0145 .0144 .0040
Jacobi SI .0150 .0145 .0039
SOR .0204 .0202 .0144
SSOR CG .0521 .0507 .0336
SSOR SI .0386 .0384 .0312

(Red-black ordering)
Jacobi CG .0123 .0122 .0040
Jacobi SI .0128 .0123 .0039
SOR .0190 .0188 .0038
SSOR CG (to 1) .0429 .0416 .0087
SSOR SI .0347 .0347 .0083
RS CG .0177 .0175 .0036
RS SI .0181 .0178 .0036

Both the CYBER 205 and CRAY computers are known to become increasingly efficient
as the vector length grows since the start-up times for vector computations becomes
increasingly insignificant relative to the stream time. The mesh sizes chosen were
h 1/16, 1/32, 1/64, 1/128, and 1/256, resulting in 225,961, 3,969, 16,129, and 65,025
unknowns, respectively.

Table 7 gives the different number of iterations for each method and each mesh
size. Tables 8 and 9 give the corresponding iteration times for the CYBER 205 and
CRAY 1 computers, respectively. Tables 10 and 11 give the iteration time per node
per iteration. The largest problem could not be run on the particular CRAY 1 being
used because of limited available memory.
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TABLE 7
Iterations

Method h 1/16 1/32 1/64 1/128 1/256

(Natural ordering)
Jacobi CG 49 94 178 330 629
Jacobi SI 84 179 362 772 1372
SOR 50 104 216 422 872
SSOR CG 16 22 34 51 73
SSOR SI 19 29 43 61 88

(Red-black ordering)
Jacobi CG 49 94 178 330 629
Jacobi SI 84 179 362 772 1372
SOR 52 101 196 396 839
SSOR CG( 1) 20 37 70 120 223
SSOR SI 51 107 196 373 752
RS CG 25 48 90 167 321
RS SI 42 88 182 375 704

TABLE 8
Iteration time (secs.), CYBER 205.

Method h 1/16 1/32 1/64 1/128 1/256

(Natural ordering)
Jacobi CG .010 .040 .247 1.792 14.121
Jacobi SI .018 .091 .554 4.180 29.919
SOR .036 .296 2.476 19.545 165.841
SSOR CG .028 .136 .839 5.022 28.564
SSOR SI .029 .166 .980 5.663 32.736

(Red-black ordering)
Jacobi CG .010 .040 .252 1.824 14.395
Jacobi SI .018 .090 .562 4.259 29.211
SOR .011 .066 .470 3.745 32.199
SSOR CG( 1) .007 .031 .194 1.293 9.893
SSORSI .020 .112 .654 4.372 35.688
RS CG .006 .019 .108 .749 5.949
RS SI .008 .032 .203 1.540 11.804

Tables 10 and 11 give the approximate time spent per node on each iteration. On
scalar computers, it would be expected that this quantity would be independent of the
problem size. However, as can be seen above, this quantity decreases as the problem
size grows for those methods which vectorize well. Hence, the JACOBI CG and
JACOBI SI methods for natural ordering and all methods for red-black ordering
improve their efficiency as the problem size grows, while methods which vectorize
poorly (the SOR and SSOR methods for natural ordering) show little improvement in
efficiency. The figures also indicate that for this experiment the CYBER 205 had a
greater improvement in efficiency for long vector computations than did the CRAY 1.

The gather/scatter operations on the CRAY 1 are done in software, whereas the
CYBER 205 has special hardware instructions for them. In fact, the CRAY 1 has
carefully written assembly code for gathering and scattering which runs faster than
the corresponding Fortran code but true hardware gather/scatter instructions such as
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TABLE 9
Iteration time (secs.), CRAY 1.

Method h= 1/16 1/32 1/64 1/128

(Natural ordering)
Jacobi CG .015 .098 .716 5.296
Jacobi SI .024 .183 1.415 11.899
SOR .044 .369 3.112 24.576
SSOR CG :034 .184 1.143 6.849
SSOR SI .037 .224 1.343 7.724

(Red-black ordering)
Jacobi CG .014 .097 .710 5.259
Jacobi SI .025 .182 1.402 11.812
SOR .015 .100 .743 5.982
SSOR CG( 1) .013 .085 .612 4.163
SSOR SI .032 .237 1.632 12.076
RS CG .008 .047 .328 2.408
RS SI .013 .086 .656 5.305

on some CRAY X-MP’s should run substantially faster still. This many explain
why vector ITPACK enjoys a much greater speedup on the CYBER 205 than on the
CRAY 1.

Many iterative methods in ITPACK were susceptible to vectorization, but a major
rewriting of the package would be necessary for a vector computer to "notice" all
vectorization possibilities. It is generally true that any code must be tailored to a
particular computer in order to achieve optimum efficiency, but the potential reward
for doing so on a vector computer is often an improvement of an order of magnitude
increase in speed. Our goal in carrying out short-range modifications on ITPACK was
to exploit the vector processing capabilities of vector computers without destroying
the general purpose nature of the package. It is hoped that the choice of the ELLPACK
data structure strikes a useful compromise between the demand for speed and the
demand for flexibility.

5. Long-range modifications. In this section we give a brief description of some
of our work on long-range modifications to ITPACK. These modifications will involve
the adaptation of some current algorithms and the use of new algorithms.

As indicated in 4, if one uses the natural ordering, the SSOR method is not
vectorizable though it is often rapidly convergent. On the other hand, if one uses the
red-black ordering, it is vectorizable and converges in a greater number of iterations
which may be off-set by the increased speed. This behavior which is, as stated in 3,
caused by the fact that the solution of a linear system with a sparse triangular matrix
is often not vectorizable, is typical of other approximate factorization methods, such
as the Incomplete Cholesky method of Meijerink and Van der Vorst 1977]. For such
methods one represents the matrix A of (2.1) in the form LU where L and U are
sparse lower and sparse upper triangular matrices, respectively. The repeated solution
of linear systems involving the matrices L and U are required.

In some cases an improvement in the vectorization can be made by reordering
the rows and corresponding columns of A, and hence of L and U. For the SSOR
method for a linear system corresponding to a 5-point finite difference equation one
can, as stated in 3, use ordering by diagonals to achieve some vectorization. We are
planning to implement this in the near future not only for the SSOR method but for
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TABLE 10
Time per iteration per node (microseconds), CYBER 205.

Method h 1/16 1/32 1/64 1/128 1/256

Jacobi CG
Jacobi SI
SOR
SSOR CG
SSOR SI

Jacobi CG
Jacobi SI
SOR
SSOR CG (to 1)
SSOR SI
RS CG
RS SI

(Natural ordering)
.907 .443 .350 .337 .345
.952 .529 .386 .336 .335

3.200 2.962 2.888 2.872 2.925
7.778 6.433 6.217 6.105 6.017
6.784 5.956 5.742 5.756 5.721

(Red-black ordering)
.907 .443 .357 .343 .352
.952 .523 .391 .342 .327
.940 .680 .604 .586 .590

1.556 .872 .698 .668 .682
1.743 1.089 .841 .727 .730
1.067 .412 .302 .278 .285
.847 .378 .281 .255 .258

TABLE 11
Time per iteration per node (microseconds), CRAY 1.

Method h 1/16 1/32 1/64 1/128

(Natural ordering)
Jacobi CG 1.361 1.085 1.013 0.995
Jacobi SI 1.270 1.064 0.985 0.956
SOR 3.911 3.692 3.630 3.611
SSOR CG 9.444 8.703 8.470 8.326
SSOR SI 8.655 8.038 7.869 7.851

(Red-black ordering)
Jacobi CG 1.270 1.074 1.005 .988
Jacobi SI 1.323 1.058 .976 .949
SOR 1.282 1.030 .955 .937
SSOR CG (to 1) 2.889 2.391 2.203 2.151

SSOR SI 2.789 2.305 2.098 2.007
RS CG 1.422 1.019 .918 .894
RS SI 1.376 1.017 .908 .877

other approximate factorization methods as well. Another approach we plan to under-
take is based on work of Kershaw 1982] on the solution of block tridiagonal systems.

As an alternative to the use of an approximate factorization of A wherein A is
represented as the product of sparse triangular factors, we are investigating the use of
approximate inverses wherein A-1 is represented by a sparse matrix. Sparse approxi-
mate inverses have been developed by Dubois, Greenbaum and Rodrigue 1979] using
a Neumann series and by Johnson, Michelli and Paul [1983] using more general
polynomials.

The approach we have taken involves the construction of a sparse approximate
inverse H based on the use of the Gaussian elimination method. To compute the
columns k(1), k(2), , k(N of the exact inverse A-1, one solves a set of linear systems
of the form

Ak(i) e (i),
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where 1, 2, , N, and where ei is the ith unit vector. Instead of this we determine
an approximate inverse H such that hi,j- 0 if (i,j): S. Here S is a sparsity set, i.e. a
subset ofthe pair (i, j) such that the _-< i, j <_- N. For each 1, 2, , N, we require that

Ahi ei)

provided that (i,j) S. Actually we can write

A(i) fli) ei),

where Ai is obtained from A by deleting certain rows and columns of A. In some
applications the A are small matrices and the columns/i can be computed quickly
in vector mode. The basic iterative method corresponding to a sparse approximate
inverse is fully vectorizable.

As an example the matrix

4 -1 -1 0

-1 -1

with the sparsity set

S= {1, 1), (1,2)(1,3)(2, 1), (2, 2), (2, 4), (3, 1), (3,3), (3, 4), (4, 2), (4, 3), (4, 4)}

has the incomplete inverse

[2/7 1/14 1/14 0 4//=/1/14 2/7 0 1/1

11/014 0 2/7 1/141"
1/14 1/14 2/7]

We remark that the determination of H can be carried out explicitly for the case
of a five-point difference equation over a rectangular mesh; for details see Kincaid,
Oppe and Young [1984]. Numerical experiments are currently underway to determine
the effectiveness of the method for various choices of S.

6. Acknowledgments. We sincerely thank David Gay for carrying out the numerical
tests on the CRAY 1 at Bell Laboratories. The CYBER 205 results were obtained by
using the computer at Colorado State University.
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A GENERALIZED PARITY FUNCTION AND ITS USE IN THE
CONSTRUCTION OF PERFECT CODES*

M. MOLLARDf

Abstract. We define a new generalized parity function, and use it to obtain a product construction of
single-error-correcting codes (binary or not).

Key words, combinatorics, error-correcting codes

1. Introduction. Let V. be the vector space of dimension n over the finite field
GF (q). A code of length n is a subset C of V.. If C is a subspace of V. the code is
called linear. A single-error-correcting code (or distance 3 code) is a code C having
the property

VxC, VyC, d(x,y)>-3, orx=y,

where d(x, y) is the Hamming distance between x and y. This is the only kind of code
considered here. The Hamming bound states that

(1) IC[ -<
n(q-1)/l"

C is called perfect if (1) is an equality. Perfect codes of length n exist if and only if
for some m

qm-- 1

The earliest examples of perfect codes are linear ones (Hamming [1] for q 2,
Shapiro and Slotnick [2] for the general case). Nonlinear perfect codes have been
constructed by Vasiliev [3] (q 2) and Sch/nheim [4]. Other nonlinear codes are also
known.

In this paper we present a product construction for combining codes, based on
the use of a "generalized parity function". Starting with binary single-error-correcting
codes of lengths n, m this construction gives us a single-error-correcting code of length
nm+ n / m. But our purpose here is to construct perfect codes, so we will only apply
it to such codes.

Phelps [5] has also introduced a product construction which generalizes his
"combinatorial construction of perfect codes" [6]. However, when compared to
Vasiliev’s construction, Phelps’ appears as being of a very different nature" we think
that, more than likely, it cannot produce the Vasiliev codes, while their generalization
is precisely our aim.

2. Product construction in the binary case. Let nl, /12 be integers.
DEFINITION. The generalized parity function (Pl(X), P2(x)) from V,

is defined by

PI(X)--( Xij), i{1," ", nl},
\j=

(’ )P2(x)= E xo je{1,.’.,n2},

* Received by the editors December 15, 1983 and in revised form November 26, 1984.
f Laboratoire LSD (IMAG), 38402, St. Martin d’H6res C6dex, France.
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where the components of x, an element of V’,,2, are (xl, , xl,2, X21, Xn,n2), i.e.
the coordinate positions of x are arranged in lexicographic order over {1 <. < n}
{1 <. < n2}.

Let C and C’ be perfect codes of lengths hi, n2, and let f be a vector function
from C to V,2. Now define F as

F {(x, c+P(x), c’+P2(x)+f(c))},

where x e V,,2, c e C, and c’ e C’.
THEOREM 1. F is a single-error-correcting perfect code of length n nn+ n / n2.

Remark. Two important particular cases are:
1) f is a constant value function,
2) n2 1, then P(x)=x, P2(x)=P(x) the classical parity function; this is

Vasiliev’s construction.
Proof of Theorem 1. First notice that for some a and b

and so

n=2a-1, n2=2b--1,

n rl irl2 / rl / n2 2a+b 1.

The number of vectors in F is

2"’ 2 "2 2"

n+ 1 n2/ 1 n+ 1

Therefore, if F is single-error-correcting, it must be perfect. Let a and ti be two different
vectors of F. We have to show that d (a, ti)->_ 3. For some x, 2, c, , c, we can write

a =(x, c+ P(x), c’+ P(x)+f(c)),

a=(,, e+P,(,), e’+ P=(,)+f(e)).

a) If x=& then P(x)=PI(2), PE(X)=P2(2) and d(a,a)=d(c, e)+d(c’, ’)>_-3.
b) If d(x, 2) 1, then d(Pl(X), PI(2)) d(PE(X), P2(2))= 1. If c # ’, then d(c/

P(x), +P(2))>_-2 and d(a, ti)>-3. If c=e, then d(’+P2(2)/f(), c’/

PE(X)+f(c)) >- 1 and again d(a, a)>_-3.
c) If d(x, 2)= 2, then d(P(x), P(2)) and d(PE(X), P=(2)) are 0 or 2 but both

cannot be zero at the same time. Therefore, the equalities
1) c+ P,(x) e+ P,(,),
2) c’+P2(x)+f(c)=e’+P=(2)+f(?.),

are not compatible and d(a, )>-3.
d) The trivial case d(x, 2)-> 3 ends the proof.
Let C, C2," ", Cp be perfect codes of lengths nl, n2,’’ ", np and let

P P
m= I-I (ni+l)- Y ni-1.

i=1 i=1

We can define a family of functions Rk (k {1, 2,. p}) from Vm to V’k, playing the
part of a parity function, and use it to build perfect codes of length PI-Ii= (ni+l)- 1.
The interested reader can find this generalization of the above construction in [8].

3. General construction. Finally, we are going to state a generalization to perfect
codes over finite fields, and so generalize Sch6nheim’s construction. A different gen-
eralization, over arbitrary alphabets, recently has been developed by Phelps [7].
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Let q be a power of a prime and let ai (i 1, 2, , q 1) be the nonzero elements
of GF (q) in a fixed order. For two integers n, n2 arrange the coordinate positions of
x, a word of Vq-1),,,2 in the lexicographic order over

{1,’’’, q-l} {1,’’’, n} {1,..., n2}.

P(x) will be the function from g(q_l)n, n2 tO V., defined by

where

P(x)=(yl, yj, yn),

q--1 n2

Y;= , 2 Xok.
i=1 k=l

P2(x) will be from V(q_l).,.2 to V. defined by

where

P2(x) (Yl,’’’,Yk,’’’,Y,,),

q--1

Yk Z ai Y
i=1 j=l

THEOREM 2. Let C and C’ be two perfect codes of lengths hi, n2 and let f be a

function from C to V,,. F is a perfect code over V(q-1).,.+.+.2 where

F= {(x, c+ P(x), c’+ P2(x)+f(c)), xeya_,).,., ceC, c’eC’.

A proof of this theorem can be found in [8]. We only remark here that for n2 1
we obtain the Sch6nheim nonlinear perfect codes.
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THE CHARACTERS OF THE INFINITE SYMMETRIC GROUP
AND PROBABILITY PROPERTIES OF THE

ROBINSON-SCHENSTED-KNUTH ALGORITHM*
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Abstract. Connections between the Robinson-Schensted-Knuth algorithm, random infinite Young
tableaux, and central indecomposable measures are investigated. A generalization of the RSK algorithm
leads to a combinatorial interpretation of extended Schur functions. Applications are given to Ulam’s
problem on longest increasing subsequences and to a law of large numbers for representations. An analogous
theory for other graphs is discussed.

Key words. Young tableaux, random infinite Young tableaux, extended Schur functions, RSK-algorithm,
law of large numbers for representations of symmetric groups

1. Introduction. In the past several years the remarkable Robinson-Schensted-
Knuth (RSK) algorithm has found numerous applications (see e.g. [2]). In this article
we apply the algorithm (more exactly its "right half") to infinite sequences of letters
of a certain linearly ordered alphabet corresponding to infinite Young tableaux. Then
considering the elements of the sequences as independent random letters (with the
same distribution on the alphabet) we get infinite random Young tableaux. The main
result (Theorem 2) asserts that the measures on Young tableaux arising in this way
(i.e. the images of the product-measures) are the central (see 6) indecomposable
measures.

If we use a generalization of the RSK algorithm in which we divide the alphabet
into "positive and negative" letters (as it will be done in 2) the list ofthe indecomposable
central measures will be completely exhausted by the images of the product-measures
under the RSK algorithm. This generalized RSK algorithm was independently found
by Berele and Regev [1] and further considered in [10].

On the other hand every central measure on the space of infinite Young tableaux
defines a character of the factor-representation of finite type of the group of all
finite permutations of positive integers (see 6). Thus we get some new information
about the finite characters and the corresponding representations of o and about
symmetric groups , with large degree n. In addition, Theorems 1 and 2 have many
probabilistic and combinatorial corollaries (see 6-8).

In the paper [17] (see also [8]) an important special case had been considered:
the image of the product-measure with purely continuous multiplier is the Plancherel
measure on infinite Young tableaux which corresponds to the regular representation
character of. Its statistical properties (including the limit shape of typical random
Young tableaux) were studied in [17] and [8]; and a number of combinatorial corol-
laries, including the complete solution of Ulam’s problem on the expected length of
the longest increasing subsequence of a random permutation, were given in [17] and
will be mentioned here in 7.

The generalization of the RSK algorithm mentioned above is a combination of
two RSK variants described in [7]. This modified algorithm, defined in 2, is very
important by itself even for finite n; it conserves the usual properties of the RSK

* Received by the editors November 26, 1984.
f Mathematics Department, Leningrad State University, Leningrad 198 904, USSR.
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algorithm and connects combinatorial aspects of Young tableaux with the theory of
symmetric functions and representations of n. As an example we shall give in 5 an
interesting probabilistic interpretation of the Schur functions.

The corollaries of the main theorem break up into various parts: new laws of large
numbers for nonlinear functionals on the sequences of independent random variables
( 7), asymptotic primarity of induced characters of n, "the law of large numbers"
for expansions of the induced representations on primary components ( 8). Some com-
binatorial corollaries are contained in 7. Theorem 2 explains the reason why the set
of indecomposable characters has the structure of a simplex and reveals the meaning
of the parameters of those characters in Thoma’s formula [14]mviz, the frequencies of
the rows and columns (cf. [6]).

The probabilistic properties of the projection which we call "youngization" for
the infinite case need further study; we establish here only that youngization is a
homomorphism of spaces with invariant measure. Both the structure of the partition
on the preimage of points and the description of measures invariant under Knuth’s
transformations (see 3) are very interesting unsolved questions.

It is useful to look at a Young tableau as a path in Young’s graph. From this
viewpoint there can be seen an important generalization of the RSK algorithm in a
completely diiterent direction. In 9 we shall give new examples of graded graphs
and projections from the space of sequences into the space of paths in these graphs
for which our main theorem is justified, viz., the list of the indecomposable central
measures in the latter space is exhausted by the image of the product measures under
this projection. Kingman’s results on so-called partition structures [6] and the graph
of finite ideals in a binary tree which Stanley [12] has studied, are included into our
considerations. To find other interesting examples and a corresponding RSK algorithm
is an open problem. For the connections with the theory of representations of oo see
[14], [17], [16].

2. Bitabulation. Denote by N the set of positive integers; the Young diagram A - n
is an order ideal with n elements (cells) in NN provided with the usual partial order.
Let L be a linearly ordered alphabet with the partition L L U Lo (for our aims it is
enough to put L c R, Le L f3 R+). For x, y L we shall write x/ y if x < y or x y L
and xy in other cases. We shall call a word w=xlx2""xL increasing if
xl/ x2 / xn and decreasing if x x x2 " x.

Let t: A - L be a map, corresponding the letters of L to the cells of a diagram A.
We shall call an L-tableau, if the letters are increasing along the rows and decreasing
along the columns of A in the above sense (see the example below).

We define the algorithm INS to consist of the successive substitutions of the letters
x L of a word w into the rows of the tableau t; by definition the insertion of a single
letter x coincides with INSERT from [7] if x Le and with INSERT* if x Lo. The
inverse operation DEL combines DELETE and DELETE* from [7] in the same way.

Using this algorithm INS we associate with a word w Xl"" xn in the alphabet
L a bitableau (R, Sn) defined as follows. The first tableau R is the result of applying
INS to the letter x and the tableau R_, the result being an L-tableau filled with the
letters of L; the second one S is a usual Young tableau with integers 1, 2,.-. as
elements in its cells which is obtained from Sn_l by placing the integer n into the new
cell of the diagram of R, (so that R, and S have the same shape). We shall call R
the sorting and Sn the accompanying tableau of w. We put Ro So (the tableau
with empty diagram); thus by induction we have defined R, S completely. Let A(w)
be the common diagram (shape) of R, S.
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Example. If w =-2, 2, -2, 1, 3, -1, 3 then

2 6

R7(w) -2 1 S7(w) 3

-2 -1 3 3 1

4
2 5

All the results of [7] are preserved (after suitable changing) for our modification
of the RSK algorithm. In particular, the operation of bitabulation defines a bijection
between the spaces of n-words we L and the set of pairs (R, S) where R is an
L-tableau and S a Young tableau with the same diagram. The transformation which
corresponds to the word w the tableau S(w) we shall call youngization.

3. Generalized Schensted’s theorem. Let w be a word in the alphabet L and A an
arbitrary Young diagram. We denote the maximal cardinality of the union of k
increasing (resp. decreasing) subsequences of the word w by rk(W)(Ck(W)), and let
k(A)(k(A)) be the sum of the lengths of the first k rows (resp. columns) of the Young
diagram A.

PROPOSIa’ON 1. For any w L and k 1, 2, , n, we have

r(w) (a(w)), c(w) (a(w)),

where A(w) is the common diagram of R(w) and 5;(w).
It is not difficult to get the proof using Knuth’s equivalence [7, Thm. 6], which

has the following form in our case:

zxy=-xzy ifx<y<zorx<y=zLoorLex=y<z, (1)

yxz=-yzx ifx<y<zorx<y=z6LeorLox=y<z. (2)

Following [7] it is easy to check that R(w’)= R(w) if we can get the word w’ from
the word w by a chain of modifications of the form (1) or (2). The generalization of
Proposition 1 to arbitrary finite partially ordered sets was obtained by Green and
Kleitman [4] and independently by S. Fomin [3].

4. Youngization. We shall denote the set of Young tableaux with n cells by Tn
(by definition a Young tableau is an increasing chain of diagrams
IAI k), and by T the space of infinite Young tableaux with the topology of the
projective limit: T li,___m Tn.

Let L be the space of infinite sequences of letters of the alphabet L. For w L
we denote by wn the initial piece of length n of the word w, and we let S(w) T denote
the infinite Young tableau (b, Al(Wl),’’ ", An(w,),... ), defined as the limit of the
accompanying finite tableaux Sn(wn). Note that the limit of the sorting tableaux does
not exist in general. We can also consider infinite tableaux as infinite paths in the
graded graph of finite Young diagrams (see 9). The transformation S: L T which
we have constructed will also be called youngization; it is continuous and surjective.

5. The symmetric functions as probabilities. We shall say that a probability measure
d on L has type (a, /3, 3’) where a=(al, t2, ), --(1,2,""" ), tk, k,
O1 --> a2 >’--- /31 >/32 =>" if al, a, are the values of its atoms on the points of
Le and ill,/32, are the values of atoms on the points of Lo, and finally if 3’ is the
value of the measure on its continuous part, so that ,Otk -1- ,flk -1- 1.

Denote by hn(a,/3, y) the probability that the random word w xl’"xn with
independent letters with the common distribution d of type (a,/3, 3’) is increasing in
the sense of 2.
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PROPOSITION 2. The generating series for the function h. has the following form:

1+ h,,(a, fl, ),)z" e vz I-I l+fl,z.
n=l i>_l 1

(For y =/31 =/32 0 we get the complete homogeneous symmetric functions

hn . otilai2" Pin .)

As every symmetric function f has a unique representation as a polynomial in the
arguments hn, we can define its extension as the result of substitution of the function
h.(a, fl, 3/) at the place of h. in this polynomial, for n- 1, 2,. .. For instance the
extended power sum symmetric functions are the following:

Sl(,/3, r) E + E
k=l k=l

)n+ls.(a, fl,/)= ak+(--1 . /3k, n>2.
k=l k=l

We shall denote by ex the extended Schur function corresponding to the Young
diagram A. When , =0, ex coincides with the hook-Schur functions HSa of [1] and
[10], and the super-Schur functions sx(a/fl) of [13]. The probabilistic meaning of
extended Schur functions is given by the next proposition.

PROPOSITION 3. Let Px Px (a, fl, y) denote the probability that a random filling of
the diagram A with letters from L with independent values and common distribution of
type (, fl, 7) produces an L-tableau (in the sense of 2). en Px(a, fl,
y), the extended Schur function.

oof For Young diagrams A, with n cells let Kx. denote the usual Kostka
coecients [9], 11], i.e., the number of Young tableaux (strictly increasing in columns
and weakly increasing in rows) of shape A containing l’s, 22’S, etc. As in the proof
of [11, Thm. 6.2] one can show that

n.= E rP
kfor all n, where H. k P(k) and (k) denotes the one-row Young diagram of length

k. A similar formula holds for the usual symmetric functions and hence for extended
symmetric functions, viz.,

h Kx.ex.
It is easy to show using Proposition 2 that P.(, fl, 7) h.(a, , 7) for n 1, 2,....
It follows that H. h. for n, so Px ex because the matrix (Kx.) is inveible.

An impoant fact which connects the theory of symmetric functions and the
theo of random tableaux is given by the following theorem.

THEOREM 1. Let m.,v be the product-measure with common multiplier d of type
(, fl, 7) and consider the Young tableau T. of shape A n. en

m,,{w : S.(w)=t=e(,#, ),

where ex (, fl, y) is the extended Schurfunction.
oof The probability on the left side ofthe formula depends only on the sequence

w. of the first n letter of w. Because bitabulation w. (R., S.) is a bijection, the
sequences w. with S.(w.)= are in one-to-one correspondence with L-tableaux of
shape A; so the theorem follows from Proposition 3.
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6. Product-measures, central measures and characters of the group . We shall
use several definitions and facts from 16]. The Borel measure M on T is called central
if

M{t" tn=u}=M{t: tn=v}

for every two Young tableaux u, v with the same diagram. The central probability
measures on T form a simplex, the extremal points of which are indecomposable
central measures corresponding to the factor-representations of finite type of the group. This connection and the complete list of indecomposable central measures have
been found in 16] with the help of a method based on the ergodic theorem (compare
with the method in [15]). E. Thoma had obtained the list of characters of oo in 1964
[14] with a quite different method. From Theorem 1 and the results of [16] the main
theorem of the paper follows.

THEOREM 2. The image M,,,v of the product-measure m,,v under youngization is
an indecomposable central measure. Any indecomposable central measure can be obtained
in this way. In other words, the transformation of measures induced by youngization is a
bijection between the classes ofproduct-measures with respect to the type) and indecompos-
able central measures.

Let us give some corollaries of this theorem.

7. Generalized Ulam’s problem. According to 16, Cor. 2], if we choose a tableau
T with respect to the measure M,,v, then the following limits almost always exist:

lim Y ai, lim E
H i=1 /’/ j=l

Their existence can also be proved with martingale techniques (compare [6]). Together
with Proposition 1 this fact leads to a new law of large numbers for sequences of
independent random variables.

PROPOSITION 4. Let d be a measure of type (a, , T) on L and m,,v I-I1 d the
product-measure on L. For almost all sequences w L with respect to the measure

m,,v the limits

lim ci, lim
/’1 i=1 F/ i=1

exist.
If the measure d is continuous M Mo,o,1 is the Plancherel measure; a stronger

result for this case was obtained in [16], viz., for almost all tableaux (A, A2,"
with respect to the measure M the shape of the diagram in a suitable scale tends (as
n) to a curve fl which was found and described in [16] (see also [8]). Using the
shape of this curve the authors [16] (see [8]) have proved that for the length 1 of the
first row of the diagram of the tableau (A, A2,’’’ the inequality

lim >= 2

holds both a.e. and in the mean with respect to the Plancherel measure. Moreover, it
is easy to prove that M(An)-< 1/x/ where An T is the set of tableaux with the nth
cell in the first row. In 16] we have obtained from this the inverse inequality

lim-<_2

and hence the complete solution of Ulam’s problem as follows.
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THEOREM 3. The maximal length r(wn) ofa monotonic subsequence of a sequence
wn ofn independent random variables with arbitrary continuous distribution on L grows
as 2x/n with probability one, i.e.,

m’’ { w" lim r w"
x/

-2 =1.

In such a way we can also obtain information about the growth of several rows
and columns. Let us give a closely related fact about symmetric functions.

PROPOSITION 5. For every a, a2, , 2, 3’ >---- O, Y a + + 3’ 1 and
e > 0 we have

lim (dim A e (a,/3, y) 1,

where the sum is over the diagrams A with n cellsfor which the inequality Il (A)/n a 11 < e
holds.

These methods allow us to prove a series of new laws of large numbers for
nonlinear functionals for random independent variables (as in Ulam’s case) and for
random Young tableaux, distributed according to one of the central measures;
asymptotic formulae for symmetric functions (as in Propositon 5) also follow.

8. Law of large numbers for representations. Let us consider two integer partitions
K’k-kl+...+ks and /z’m=ml+.../mt, k/m=n, and the groups ’K=

kl X" X ks ," ,,1 " ,,,. Let VK., be the representation of , induced by
the linear character idsign of the subgroup ’ "c ,. The Littlewood-
Richardson rule (see [9, Chap. 1.9]) when applied to V., can be formulated as follows.
Let L Le U Lo be an alphabet with ILel k, ILol m. The multiplicity of the irreducible
representation {A } of the group , with diagram A in the representation V., equals
the number of L-tableaux with diagram A in which the multiplicities of the letters
from Le are kl, , ks and those ofthe letters from Loare ml, , mr. Let X X.,c L"
be the set of words with the same multiplicities of letters. Using the above rules, we
can prove that the dimension of the A-primary component in V., is equal to [{x
XK," A(x)= A}[ and the character , of the representation V= V, is the fol-
lowing"

dim V
O(tr)-

IX[ wx Xa(w)(tr)/dim A(w)

where tr , and Xa is the character of the representation {A }.
Applying these facts to our case, together with Theorems 1 and 2, we get:
PROPOSITION 6. Let 0() be the character of the induced representation V(") with

the parameters n I n (see above) and

Then the limit

ki(n) mi(n)
lim ai, lim

k(n)+m(n) k(n)+m(n)

lim,, dim V(’) X,,t3,,(o’), o" o

gives the primary character of the group corresponding to the central measure M,t3,v.
Thus, the limit of the induced characters is the same as the limit ofprimary (irreducible)
characters with the same parameters.
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Denote by fiK,,(A) the relative dimension of the primary component, correspond-
ing to the diagram A n in the expansion of VK.,.

PROPOSITION 7. Under the conditions of Proposition 6, for any e >0 and k
1,2, , we have

lim,, h" ci ->e, /3i >=e =0.
n i= n

In other words, for large n and for a typical diagram of an irreducible representa-
tion in the expansion of V("), the relative length of the ith row (column) is close to
ki/n(mi/n).

These properties can be called the laws of large numbers for characters and
representations because they express how (in a statistical sense) the irreducible
components of the induced representation concentrate (for large n) near one of them.
Probably this property takes place for a wider class of locally finite groups. We can
formulate it as a thesis" The list of the limits of the primary characters coincides with
that of the limits of characters induced from a suitable class of subgroups (in the
oo-case, Young subgroups).

9. Analogues of the main theorem for other graphs. Let be a branching scheme
(Bratteli diagram), i.e., a graded graph with the set = t_J ,o fi, of vertices; the
edges (possibly multiple) join the vertices of neighbouring levels only. A path in this
graph is a sequence (el, e2,. of edges in which e,_ and e, have a common
vertex in ,, n 1 2,. The space of paths Ch lira Ch , is compact. A Borel
measure on Ch fi is by definition a central measure if the condition of 6 holds with
u and v being finite paths (elements of Ch, fi) with a common end; t, is the initial
segment of length n of the path Ch @.

The problem of describing the indecomposable central measures for branching
schemes is the most interesting problem in the theory of the representations of AFo
algebras and locally finite groups (for factor-representations and K-functors see [5]).

For some graded graphs fi it is possible to find the space r and a cylindrical
transformation b of the infinite product onto Ch , b" Ch , such that the
corresponding transformation of measures gives a surjection of the space of product-
measures onto that of indecomposable central measures. We shall call this kind of
graph fi projective and the above transformation b its projectivization. The basic example
is the Young graph.

Example 1. The vertices of the graph fi Y are Young diagrams, the grading is
defined by the number of cells, and the edges are as usual (i.e., two diagrams , and
/z are adjacent if A can be obtained from/ by adjoining a single cell). Then Ch T
is the space of infinite Young tableaux. We can take for the alphabet L from 2-6.
Theorem 2 asserts that Y is projective and the youngization is its projectivization.

A completely different example is contained in a nonevident way in [6].
Example 2 (Kinsman’s graph). The set of vertices is as in the first example, but

we use another language. The nth level in the graph K is the set of all (nonordered)
partitions of the integer n, n n +. + n. The edges are defined as follows. Consider
two partitions A K, and A K,+. They are joined in K itt A has the same parts as
A, excluding only one part n. In this case there is a one-to-one correspondence between
(a) the set of edges joining )t and A, and (b) parts of A equal to hi. Thus we can
identify every edge entering A with a part of A. Let A,(w) be the partition of n into
the multiplicities of the letters which one meets in the initial piece w, of the sequence
w ( is an alphabet). The last letter x, in w, fixes some part in the partition
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An (w). For every w we get the sequence of edges which is the path 4) (w) Ch K.
If we put -[0, 1], the map " --> Ch K gives the projectivization of K. This fact
can be extracted from [6], where the list of central measures (called there "partition
structures") was found. It is interesting that the central measures in this case have a
connection with the asymptotic theory of Haar measure on n (see [18]). Here is an
explanation of this fact" the graph K is that of conjugacy classes of the groups
with edges which are defined naturally by the imbedding , c

Example 3 (the order ideals of the universal binary tree). This example arises in
connection with 12]. Let 2 be the Hasse diagram of the lattice of finite order ideals
of the universal binary rooted tree T2. Let be the space of infinite chains in

I-[1 7/2. For w (Wl, w2, ) o we put b(w) (do, dl," )Ch 9, where do, dn dn-1 (A a, a T2 is the vertex of T2 in which the chain wn leaves the ideal
It can be shown that 4) is the projectivization of the graph 9.

In conclusion we note that the problem of describing the central measures of a
graded graph can be formulated as the problem of describing the set of Markovian
measures on the compact space of paths of this graph with given cotransition prob-
abilities (which are common for all central measures). So this problem is included in
the cycle of questions which are typical of modern statistical physics.

Comment. This paper was offered to the journal at the end of 1981. For reasons
not depending on the authors, its publication was postponed. During this time we
were informed about the articles [1], [10], [13], [19], where the generalized Schur
functions are introduced in connection with a quite different approach (Lie super-
algebras). However these functions were considered for the first time in our article
[20] as the characters of factor-representations of the group

In the recent paper [21] following the paper [17], we have obtained an exact
asymptotical estimation of the maximal degree of irreducible representation of ,"

1 dim A
0< Co -< -nnlnmax x/.

Acknowledgment. The authors thank professor R. P. Stanley for his attention to
the paper, for linguistic help and for the references [1], [10], [13].
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THE NUMBER OF MAXIMAL INDEPENDENT SETS IN A TREE*
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Abstract. We find the largest number of maximal independent sets of vertices that any tree of n vertices
can have.
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1. Introduction. We determine, in 2 below, the largest number of maximal
independent sets of vertices that any tree of n vertices can have. In 3 there is a lineac
time algorithm for the computation of the number of maximal independent sets of any
given tree. The application that suggested these questions to us was the analysis of the
complexity of an algorithm for computing the chromatic number of a graph. That
application will be discussed in 4.

2. The main theorem. Let T be a tree, let V(T) be its vertex set and let n V(T)I
be its number of vertices. A set S V(T) is an independent set if no two vertices of S
are joined by an edge of T. S is a maximal independent set (m.i.s.) if S is independent
and every vertex of V(T) $ is joined by an edge to at least one vertex of S. We write
/x(T) for the number of m.i.s, of vertices of T (/x()= 1).

TrtEOREM 1. If we define

(1)
2n/2-1 + 1

f(n)= 2

1

ifn >-- 2 is even,

ifn is odd,
ifn =0,

then f( n) is the largest number of maximal independent sets of vertices that any tree of
n vertices can have.

Figure 1 shows that there are trees of n vertices that havef(n) maximal independent
sets (the reader may enjoy checking these counts since they are not quite trivial!).
Hence it suffices to prove that no n-tree can have more than f(n) such sets.

Let T be a tree of n >_-3 vertices, and let x be an endpoint of T. We root T at x
and direct the edges of T away from x.

n ODD n EVEN
FIG.

* Received by the editors February 10, 1984, and in revised form October 15, 1984.
Department of Mathematics, University of Pennsylvania, Philadelphia, Pennsylvania 19104.

125



126 HERBERT S. WILF

Let 3’ y(x) be the child of x and let A1,. , hr be the children of y. Let Ui be
the subtree of T that is rooted at hi (i= 1, r).

We continue one layer further into T: in U, let Wa (j 1, si) be the subtrees that
are rooted at the si children of hi, except that if hi is childless then we take s- 1, and
W,I is then the empty tree (i 1, r). The picture is now as shown in Fig. 2.

FIG. 2

LEMMA 1. If T is a tree of n >-3 vertices then

(2)
i=1 i=lj=l

Proof. Let $ c__ V(T) be a m.i.s, that contains x. Then y S. Let S S f’l V(U)
(i= 1, r). Then S is maximal in Ui (i 1, r), for if not then S can be augmented in
T. Conversely, if Vi 1, r: $i is maximal in U, then S {x} U S U. U S is maximal
in T.

Next consider a m.i.s. So__ V(T) such that x $, and therefore y e S. Hence
Vi 1, r: {ai S, and j 1, si: {if S S(’I V(W) then S is maximal in Wa and
conversely}}.

Let

(3) h(n) max Ix(T).
[V(T)I=n

We will now prove that n =>0: h(n) =f(n). Clearly h(n) =f(n) if n =<2. Suppose
that n >-3, and that Vj =0, n- 1: h(j)=f(j). Let T be a tree of n vertices, and let x,
U(T), W(T) be as in Fig. 2. Write u, V( U,( T))I (i= , r) and w,=lV(W,(T))l
(j 1, si; 1, r). Then by (2) and the induction hypothesis,

(4) tz (T) <-_ H f(ui) + H I-I f(wi).
i=l i=lj=l

We will carry out a maximization of (4) over all n-trees T in two stages, as follows.
As the problem is presented in (4) we are to maximize the right-hand side over all
partitions u of n- 2 and all partitions of the parts of u (each reduced by 1). In Stage
1 below we will identify, for given u, the maximizing partition , and we will be left
with maximization over just the partitions



MAXIMAL INDEPENDENT SETS IN A TREE 127

In Stage 2 we will show that the maximum depends only on two integers, the
number r of parts of u, and the number e of even parts of u, but not otherwise on u.
We will then carry out the maximization over the admissible integer pairs (r, e), with
the end result that the maximum of the right side of (4) will have been shown to be
f(n), as defined in (1).

Stage 1 (in which the trees and the wia’s are eliminated).
Fix integers m, r => 1, let F(r, m) denote the set of all r-tuples of positive integers

whose sum is m, and write F(1, 0) {0}. If we take the maximum of (4) over all n-trees
T, we get

(5) h (n) _-< max max
r_-->l uF(r,n-2) { I f(ui)+max (-I *(-Ilf(wa))i=1 i=lj=

in which the innermost "max" is over the set of w’s such that for 1, r"

w,.," ", wi.,) r(si, ui 1).

Consider an integer r and partitions u, w that occur on the right side of (5) and
in which one or more of the w _-> 3. We claim that this set of integers can be ignored
when seeking the maximum in (5).

Indeed, replace W,l by [W,l/2J 2’s, plus, possibly a 1, leaving all other w’s, u’s
and r untouched. Then the double product on the right will contain a factor

f(2) tw.,/2] 2 t,t./2/

instead of the factor f(w.l). But from (1), f(k) -< 2 tk/2J for all k => 3. Hence the right
side of (5) cannot decrease by such a replacement.

Therefore, for fixed r and u F(r, n-2) we need consider only partitions of each
u-1 into O’s, l’s and 2’s, say a 2’s,/3 l’s and y O’s (c <-(u-1)/2). However, such
a partition of ui- 1 contributes a factor of 2 to the innermost product in (5), and this
is maximal when a [(ui-1)/2J. Hence for r fixed and uF(r, n-2), the double
product in (5) cannot exceed

ri2 t(u-l)/2J 2(.-2-r-e)/2
i=1

where e e(u) is the number of even numbers among u,. , u,
Stage 2 (in which the ui’s are eliminated).
As a result of stage 1 we have found that

(6) h(n) <--maXr_->l ueF(r,n-2)max {IrIi=l f(u)+ 2(n-2-r-e(u))/2}.
Thus we have now a maximization problem over integer partitions, instead of over trees.

Fix three integers r, e, such that r -> 1, 0-< e -< r and -> e. Consider the subclass
J(r, e, t)

_
F(r, n 2) of those partitions of n 2 into r positive parts, exactly e of which

are even, and in which the sum of the even parts is 2t. More precisely, then, J(r, e, t)
is the class of all partitions of the form

(a) n-2=211+212+...+21+(21++1)+...+(21,.+1),

(7) (b) /->1 (i=l,e), l>--O (i=e+l,r),

(c) t,+’’’+le=t.
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Among the partitions uJ(r, e, t) the second term in the brace in (6) is constant,
so we consider

max I f(u,)- max (I f(2/,)
J(r,e,t) i=1 J(r,e,t) i-1

(I f(2/,+ 1)
i=e+l

(8) =max I(2’-l+l) I 2’,
J(r,e,t) i=1 i=e+l

2(n-2--r--e)/2 max 1-el (1 + 2-(’-l))
J(r,e,t) i=1

where (7a) was used in the last equality.
The following result will be useful in the sequel.
LEMMA 2. Fix g, z >--_ O. Let

g

(9) G(g, z) =max 1-I (1 +2-",)
i=1

where the max is over all g-tuples of nonnegative integers ml,... mg whose sum is z.
Then

(10) G(g, z) 2g-l( 1 + 2-z)

and the maximum occurs when exactly one mi z and all mj 0 (j # i). D
It is now convenient to split up the maximization of (8) over J(r, e, t) into two

cases, first where e r, so all parts of (7)(a) are even, and second where e < r, so odd
parts then also occur in (7) (a).

Case I. e r. In this case (7a) shows that n is even and

i li=n/2-1=t
i=l

so we are in the class J(e, e,n/2-1). If we use Lemma 2 with g=e, z=n/2-1-e,
the maximum on the right side of (8) becomes just 2"/2-2+ 2e-1. In this case, then, (6)
takes the form

(11) h(n) =< max {2"/2-2+ 2-1 + 2"/2-l-e}

where the maximum extends over l<-e<-n/2-1. It is clear, from (11), that the
maximum occurs at either endpoint e 1 or e n/2-1, of the interval. The maximum
value is 1 +2"/2-1=f(n), as required.

Case Ii. e < r. Here we find, from Lemma 2 with g e, z e, that the maximum
on the right side of (8) is

max {2("-2--e)/2{2e-1 + 22-’-1}}.(12)

The maximum over occurs when is as small as possible, viz. e (see (7b, c)) and
the maximum is 2("-2-r+e)/2. Thus (6) now becomes

(13) h(n) =<max {2("-2-r+e)/2 + 2("-2-r-e)/2}.
(r,e)
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In (13) the "max" is taken over the set of (r, e) for which

(a) 1 <= r=< n-2 (from (7a))

(b) 0 <= e < r (in Case II)
(14)

(c) e+ r_-< n-2 (from (7a, b))

(d) e + r n(mod 2) (from 7a)

Suppose n is odd. We claim that the "max" in (13) occurs at r 1, e 0. Indeed,
if it occurs at (r, e) then surely r= e+ 1 or r e+2, else we could reduce r by 2 to
increase the maximum without violating any of the constraints (14). Hence r e + 1,
by (14d), and (13) reads as

h(n)2n/2-3/2 max {1 + 2-} 2"-)/2=f(n)

so in Case II, n odd, we have established that h(n)<=f(n).
Finally, in Case II, suppose n is even, and further suppose that the maximum in

(13) occurs at (r, e). Again we must have r e + 1 or r e + 2, else we could reduce r

by 2. Now r=e+ 1 is ruled out by (14d), so r= e+2. Therefore (13) reduces to

(15) h(n) <=2n/2-2 max {1 + 2-e}

and the max occurs at e=0, the value being 2"/2- <f(n), completing the proof of
Theorem 1. [3

3. A linear time algorithm. In this section we give another algorithm for computing
/x (T). It will easily be seen to operate in linear time.

Let the edges of T be oriented away from the root r, let x be some vertex, and
let qg(x), d(x) be the sets of children of x and of grandchildren of x, respectively. Let
/Zx be the number of m.i.s, in the subtree rooted at x, and let u be the number of
those m.i.s, that do not contain x. Then it is easy to see that

(16) v,,= H [,-,y- H 1,y, [.)bx-lx" I-I [l,z.
ya (x) y q(x) 3(x)

These formulas permit the computation of the pairs (/Zx, v,) at each vertex of T, in
descending order of distance from r. One would begin by introducing a new fictitious
"child" of each leaf, and placing (1, 0) at each such new vertex as well as at each leaf.
The remaining vertices could then be done, in descending order, from (16). Therefore
the number of maximal independent sets of vertices in a tree can be computed in linear
time.

4. Remarks. In [ 1] E. Lawler discusses an algorithm for determining the chromatic
number of a graph, and shows that its run time, in the worst case, is O(mn(1 +3),)
for graphs of m edges and n vertices.

The appearance of 3 derives from a theorem of Moon and Moser [2] to the
effect that a graph of n vertices cannot have more than 3 n/3 maximal independent sets
(they proved a sharper bound, but this one suffices for our present purpose). However,
the extremal graphs of Moon and Moser are disconnected. They are essentially disjoint
unions of triangles.

An improvement of Lawler’s run time estimate might therefore result if we could
solve the following problem:

What is the largest number ofmaximal independent sets that can occur in a connected
graph of n vertices ?
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The present paper resulted from consideration of the above question. J. Griggs,
C. Grinstead and D. Guichard (p.c.) have shown that if c(n) denotes the answer to
this question then lim c(n)l/n= 31/3. Note added in proof. They and, independently, Z.
Fiiredi, have now answered the above question.
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EFFICIENT VERTEX- AND EDGE-COLORING OF
OUTERPLANAR GRAPHS*

ANDRZEJ PROSKUROWSKIf AND MACIEJ M. SYSEO*

Abstract. The problems of finding values of the chromatic number and the chromatic index of a graph
are NP-hard even for some restricted classes of graphs. Every outerplanar graph has an associated tree
structure which facilitates algorithmic treatment. Using that structure, we give an efficient algorithm to color
the vertices of an outerplanar graph with the minimum number of colors. We also establish algorithmically
the value of the chromatic index of an outerplanar graph. Our algorithms are based on systematic coloring
of elements (vertices and edges, respectively) of adjacent faces.

AMS(MOS) subject classifications. 05C15, 05C05, 68Q25

1. Introduction. The chromatic number, x(G), ofa graph G is the minimum number
of colors needed for the vertices of G so that no two adjacent vertices are assigned
the same color. Correspondingly, the chromatic index, X’(G), is defined as the minimum
number of colors needed to color the edges of G so that no two adjacent edges are
assigned the same color. An assignment of at most k colors to the vertices (edges) of
a graph G is called a k-vertex- (k-edge-) coloring of G. The problem of determining
the chromatic number (index) of a graph G is NP-complete, even when G is restricted
to be planar (respectively 3-valent, see Garey and Johnson [6], Holyer [8]). However,
Gabow and Kariv [5] have designed an efficient edge-coloring algorithm for bipartite
graphs, Mitchell and Hedetniemi [9] have a linear algorithm for edge-coloring trees
and unicyclic graphs, and recently, Widgerson 14] has presented an efficient approxi-
mation algorithm for vertex-coloring general graphs. Arjomandi [2] and Terada and
Nishizeki 13] present approximate algorithms for edge-coloring general graphs. Apply-
ing a method that follows the recursive construction of series-parallel graphs, we can
easily color vertices of a series-parallel graph using the minimum number of colors in
time proportional to the size of the graph. (Compare with, for instance, Takamizawa
et al. [12] who do not treat explicitly the problems of vertex- or edge-coloring of
graphs, however.)

Here, we present efficient algorithms vertex- and edge-coloring graphs of the
subclass of series-parallel graphs, known as outerplanar graphs. A planar graph G is
outerplanar if and only if there exists a plane embedding of G in which all vertices
lie on the exterior (unbounded) face. Such an embedding is referred to as an outerplane
graph. For every 2-connected outerplane graph G there is a unique associated tree
T(G). This tree has internal nodes corresponding to the interior (bounded) faces of
G, and external nodes (leaves) corresponding to the exterior face, one leaf for each
edge of G on the exterior face. This associated tree corresponds to the--possibly
cyclic--weak dual graph of a general plane graph. To avoid confusion, we will talk
about nodes of T(G) and vertices of G. The edges of T(G) correspond uniquely to
edges of G in such a way that there is an edge between nodes of T(G) if and only if
the two corresponding faces of G share an edge. We consider T(G) to be a plane
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tree, in which the neighborhood of each node is ordered (see Proskurowski and Syslo
[11]). A choice of a node of T(G) as its root induces a natural father-son relation
between adjacent nodes, and also a left-to-right ordering of brother nodes (sons of a
common father). A corresponding structure for a separable outerplane graph G is the
associated forest F(G). In that case, the connected components of F(G) correspond
to blocks (2-connected components) of G. The tree-like structure of these blocks allow
an easy "color-exchange" algorithm transforming partial solutions for blocks of G
into a global solution, an optimal vertex- or edge-coloring of G. Thus, without loss of
generality, we restrict our discussion of coloring vertices and edges to 2-connected
outerplane graphs. We may assume that a linear time algorithm has been used to
extract 2-connected components from a general outerplane graph. See Fig. 1 for an
example of an outerplane graph, its associated tree and a rooting.

FIG. 1. An outerplane graph, its associated tree (rooted at node 1) with a depth-first traversal order, and
a partial edge-coloring following that order.

In the remainder of this paper we follow the standard texts of Fiorini and Wilson
[4], Garey and Johnson [6], and Harary [7] as references for edge-coloring, complexity
analysis, and general graph theory, respectively.

2. Vertex-coloring. The Four Color Theorem (Appel and Haken 1]) ensures that
the chromatic number of any outerplanar graph (as a planar graph) is at most 4. The
fact that the chromatic number of an outerplanar graph is at most 3 is implied by the
following observation. Every outerplanar graph has a vertex ofdegree 2. Every subgraph
of an outerplanar graph is outerplanar. Hence, we can apply the Szekeres-Wilf bound
on the chromatic number x(G) _-< 1 + max 8(G’), where maximum is over all subgraphs
G’ of G, and 8(G’) is the minimum vertex degree of G’.

THEOREM 1. The chromatic number of an outerplanar graph is at most 3.
Although the same result can be obtained using the techniques of Takamizawa et

al. [12], we enclose our new algorithm for completeness of the presentation.
Our method for producing an optimal vertex-coloring of a 2-connected, outerplane

graph G makes use of a traversal of the associated tree T(G), rooted at an arbitrary
node. We assume that the traversal is monotonic, that is, no node other than the root
is visited before its father.

Visiting a node C of T(G) we color the vertices of the corresponding face of G
with two or three colors, depending on its length. If C is not the root, two of its
adjacent vertices are already colored. These colors are subsequently used to color the
cycle C. It is clear that an outerplanar graph containing an odd-length face is not
bipartite. Our algorithm will produce a 3-coloring of such a graph. If all faces of G
have an even length then a 2ocoloring is produced.
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This algorithm for coloring the vertices of an outerplane graph G takes time linear
in the total size of all faces of G, which, in turn, is proportional to the number of
vertices in G.

3. Breadth-first edge-coloring algorithms. The chromatic index of a graph G is
bounded by the maximum degree, A(G), of a vertex of G. Vizing’s theorem (see, for
instance, Fiorini and Wilson [4]) states that A(G) =< x’(G) =< 1 + A(G). Fiorini [3] proves
that for an outerplanar graph G, X’(G)= A(G) unless G is an odd cycle. However,
his proof is an existential one and does not provide a method for finding an optimal
edge-coloring. Another proof of the above equality given in Fiorini and Wilson [4]
contains a flaw. Even corrected, their proof yields an edge-coloring algorithm of
higher-than-linear complexity. Terada and Nishizeki [13] also prove this result. We
present an algorithm for optimally edge-coloring an outerplanar graph, which may be
consided as yet another, constructive proof of the above equality. The algorithm takes
explicit advantage of the structure of a 2-connected outerplane graph by assigning
edge colors as it traverses the associated tree of the graph. Our algorithm has time
complexity linear with the size of the input, while the exact algorithm of Nishizeki et
al. [10] for edge-coloring series-parallel graphs is less efficient, as is the approximate
method of Arjomandi [2]. (They have complexity of O(mn) and O(min (mn, hA+
m/n log n)), respectively, where m and n are orders ofthe graph’s edge and vertex sets.)

The arbitrary monotonic traversal of the arbitrarily rooted associated tree T(G),
used above in an optimal vertex-coloring of an outerplanar graph G fails in an attempt
to edge-color G. The free choice of coloring edges along a cycle, when restricted by
an algorithmic method may lead to an eventual coloring conflict. See Fig. 1, where a
monotonic traversal is used. The edges of the triangular face corresponding to node
8 cannot be colored without the use of a fifth color.

We will give a traversal method of a carefully rooted associated tree T(G), and
a judicial coloring of the corresponding cycles of G that produces an optimal edge-
coloring. We define a breadth-first traversal of the internal nodes of a rooted plane
tree T as the traversal of the nodes of T in left-to-right order in levels defined by the
distance from the root. Figure 2 indicates the order of node visits in the breadth-first
traversal of a rooted plane tree. The process of visiting a node E during the traversal
of T(G) corresponds to edge-coloring the corresponding face E of G. Although at
most one edge e of E has a color already assigned (during a visit of the node’s father,
C), the color assignment to the two edges of E adjacent to e is restricted by other
colored edges adjacent to e. This restriction may prevent an optimal coloring if, in the

A

FIG. 2. A paradigm of edge-coloring.
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case of a triangular face E with end-vertices u and v of the base e, u and v are incident
each with A(G)- 1 edges already assigned colors, the same for both u and v. Fortu-
nately, this cannot happen in a breadth-first traversal of T(G) for an outerplane graph
G with the maximum degree A(G)>= 5.

LEMMA 1. Let a 2-connected, outerplane graph (3 with the maximum degree A(G) _-> 5
be partially edge-colored by a breadth-first coloring algorithm using A colors. This
A-coloring can be extended to a face E ofG corresponding to the next-to-be visited node

of T( G), the associated tree of graph G.
Proof. We proceed by induction on the number of visited nodes of T(G). If E is

the first face to be colored, then at most 3 < A(G) colors are needed. Therefore, let us
assume that C is the father node of E and the corresponding faces of G share an
edge e with end vertices u and v (cf. Fig. 2). At most one of these two vertices may
be incident with A(G)- 1 previously colored edges" if v is in the face corresponding
to some ancestor of the node C, then u may be in at most one colored face other than
C, namely, that corresponding to the left brother of node E. Thus, the number of
previously colored edges incident with u is at most 3 < A(G)- 1 (edges a, b, and e in
Fig. 2), and edges of E can be colored using only A(G) colors.

The above lemma does not translate directly for the case A(G)=4, because of
the distinct possibility that the base edge of a partially colored triangle face is adjacent
to four colored edges forcing the same colors on both of the triangle’s sides (cf. face
8 in Fig. 1). The edge-coloring during the visit of the corresponding node’s father must
prevent an occurrence of this situation. The coloring process will have to preserve the
following property.

Property P4. A partial 4-edge-coloring of a 2-connected outerplanar graph G with
A(G) 4 has property P4 if and only if G does not have a colored edge (u, v) shared
by a partially colored face E such that three colors are used to color all edges incident
with vertices u and v.

In the breadth-first edge-coloring algorithm, property P4 can be endangered only
in two situations when coloring edges of the face corresponding to the father C of the
node E. The first one, in which C’s right brother would also be his leftmost brother
(in the circular orientation ofthe root’s children), is eliminated by rooting the associated
tree in a leaf node. The second situation can be reached only through the sequence
of face coloring (tree traversal) illustrated in Fig. 2. The node visiting order is
A... BC... DE. Coloring edges of C we have to consider two cases of C’s left
brother B, which can be either external (corresponding to the outer face of the graph)
or internal (see Fig. 2). In the former case, there is a choice of two colors for the first
(leftmost) edge of C. This guarantees that the next to the last (rightmost) edge of C
(edge a in Fig. 2) can be colored so as to preserve property P4 (with respect to face
E), namely by assigning it a color different from those assigned to edges c and d of
face A. In the latter case, when the color of the first edge of C is forced by the formerly
colored edges of A and B, we have additionally to consider the length of C. If C is
a triangle, then the property P4 might not be preserved. However, this property is not
necessary for maintaining the property P4 for coloring of E since C’s leftmost son
node (D in Fig. 2) cannot be interior. If C has length greater than 3, then there is
enough freedom in coloring its edges to preserve property P4. Thus, we have the
following Lemma.

LEMMA 2. Property P4 can be preserved in a partial coloring ofan outerplane graph
G with k A(G)=4 colors following the breadth-first order coloring algorithm.

An immediate corollary gives the desired statement about edge-coloring such
graphs.
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COROLLARY 3. Let a 2-connected outerplanar graph G with the maximum degree
A(G) 4 be partially A-edge-colored by a breadth-first coloring algorithm. The A-edge-
coloring can be extended to a face C ofG corresponding to the next-to-be-visited node of
T(G).

When A(G) 3, the property of a partial 3-edge coloring required to avoid forced
situations can be obtained directly from P4.

Property P3. A partial 3-edge-coloring of a 2-connected, outerplane graph O with
A(G) 3 has property P3 if and only if O does not have a colored edge e shared by
a not yet colored face such that the two colored edges adjacent to e have the same color.

LEMMA 4. Let O’ be a partially 3-edge-colored subgraph ofa 2-connected, outerplane
graph (3 with A( O) 3. Let this partial 3-edge-coloring have property P3 and be obtained
through the breadth-first coloring algorithm. Let C be the next-to-be-visited node of T( G).
The 3-edge-coloring of G can be extended to C preserving property P3.

Proof. First, let us assume that C is the first face of G to be colored and that it
has n edges. Let e be an edge shared by C and another face, C’. Such an edge always
exists since A(G) 3 > 2. We observe that the edges of C adjacent to e (or any other
edge shared by another face) do not belong to any other face, because of the degree
constraint. We assign color 2 to e and color other edges of C (say, clockwise) depending
on the value of n. If n-= 0 mod 3, then coloring edges by 1-2-3 (with e appropriately
included in the sequence) ensures property P3- If n 1 mod 3, then we color edges of
C by 1-2-3 starting with an edge adjacent to the initially colored e, but excluding e.
The only two edges that could violate property P3 are adjacent to e and thus belong
only to C, since A(G)< 4. If n 2 mod 3, we again color edges along C by 1-2-3
starting with an edge adjacent to e. This time, however, the three last edges of C (i.e.
f, g, h in Fig. 3) are colored differently, depending on adjacencies of f. If f is shared
with another face, then it is colored 3, with colors 2 and 3 assigned to the remaining
edges. Otherwise, the three edges are colored 2-1-3, respectively. Beside the edges
adjacent to e, the only possibly offensive edges in the former case are adjacent to f
and thus in no other face than C. In the latter case, only f and one edge adjacent to
e have adjacent edges assigned the same color. By the remark above, they are in no
other face and thus the property P3 holds. Next, consider a (3 with property P3 and
a face C corresponding to the next-to-be-visited node of T((3). Our inductive assump-
tion yields that the three colored edges of C are assigned colors 3-2-1. The same case
analysis as the one above proves that C can be colored to ensure property P3. Thus
(3 can be colored with three colors. D

2 2 2 2

0 2 mod 3

FIG. 3. Coloring the first face of G.

The amount of work necessary to color the edges of each face is proportional to
the length of that face. Therefore, the total time spent edge-coloring an outerplanar
graph is bounded by a linear function of the graph’s size. Preprocessing a given
outerplanar graph to obtain its rooted associated tree can also be performed in linear
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time (see Proskurowski and Systo [ 11 ]). Collecting the results of this section, we finally
have the following theorem.

THEOREM 2. The breadth-first coloring algorithm produces an optimal edge-coloring
of an outerplanar graph in time proportional to the size of the graph.
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PARALLEL ALGORITHMS FOR NONLINEAR PROBLEMS*
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Abstract. Multi-splittings of a matrix are used to generate parallel algorithms to approximate the
solutions of nonlinear algebraic systems. A parallel nonlinear Gauss-Seidel algorithm for approximating
the solution ofAu + d(u) =fwhere A is an M-matrix is introduced and studied. Also, a parallel Newton-SOR
method is defined for the problem F(u)= 0 where F’(u)= the Jacobian is an M-matrix. An illustration and
comparison of these methods with their serial versions is given. The speed-up on the Denelcor HEP parallel
processing computer is also recorded.
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1. Introduction. In this paper we discuss parallel algorithms (algorithms whose
parts may be executed simultaneously) for the problems"

(1) Au + qb u f where

A is an M-matrix,

(2)

b(u) (bi(ui)) with bi’RoR being continuous and nondecreasing,

u, b(u), fl.
F(u) 0 where

F’( u F% u)) is an M-matrix.

The importance of parallel algorithms is that on computers with parallel architec-
tures convergence may be obtained in a shorter time than on serial computers. The
main thrust of this paper is the development and study of two parallel algorithms
which may be used to approximate the solutions to (1) and (2). The first algorithm
(see (8)) generalizes the nonlinear Gauss-Seidel method. The second (see (16)) general-
izes the Newton-SOR method. We briefly describe these two serial methods.

The serial version of the nonlinear Gauss-Seidel algorithm for the approximation
of the solution of (1) is

(3) u7+l=rT(w) where

w =f E aou;+l E aOu,
j<i j>i

ri(z) a,z + i(z) w,

z r-(w) =the inverse function of r(z).

Under the conditions in (1) the iterative scheme in (3) converges to the unique solution
of (1) (see J. M. Ortega and W. C. Rheinboldt [6] and [7]).

The classical Newton method for approximating the solution of (2) is

(4) un+l ttn- F’(un)-lF(ttn),

* Received by the editors February 14, 1984, and in revised form September 15, 1984.
t Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27695-8205.
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or,
t/n+1 t/n _/,/n+1/2 where F’(u")u"+1/2= F(u").

If F’(u) is an M-matrix, then F’(u)= B(u)-C(u), where B(u)=-D(u)-L(u) and
C(u)=- U(u) is the Gauss-Seidel splitting, is a regular splitting. In this case we have
p(B(u)-lC(u)) < 1, and hence

F’(u)-1 (B(u)- C(g/))-1

(n(u)(t e(u)- C(u)))-
Z (B(u)-’C(u))’B(u)-’.
m=0

Then we may approximate F’(u) by truncating this series. This gives an approximation
of u "+/2 and, consequently, generates the serial version of the Newton-SOR method

(5)
n+l

U
M(n)-I

m=O
(B(u")-IC(u"))mB(u")-IF(u") where, for exarnple, M(n) =2n.

In [6], [7] and A. Sherman [10] it was shown if F’(u)= B(u)-C(u) is a weak regular
splitting of the M-matrix and other conditions, then the algorithm (5) will converge.
Furthermore, in [10] an error estimate was given (see (17) in Theorem 3).

There have been a number of papers dealing with parallel algorithms for linear
problems. One of the first papers was by F. Robert [8] where a parallel algorithm
based on a block iterative method was studied in the context of M-matrices. V. Conrad
and Y. Wallach [2] have introduced an algorithm which was studied in terms of strict
diagonal dominance. L. J. Hayes and P. Devloo [3] have recently used an overlapping
block iterative method. This is similar to the schemes studied in D. P. O’Leary and R.
E. White [5]. Some of this work is summarized in 2 in this paper. Other parallel
algorithms for linear problems are described in R. W. Hockney and C. R. Jesshope
[4] and in A. Sameh [9].

In 2 we review the results in O’Leary and White [5] on multi-splittings and
parallel algorithms for linear problems. Section 3 contains the parallel nonlinear
Gauss-Seidel algorithm, and 4 has the parallel Newton-SOR algorithm. The last
section contains an illustration and comparison of these algorithms to a problem which
evolves from a semilinear elliptic boundary value problem.

2. Parallel linear algorithm. Let S {1,. ., N} correspond to the nodes of the
algebraic problem Au =f. Suppose the nodes are grouped into K blocks where
S the union of Sk with k 1,. ., K. These blocks may be overlapping and usually
evolve naturally from the problem which generated the algebraic system. For example,
if Au =f comes from a partial differential equation on a rectangular grid, then the
blocks may correspond to the rows or columns in the grid. Another example is from
the finite element method where the blocks consist of the element nodes from groups
of elements.

Often these blocks generate either a sequence of splittings of A

A=Bk-Ck, k=l,’" ",K

or, a decomposition of A
K

A=.,Ak.
k=l
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In the latter case we may also generate a sequence of splittings of A by defining

Bk - Ak + Ek

where Ek is a nonnegative diagonal matrix

j#k

If each B exists, then we can define the algorithm

u k’n+l=- B- CkU" + B-f with u" u k’n.

Because Bk emphasizes the components of A which are relevant to the nodes in Sk,
this iterative scheme may converge very slowly. In order to accelerate the convergence,
we introduce the weighting nonnegative diagonal matrices Dk where E Dk --I. (We
will use the notation - Yk/(=.) Then we may weight each uk’"+ and compute the sum
as

u n+l .,Dkuk,n+l.

This leads us to state the following definitions.
DEFINITION. (lk, Ck, Dk) is called a multi-splitting of A if and only if
i) A Bk Ck where each B exists,
ii) E Dk I where each Dk --nonnegative diagonal matrix.

PARALLEL ALGORITHM. Let (Bg, Ck, Dk) be a multi-splitting.

(6) u+ (Y, DgB- Cg)u" + (Y, DgB-l)f

Hu" + Gf where H DgB- Cg and G --- E DgB-1.

Remarks. 1. We may use a SOR parameter to accelerate convergence

(6.1) u"+ (1 w)u" + w(Hu / Gf).

2. By using the properties of a multi-splitting we may write (6) as

(6.2) u+=u"-G(Au"-f).

Or, if the SOR parameter is used, then (6.1) becomes

(6.3) u"+*= u" wG(Au" -f).

3. The terms in algorithm (6) may be computed simultaneously; hence, we call
this a parallel algorithm.

In order to obtain convergence of (6), we must have p(H) < 1. This is, in general,
not true (see the example in [5]). Three different types of conditions (M-matrix,
symmetric positive definite, and norm) each will essentially imply convergence of (6).
These conditions are precisely stated in [5], but we restrict this paper to the M-matrix
condition. Recall that an M-matrix A (a0) is defined by the properties a0 _<- 0 for j
and A- ->_ 0. Also, A B C is called a weak regular splitting of A when B- >- 0 and
B-1C >= O. These two definitions are important because any weak regular splitting of
an M-matrix implies p(B-1 C) < 1.

THEOREM 1. IfA is an M-matrix and A Bk- Ck k 1," ", K are weak regular
splittings of A, then p(H) < 1.
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Examples. 1. Let K 2 and N 2.

A
-1 -1

When

then

Vqilen

then

Vrhen

then

_1,.)_(01
B- C1 0

and B-1C2

Wl-(10 00)and D:=(

H= and p(H)=1/2.

D1--(0 )and D2=( 1

0 0

o) =1/4.H=
0 1/4

and p(a)

D1 D2,

H=
1/4

and p(H)

2. Let A- D- L- U where D is a diagonal matrix, L is the strictly lower matrix
and U is the strictly upper matrix. Let A- (a0) be an M-matrix and Sk be blocks of
nodes where k 1,. ., K. Define the strictly lower submatrix

-ao, j<i and i,jSk,
Lk [0, otherwise.

Let A (D- Lk)--( U+ L- Lk) Bk Ck (see Fig. 1). Clearly, these are weak regular
splittings of A. Also, if K- 1 and Lk --L, then this is the Gauss-Seidel splitting; if
K- 1 and Lk--0, then this is the Jacobi splitting. Further, we restrict Dk’.

Let dk be the ith diagonal component of Dk.

Require dk 0 if i Sk.

Notation. Let b0 be real numbers,

Ybo the sum with respect to j s and j Sk,

E-bo the sum with respect to j < and j Sk,

Y+bo the sum with respect to j > and j Sk,
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A

FIG. 1. D, L, U and Lk.

Then the parallel algorithm (6) may be written in component form as

lg/k,n+ f ,Oaiju ,-aiju;,n+ +g a,.iu.i ]/aii,
(7)

u =gdkiu

This will be generalized to the parallel nonlinear Gauss-Seidel algorithm which will
be discussed in the next section.

3. Let A ,Ak and Bk =-- Ak + Ek where Ek is a diagonal matrix with components
ek. When Ck= Bk-A, then we have a sequence of splittings of A. This type of
decomposition arises when Ak reflect rows or columns of grid points for a domain of
a partial differential equation. The diagonal matrix is added to Ak so that each B
exists. Under the assumptions

i) 0 < --a kij--< -aij, # j and Ak (a),
kii) e/k + a > -ji ai,

iii) ek + a > a,,
it was shown in [5] that for any weighting matrices Dk the conditions of Theorem 1
hold. The essential properties of this type of decomposition are given in the following
definition, and it will be used in the discussion of the parallel Newton-SOR algorithm
in 4.

DEFINITION. Let A, Ak, Ekand Dk be square matrices. (Ak, Ek, Dk) will be called
a convergent dissolution ofA if and only if

i) A=,Ak,
ii) Ek, Dk >--0 are diagonal matrices,
iii) (Bk, Ck, Dk) is a multi-splitting of A where

Bk Ak + Ek and Ck Ek- ., Aj,
jk

iv) p(H) < 1 where H-= wZOkB-lCk.
Remark. If K 1, then any weak regular splitting of an M-matrix will be a

convergent dissolution. The reader should consult A. Berman and R. J. Plemmons 1

as a general reference on M-matrices and splittings.

3. A parallel nonlinear Gauss-Seidel algorithm. In this section we consider the
nonlinear algebraic problem (1). We assume A is an M-matrix, b(u) are continuous
and nondecreasing. When b(u)- 0, then we may apply the special parallel algorithm
(7). If b(u) 0, then we could apply the serial algorithm (3). The following algorithm
is a combination of (3) and (7). We shall use the same notations as in the description
of algorithm (7).
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PARALLEL NONLINEAR GAUSS-SEIDEL ALGORITHM. Let S={1,..., N)=the
union of Sk. Let ri(z)=-aiz+ (z)= w and r-l(w) z. Assume Edk 1, dk_-->0 and
d k 0 for sk. Let Sk.

Ui"n+l ry l(wi) where w,=f -Eaou;-.-aou’"+l-E+aou.,(8) ?+1,,, -+

An SOR parameter may be used as follows

(8.1) u?+’ (1 w)u? + wdittn+l.

THEOREM 2. Let A be an M-matrix and qb" - be continuous and nondecreasing.
Then algorithm (8) converges to the unique solution of (1).

Proof By [7, Thm. 13.1.5], problem (1) has a unique solution and the serial
algorithm (3) converges to the solution. Let 0_-< Lk <= L be the lower triangular matrix
associated with the block Sk (see 2, Ex. 2, in this paper). Then the M-matrix A has
the multi-splitting

A= D Lk U+ L- Lk Bk Ok,

and for each k this is a regular splitting of A. Since A is an M-matrix, the assumptions
of Theorem 1 hold, and hence p(H)< 1.

The argument that follows is similar to the serial case in [7]. Since a, > 0 and
b(z) are continuous and nondecreasing, then r,(z) are continuous and strictly increas-
ing. Also, the following important inequalities are valid

a,,lz- z+l--< r, Cz)- r,(z+)l.
(9)

a,lrT(w)- r?(w-)l--< Iw- w-I.
We use the notation forft that f=(f) where f =If]+ =the ith component off
Then (8) may be written as

(10) up’"+1= rT, l(w,) where w, =[f+(U+ L- Lk)U" + Lkuk’"+l],.
Let u be the solution of (1) and use the fact that (Bk, Ck, Dk) is a multi-splitting to obtain

(11) u,= r-l(w") where w=[f+(L+ U-Lk)U+ LkU],.

Then lines (9), (10) and (11) combine to give

a,,lu, ’"+’- u,l--< I[(L+ U- Lk)(U" U)+ Lk(ttk’n+l- U)]/I
(12)

k,n+l lgl]-ul],/[t lu

where U+ L- Lk, Lk >= O. Or, (12) in matrix form is, for Sk,

(13) [(D-t)lu’"+l-ul],<-_[(U+t-t)lu"-ul],.
Let m Sk and note that the mth row of D-Lk has only one nonzero component,
namely, the diagonal component. Consequently, (13) may be written as, for

(14) lu"+l-u,l<=E(D-t)-’(U+t-t)lu"-ul],.
Since for e Sk and Ed 1, we have from lines (8) and (14)

(15) <= [,Dkn1Ckltl
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Note (15) is independent of k, and by mathematical induction we have

__<H"lu-ul.
Since H_-> 0 and p(H)< 1, algorithm (8) converges to the solution of (1).

4. Parallel Newton-SOR method. Let F" Rt - RN and F"v for 1, , N
be the component functions of F. Let F’(u)=((u)) be the N x N Jacobian, the
derivative matrix, of F. Consider problem (2) and suppose F(u) EFk(u) (EFt(u))
is a decomposition of F(u). For example, if F(u)= Au-f and A Ak, then define
Fl(u) Au- and Fk(u)= Aku for k 2,..., K. In this case algorithm (6) has the
form

u"+l=u"-wG"F(u) where

G, EDkBk(U")- and

Bk(U) (Fk(u)+ EkU)’.

Remarks. 1. If K 1, w= 1.0 and Ek =0, then B(u) F’(u) and we retrieve
Newton’s method.

2. Bk(U)- can be viewed as a crude approximation of

F’(un)- (Bk(Un)(I Bk(Un)-lCk(Un)))-1

=(Zm=o(Bk(un)-lCk(un))m) Bk(un)-l"

If the series is truncated after m =0, then F’(un)-1 B(u")-1.
DEFINITION. Consider the nonlinear problem (2). A parallel Newton-SOR

algorithm for approximating the solution is given by (16). Let F(u)= ZF(u) and let
F’(u) B(u)- C(u) for k 1,. ., K be a weak regular splitting of A where B(u)
may be defined as (F (u) + Eu)’. Let 0 m M(m) 1, e.g. M(m) 1 or m or 2,

B.n B(un),

C,. C(Un),

L F(u")-(.. C,n)U F(un) F’(un)u ",

F.(u) (,. C,.)u +L F(u n) + F’(u")(u un),

n+l,0 n
(16) un+l"m+X Un+x’- wD.V.(un+l"m),

un+U"+1’) whereOmM(n)-I and lw<2.

Notation. The iteration in (16) with respect to m will be called the inner iteration.
The iteration with respect to n will be called the outer iteration. The total number of

,-1
M(m). In paicular, when M(m)= 2m,inner iterations for n outer iterations is =o

then the total number of inner iterations is 2n- 1.
Remarks. 1. If M(n)= 1 and F(u)= Au-f then (16) is (6).
2. If M(n)> 0, then we are just using a higher order approximation of F’(u")-.
3. If M(n) is large, then there will be a smaller number of function evaluations.
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4. If F,(un+l’m)=o, then u"+’m= u"-F’(u")-IF(u) is just the next Newton
iteration. Since this is the "best" one can hope for, the inner iteration should be
terminated.

Theorem 3 establishes the convergence of algorithm (16) and gives estimates on
the rate of convergence. In particular, line (17) implies superlinear convergence when
M(n) -> oo. The proof of Theorem 3 is nearly identical to the proof given in A. Sherman
10] where K 1. The asumptions used in this paper are similar, and assumptions 1,

2 and 3 are identical to Sherman’s first three assumptions. The choice of norm and
constants to," ", r5 will be explained in the sketch of the proof.

Assumptions. Let F: R --> Rv with R cR bounded. Let u* R and F(u*) 0.
1. F is differentiable on So---{u: [[u-u*ll < to}.
2. F’(u) is nonsingular at u u*.
3. There exists an L> 0 such that for u So

F’(u)- F’(u*)II Lllu u*ll.
4. F’(u) Y.Ak(U) Bk(u)- Ck(u) where

Bk(U)=-- Ak(u)+ Ek and Ck(U)=-- Y’. A(u)+ Ek.
jk

5. Assume for k 1,. ., K Bk(U are nonsingular at u u*.
6. (Ak(U*), Ek, Dk) is a convergent dissolution of F’(u*).
7. For k 1,. ., K there exist Lk 0 and r5 > 0 such that for

we have

THEOREM 3. Let assumptions 1-7 hold and F(u*) O. Let M(n) bepositive integers
and define

m=max {1, M(O)}U M(n)- 2 M(l)’n=l,2,...
/=0

Ifm- < oo, then there exist an r > 0 and c < 1 such thatfor u S {u u*ll < r}, w 1.0
and u+1 given by (16) we have

(17)

Sketch of the proof. We simply show that Theorem 3 falls into the context of
Sherman’s theorem. The first step is to show that algorithm (16) has the form given
in Sherman’s paper where H(x) is replaced by Hn Y.DkB-,, Ck,, and B(x)- is replaced
by G, -= ,DkB-1k,,. Consider (16) with O m <-_ M(n).

un+l’m un+l’m-’-Gn((Bk, Ck,n) un+l’m-1 +fn)

un+l,m- __.,Dk(un+l,m-l__ Hk, un+l,m-1 ..[- B-lfn), Hk,,, =- B k-,1. Ck,.
anun+l,m-l__Gnfn

m-1

-H.mu Y H
l=O

Let m M(n).
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un+l,M(n) H-)u-

M(n)-I

/--0

M(n)-I

M(n)-I

1=0

Ht,[(I- H,)u" + Gnf,]

Hn[ED,(I B- Ck,,,)u

+ Y,D,Bln(F(u n) (Bk, Ck,n)Un)]

M(n)-I
un-- E Hn[,D,B-{,lnF(u")]

/=0

M(n)--I

(18) =un- Y HlnGnF(un).
/=0

Line (18) has the same form as line (2.6) in A. Sherman [10].
The second step is to discuss assumptions 4, 5, 6 and 7. The choice of r5 in

assumption 7 is to be smaller than ro," , r4 which are now defined. (Their existence
is referenced in [10].). r _-< ro is defined so that F’(u) is continuous and nonsingular
on S {u" [[u ug[[ < r}. r2 -< r is defined so that on S2 {u: [[u lggJ[ < r2} Newton’s
method converges Q-quadratically. r3--< r2 is defined so that each B(u) is continuous
and nonsingular on S3=-{u" [[u-u*[l<r3}. Since assumption 6 holds, we have
p(H(u*))<l. Consequently, there is a norm [1"[[ such that [[H(u*)[[<l. Adjust
ro,"" ", r3 so that the above results hold for this new norm. By a theorem in Ortega
and Rheinboldt [7, pp. 350-351] there is a r4 <-- r3 such that for u S4 {u: Ilu u’l[ < r4}
and u "+1 given by (18), i.e. (16), converges to u*.

The third step is to establish the error estimate in (17). A careful inspection of
Sherman’s proof yields that it remains only to show the following"

There exist an L*> 0 and a suitable neighborhood of u* such that for u in this
neighborhood we have

(19) IIH(u)-H(u*)ll Z*llu- u*ll.

Since Assumptions 3, 4 and 5 hold, Bk(U)-ICk(U) I-Bk(U)-IF’(u) is continuous in
a neighborhood of u*. Hence, H(u)= EDkBk(U)- Ck(U) is continuous in a neighbor-
hood of u*. Assumptions 4 and 5 imply IIB(u)-ll is uniformly bounded in some

neighborhood of u*. Assumptions 3 and 7 imply Ck(U) is Lipschitz continuous in

some neighborhood of u*. Consequently, for u in some neighborhood of u* there
exists Lk* such that

IlU(u)-’C(u)- B(u*)-’C(u*)ll L*llu u*ll.

Thus, (19) must hold for some L* and u in some neighborhood of u*. This completes
the sketch of the proof.

5. Numerical examples. In order to illustrate and compare the above algorithms,
we consider the algebraic problem which evolves from a semilinear elliptic partial
differential equation. The following problem is discretized by using the finite difference
method.
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-(KlU,,),-(K2uy)y =-ge" on 1,

u=x2+y2 onOl’ where

K1 1 + X
2 / y2,

K2 1 + e + ey,
g 2(2 + 3x2 + y2 + e + (1 + y)eY)e-x2-y2

chosen so that u x2/ y2 is the unique solution,

12 (0, 1) x (0, 1) [-25, ] x [, ] (see Fig. 2),

0fl boundary with two parts.

In the finite difference method a rectangular grid is used with Ax Ay 1/nd h
where nd- the number of nodes in each direction. Unless otherwise indicated all the
computations are for nd 9. If nd- 9, then the number of unknowns is 92- 32-. 72;
if nd 19, then the number of unknowns is 192- 52- 336. If K 1, then the algorithm
must be serial ((3) or (4) or (5)). If K 24 (for nd -9), then the blocks are from the
12 rows and the 12 columns. In this case the numerical scheme is a variation on the
ADI method. If K =4, then the blocks are similar to the block S1 whose 21 nodes are

given by the dots in Fig. 2. The weighting matrices are given by d k 1/NK where NK
is the number of elements in the set {k: Sk, k 1, , K}. In all the computations
convergence was defined by the 12 error < h2.

O

0 2

FIG. 2. 12 with nodes of S.

Table 1 indicates the number of iterations needed for convergence of the serial
algorithms. The Newton and Newton-SOR computations were taken from A. Sherman
[ 10]. In order to compare the serial and the parallel algorithms’ computing times, one
must consider (i) the operations for each serial iteration, (ii) the operations needed
for each parallel iteration divided by the number ofblocks, (iii) the number ofiterations
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TABLE
Serial algorithms

Algorithm K w Number of iterations

Newton (3) 1.0 2
Gauss-Seidel (4) 1.2 33
Gauss-Seidel (4) 1.3 27
Newton-SOR (5) 1.4 3 outer (7 inner)

needed for convergence, and (iv) the overhead time for the parallel computer. Unfortu-
nately, the latter significantly depends on the particular computer (see R. W. Hockney
and C. R. Jesshope [4]). The results which are summarized in Tables 2-4 do not
indicate the parallel overhead; they were computed on a serial computer. Table 5
contains some results obtained on the Denelcor HEP computer at Argonne National
Laboratory.

Table 2 contains the iteration counts for the parallel nonlinear Gauss-Seidel
algorithm (8). Note that the iteration count for K =4, w 1.3 is less than the serial
nonlinear Gauss-Seidel algorithm (3) for K- 24 and w 1.3.

TABLE 2
Parallel nonlinear Gauss-Seidel

K w Number of iterations

24 1.0 70
24 1.2 58
24 1.3 132
4 1.0 29
4 1.2 23
4 1.3 21

4(nd 19) 1.3 109

Table 3 lists the iterations needed for the parallel Newton-SOR algorithm (16)
to converge. In both cases M(m)= 2m, and so the total number of inner iterations is
2n- 1 where n the number of outer iterations.

TABLE 3
Parallel Newton-SOR

K w Number of iterations

24 1.3 4 outer (15 inner)
48(nd 19) 1.3 7 outer (127 inner)

Table 4 illustrates the superlinear convergence which is indicated by (17) in
Theorem 3 for the parallel Newton-SOR method with w 1.0. In this table nd =9,
K 24, M(m) 2" and w 1.3.

All the above results were simulated on a serial computer, and they only measure
the convergence of the algorithm with no parallel overhead. The following numerical
experiments were done on the Denelcor HEP multiprocessor at the Argonne National
Laboratory. This particular machine consists of one process execution module (PEM)
and simulates independent processors by pipelining instructions. The maximum
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TABLE 4
Convergence rate for parallel Newton-SOR

n outer iterations 12 error

3.90
2 1.64
3 2.97 x 10-4 9.51 x 10-3

effective use of this machine normally occurs when 8 to 12 processes are executing
concurrently. We consider the same partial ditterential equation, but we changed the
domain to f (0, 1) (0, 1) (with no hole). This was done so that we could experiment
with equal blocks where K 1, 2, 4, 8, 16. The convergence criteria was changed to
the relative error being less than 0.0001 at each node. In order to measure the
convergence of the algorithm and to measure the parallel overhead of the HEP, we
introduce the following parameters.

Parallel Algorithm Index (PAI)-= (11 U1)/(Ik Uk)
Ik iterations needed for convergence with k equal blocks
Uk unknowns in each equal block.

Speed Up (SU) Eo/Ek
Eo execution time for serial algorithm with no parallel code
Ek- execution time for parallel algorithm with k blocks.

Since the blocks are equal, the products in PAI reflect the amount of work being done
by each processor. When PAI is greater than 1.0, a savings in computing time by the
parallel algorithm is indicated, provided the parallel overhead is ignored, i.e. the
parallel overhead is assumed to be zero. The SU reflects both the convergence of the
parallel algorithm and the parallel overhead. Thus, the difference PAI-SU may be
viewed as a measure of the parallel overhead. For K 1, 2, 4, 8, 16 these values are
tabulated in Table 5. The rapid increase of PAI- SU when K goes from 8 to 16 results
from the HEP at Argonne only being able to simulate 8-12 independent processors.

TABLE 5
PAI and SU

K Iter. for conv. PAI SU PAI-SU

1" 57 1.0 1.0 0.0
57 1.0 0.999 0.001

2 58 1.769 1.617 0.152
4 63 2.931 2.337 0.594
8 69 4.461 2.915 1.546
16 70 7.329 2.919 4.410

* means that there is no parallel code
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BALLOTING LABELLING AND PERSONNEL ASSIGNMENT*

W. D. WEIr-, Y. Z. CAI,, C. L. LIU AND A. M. ODLYZKO

Abstract. A personnel assignment problem is formulated as a problem of embedding a partially ordered
set into another one. In this paper, an optimal solution to a special case in which the partially ordered sets
are trees and forests is presented. Also, a related enumeration problem is studied.

Key words, combinatorial optimization, matching, balloting sequences

1. Introduction. The following problem was studied in Megiddo and Tamir [1]:
n 2m airplane pilots, linearly ordered by seniority, are to be divided into m teams
each of which consists of a captain and a first officer. It is stipulated that the captain
must have seniority over the first officer in each team. For each pilot, there is a measure
of her effectiveness as a captain and a measure of her effectiveness as a first officer.
We seek an assignment ofthe pilots that will maximize the total measure ofeffectiveness.
Although the problem can be stated as a problem of maximum matching, it can also
be formulated in a more general setting.

Let (T, -<) be a set of personnel ordered by the partial ordering relation <=. Let
(P, =<) be a set of positions ordered by the partial ordering relation -<. We assume that

TI lel. An assignment d is a one-to-one colrespondence from T to P. An assignment
$ is said to be feasible if Pi -< Pj implies that $-l(pi) _<_ $-l(pj). The positions in P are
divided into r types, type-0, type-l,. ., and type-(r-1). Let h be a function from P to
{0, 1,2,..., r-l} such that h(p) specifies the type of p. Let fo, f,’’" ,fr- be r
functions from T to the reals such that f(t) is a measure of ti’s effectiveness when t
is assigned to a type-j position. Consequently, the total measure of effectiveness of an
assignment is given by

(1) E fh<,<,,))(ti).
tie T

In such a formulation, the problem of dividing pilots into rn teams stated above
is a special case in which T, <=) is a linearly ordered set where =< is the linear ordering
relation according to seniority, (P, =<) is that shown in Fig. 1, and there are two types
of positions corresponding to that of a captain and that of a first officer.

0 0 0 0

FIG.

The problem of determining a feasible assignment that maximizes the total measure
of effectiveness is an NP-complete problem, as a matter of fact, even when (T, -<) is
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restricted to be a linearly ordered set and the value of r is restricted to 2 [2]. In [2],
the case when (T, -_<) is a linearly ordered set and (P, _-<) belongs to a special class of
partially ordered sets was studied. In this paper, we study a special case in which
(T,-<_) is a tree.

2. An assignment problem. Let (T, -<) be a rooted tree. Let (P, -<) be as shown in
Fig. 2. Namely, (P, -<_) is m copies of a rooted tree that has an internal node (the root)
and k leaves. The positions corresponding to the roots are type-1 positions, and the

0 0 0 0 0 0 0 0 0

FIG. 2

positions corresponding to the leaves are type-0 positions. Let g be a function from
T to the reals such that

g(t,) fl( t,) fo( t,).

Then the expression in (1) can be rewritten as, g(ti)+,fo(t,).
t ti

h(p(ti))--1

Consequently, an optimal feasible assignment is one that maximizes the quantity

E g(t,).
t

h((t,))=l

Given (T, _-<) and (P,-<_), (T, _-<) is said to be feasible if there exists at least one
feasible assignment b from T to P. Clearly, our optimization problem is meaningful
only when (T,-<_) is feasible. We now proceed to show how to determine whether
(T, -<) is feasible, and if so, how to determine an optimal feasible assignment.

Given a tree (T, _<-) we assign to each node two numbers as follows:
(i) For a leaf t, p(t) -k, q(t) 1.
(ii) For an internal node

p(t)= E q(v)-k,
is of

p(t) if p(t) -_> 0,
q(t)=

p(t)/k+l ifp(t)<0.

A node is said to be a negative node if p(t)< 0. A node is said to be a nonnegative
node if p(t) _-> 0.

LEMMA 1. For any t, q( t) >- O.
Proof The lemma is obviously true for a leaf t. Inductively, for an internal node

t, since q(v) _-> 0 for every son of t, p(t) _-> -k. It follows that q(t) ->_ 0.
Let (T, _<-) be a tree, and be any node in T. We use Tt to denote the subtree of

T rooted at t. Let N(Tt) denote the total number of nodes in Tt and N1(Tt) denote
the total number of negative nodes in Tt. We have

LEMMA 2. For any node in T,

1
NI(T) k/i [k. N(Tt)+ q(t)].
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Proof. According to the definition,

q( t) -k . (number of leaves in T,)

-k* (number of internal nodes in T,)+(k+ 1)* NI(Tt).

That is,

(k+ 1). Ni(T,) k. N(T)+ q(t).

A (0, 1)-labelling of (T, <-) is a mapping from T to {0, 1}. Let b be an assignment
from T to P. We use hb to denote the (0, 1)-labelling of (T,-_<) such that hb(ti)
h(c(6)), hdp will be referred to as the (0, 1)-labelling of T induced by th. We have

LEMMA 3. Let d be a feasible assignmentfrom T to P. Then, for the (0, 1)-labelling
hdp, in any subtree T the number of O’s in T is larger than or equal to k times the number

of l’sin Tt.
Proof. The lemma follows immediately from the fact that b is feasible.
LEMMA 4. Let b be a feasible assignmentfrom T to P. Then, for the (0, 1)-labelling

hb
(i) The number of O’s in T is equal to k times the number of l’s in T.
(ii) For any subtree T,, the number of O’s in Tt is larger than or equal to the number

of negative nodes in Tt.
Proof. (i) is obvious.
(ii) can be proved by induction. If is a leaf, clearly, (ii) is true. Inductively, let

be an internal node. If is a nonnegative node, since (ii) is true for all subtrees
rooted at the sons of t, (ii) is also true for T,. if is a negative node, let us examine all
subtrees rooted at the sons of t. If in any one of these subtrees, (ii) is satisfied with
strict inequality, that is, the number of O’s in that subtree is larger than the number of
negative nodes in that subtree, then (ii) is true for T,. On the other hand, consider the
case in which in each subtree rooted at a son of t, the number of O’s in that subtree
is equal to the number of negative nodes in the subtree. If h(d(t))- 1, we have

number of O’s in T,

But p(t) < 0 implies that

Thus,

Y number of O’s in To
visasonoft

Nl(To)
visasonoft

1 [k, E N(To)+
k + 1 visasonoft

q(v)].
visasonoft

q(v)<k.
visasonoft

1 E ] k
number of 0’s in Tt<k+ i k. , N(To)+k =k+’iN(Tt)is of

or

number of O’s in Tt < k.(number of l’s in Tt),

contradicting Lemma 3. Thus, we must have h(b(t))=0. In that case, (ii) follows
immediately.

We have now a criterion for (T, <=) being feasible.
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THEOREM 1. (T, _-<) is feasible if and only if q(t)=O where is the root ofT.
Proof. Suppose T, -<_) is feasible. Let hb be a (0, 1)-labelling induced by a feasible

assignment th. According to Lemma 2 and (ii) in Lemma 4,

1
number of O’s in T>-_N(T)=k+ l[k.N(T)+q(t)].

On the other hand, according to (i) in Lemma 4,

k
number of O’s in T

k + 1
N(T).

It follows that q(t)=0.
On the other hand, we shall show inductively that (T, <_-) is feasible if q(t)-0.

Let Vl, rE," ", vi denote the sons of t. According to the definition,

q(v) + q(v2) +’’" + q(/)i) k.

For 1 <_-j<-i, we show how we shall choose q(vj) nodes from Tvj. We shall first
remove from Tvj any subtree rooted at a node with the value of its q-function being
0. Note that the removal of such subtrees does not alter the value of the q-function
at each node. It follows that we can always find a path from vj to a leaf in the resultant
tree such that the value of the q-function at every node in the path is larger than 0.
Removal of this leaf from the tree will reduce the value of the q-function of every
node in the path by 1 and will not alter the value of the q-function of the other nodes
in the tree. Such a step can be repeated q(vi) times until the value of the q-function
at vj becomes 0. Now, by the induction hypothesis, all subtrees rooted at nodes with
the value of their q-functions being 0 are feasible. Furthermore, the root of T, together
with the q(vl)+ q(/)2) -I-’" "-t-q(v)= k nodes removed as described above, can be
assigned to a rooted tree with k leaves.

Let p be a (0, 1)-labelling of (T, -<). p is said to be a balloting labelling of (T, =<)
if according to p

(i) The number of O’s in T is equal to k times the number of l’s in T.
(ii) For any node t, the number of O’s in Tt is larger than or equal to the number

of negative nodes in T.
LEMMA 5. Let p be a balloting labelling of T, <-). Then there is afeasible assignment

b from T, <-) to P, <-_) such that hb is equal to p.
Proof. Let be any vertex in T. In T, according to the labelling p,

k
number of O’s in Tt > N(Tt) > N(T).=k+l

Thus

number of l’s in Tt <- N(Tt)-
k 1

k+IN(T)=k+iN(T).
It follows that

(2) number of 0’s in T -> k (number of l’s in T).

We now show how to construct a feasible assignment from (T, =<) to (P,-<) by
showing how each vertex in T such that p(t)= 1 can be matched with k vertices

The reason for such a choice of terminology will become obvious later.
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t/2," tk such that p(t) p(t2) p(tk) 0 and t_-< t, _-< t2," <--_ tk. We
use the following algorithm:

(i) Initially, all vertices in T are unmarked.
(ii) Let be a vertex in T such that is unmarked, p(t)-- 1, and T, contains no

other vertex t’ such that t’ is unmarked and p(t’)= 1.
(iii) According to (2), there are k or more unmarked vertices in T,, t, rE,.

such that p(t) p(t2) p(tk) 0. Match with t, t2," , tk, and mark
t, t, rE," ", tk.

(iv) Repeat (ii) and (iii) until all vertices in T are marked. I-1

Lemmas 3 and 4 form the basis of an algorithm for determining an optimal feasible
assignment from (T,-<) to (P, _-<), since a balloting labelling of T, p, that maximizes
the quantity

TieT

will yield a (not necessarily unique) optimal feasible assignment. We use the following
algorithm to determine such a balloting labelling p.

(i) If is a leaf, set p(t)= 0, and mark t.
(ii) Let be a negative internal node such that in Tt there are no unmarked

negative nodes. Among all nodes in Tt that have yet not been labelled by
choose a vertex v such that

g(v)= min g(t,),
ti6 Tt

is not labelled

label p(v)=0, and mark t.

(iii) Repeat (ii) until all negative internal nodes are marked.
(iv) Label all remaining nodes with 1.
As an illustrative example, consider the tree (T, _-<) shown in Fig. 3a, where the

number associated with each node in T is the value of g(t), and the forest (P, <_-)

9

6 14
1 13

1

()

0 00 00 00 00 00 00 0

(b)
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shown in Fig. 3b, where the number associated with each node p in P is the type of
position p. Fig. 4a shows the value ofp(t) at each node. Fig. 4b shows the (0, 1)-labelling
hb corresponding to an optimal feasible assignment b.

0

/ -2 -2 -2 -2 0 0 0 0

-2 -2 0 0

() (b)

FIG. 4

3. An enumeration problem. A balloting sequence is a sequence of equal numbers
of O’s and l’s such that in any prefix of the sequence the number of l’s is larger than
or equal to the number of O’s. Equivalently, in any suffix of a balloting sequence the
number of O’s is larger than or equal to the number of l’s. We generalize the notion
of a balloting sequence to that of a balloting labelling of a tree. In particular, we are
interested in counting the number of balloting labellings of a rooted, regular, full k-ary
tree T. The following lemma will make it more obvious that the notion of a balloting
labelling is a natural extension of a balloting sequence.

LEMMA 6. Let p be a (0, 1)-labelling ofa tree (T, <-). Then p is a balloting labelling
if and only if

(i) The number of O’s in T is equal to k times the number of l’s in T.
(ii) For any node t, the number of O’s in Tt is larger than or equal to k times the

number of l’s in Tt.
Proof The if part is almost identical to the proof of Lemma 4 (simply replace hb

by p). The only if part was included in the proof of Lemma 5. ]

Thus, indeed, for the case k 1, the number of balloting labellings becomes the
famous Catalan number. A (0, 1)-labelling of a tree such that only the condition in
(ii) of Lemma 6 is satisfied is referred to as an unbalanced balloting labelling.

We are not able to obtain a closed form expression for the number of balloting
labellings of a rooted, regular, full k-ary tree. However, our development in 2 enables
us to carry out a recursive computation. We shall illustrate the computational procedure
for the case of binary trees.

Let T denote the rooted, regular, full binary tree of height i. Let s(n, m) denote
the number of unbalanced balloting labellings of T2n+l with NI(T2n+I)+ m O’s. Let
r(n, m) denote the number of unbalanced balloting labellings of T2, with NI(T2,) / m
O’s. Note that s(n, 0) is the number of balloting labellings of the rooted, regular, full
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binary tree of height 2n 4-1. Also, note that

and

LEMMA 7.

s(n,m)=
ml+m2=m--1

r(n,m)-
ml+m2 m+l

Proof Note that

s(0, O)= 1,

s(0, 1)= 1,

s(0, i) 0 for i>_-2,

s(n, i)=O, r(n, i)=O for i<0.

r(n, m,)r(n, m2)+ Z
ml+m2

s( n l, m)s( n l, m) +

r(n, m,)r(n, m2),

NI(T2.+l) (22"+2-1),
NI(T2.) 1/2(22"+2-1),

NI(T2._l) 32-(22" 1).

s(n-l, ml)s(n-l, m2).

R.(z) Y r(n, rn)z".
m>_O

According to Lemma 7

Let

S.(z) , s(n, m)z’,
m_O

The lemma follows from examining the two possibilities of labelling the root of T2.+1
(and T2.) with a 0 and a 1, respectively. [3

Lemma 7 enables us to compute s(n, rn) and r(n, rn) recursively. For example,
we have computed:

s(0, 0)= 1,

s(1, 0) =32

s(2, O) (34 * 7)2,
s(3, O) (315 * 73 * 331)2,

s(4, O) (360 * 711.11 * 3313 7417)2,

(3) s(5, O) (3238.744.113.61.33111.74173.312781459)2

s(6, 0)--(3951"7174. 1111"613"33143"741711
3127814593 * 25953749 * 510438906725663)2,

s(7, O) (33801 * 7694 * 1143 "6111. 331171 g 741743.3127814591
259537493. 5104389067256633. 5* 103" 563

12135746036357929594641013887859237891177)2,

s(8, O)= 7.57631795308851224* 1026142.
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(4) S,,(z) zR(z)+ R(z),
(5) Rn(z Z-I[S2n_I(Z) S2n_l(0)] -- S2n_l(Z).

Combining (4) and (5), we obtain

(6) S,,(z) (z + 1)[(1 + z-)S2,,_,(z)- z-"- S,_,(0)]2.2
The equation in (6) shows that

s(n, O)= s(n- 1, 0)2[s(n 1, 0)+ 2s(n- 1, 1)]z-> s(n 1, 0)4,
and

S( ’/, 0)4-n s(n 1, 0) 4-(n-l),

Therefore, s(n, 0)4-" is an increasing function of n, and the limit

lim s(n, 0)4-"

exists.
Using any one of the values of s(n, 0) in (3), we can obtain a lower bound of

s(n, 0). For example, we have computed:

s(n, 0) _>- (2.496937)4" for n _>- 5,

s(n, 0)->_ (2.503241)4" for n>=6,

s(n, 0) _>- (2.505582)4" for n -> 8.

On the other hand, we can also compute an upper bound of s(n, 0). From (6) we
have

(Z-I- 1)3
(7) S,,(z)<- z2 S,_l(z)4 forz>0.

Applying (7) repeatedly, we obtain

that is

Sn(Z)<[(Z’-I)3] l+4+42+’’’+4n-nO-I

’2 ’J Sno(Z) 4n-nO

Z2/3 1 1--4n-n0
nO

z + 1 ] 4n-nO

S.(z) <- Z.,/3 S,,o(Z)

rz+,, ] 4’n-nO

(1 + z) [ Z2/3 S"(z)

for no--< n and 0 < z < 1.

Since from (6) we have s(n, 0)<= S,(z) for z >0

s(,o, ./ s,(zl for no-<-n, 0<z<l.

If s(n, 0) is known for 0-< n-< no-1, then (6) enables us to compute S,,o(Z) for
any given z > 0. For no 6 and z 3 * 10-3 we obtain

s(n, 0) =< (2.505992)4"

for n-->6. Using the numerical values in (3) for s(n, 0) for n =0-5, we confirm that
the bound is actually valid for all n -> 0.
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For no 9 and z 2.5.10-4, we obtain a slightly tighter bound.

s(n, 0) -<_ (2.505786)4", n _>- 0.

4. Remarks. The problem studied in this paper can also be formulated as a matroid
optimization problem. For a rooted tree (T,-<) and any integer k > 0, let denote
the family of all subsets F of T such that for every node t T, k. Tt tq F]-< Tt- F
where T is the set of all nodes in the subtree rooted at t. (Note that in the terminologies
of 2, each subset F corresponds to a (0, 1)-labelling of T in which the nodes in F
are labelled 1.) It is not difficult to show that is the family of independent sets of
a matroid on T. Thus, our optimization problem becomes that of finding a maximum
weight independent set of size TI/(k+ 1), which can be solved using the "greedy"
algorithm for matroids. (We are grateful to a referee who pointed out to us such a
formulation.)

It should also be noted that we solve in this paper only a special case of an
assignment problem. The case in which (P, <-) contains trees of height larger than 1,
and the case in which there are more than 2 types of positions are unsolved. Such
cases will probably require the development of new methods of solution other than
that presented here.
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GENERALIZED BINARY BINOMIAL GROUP TESTING*

NADER MEHRAVARI"

Abstract. The conventional group testing problem is that of correctly classifying each member of a
given population as defective or non-defective. A conventional binary group test is a simultaneous test on a
subset of the population with only two possible outcomes. A "good" reading indicates that all the members of
the subset are non-defective, and a "bad" reading shows that there is at least one defective member in the
subset. The goal is to design an efficient algorithm to correctly identify all the defective members of a

population. In this paper, we introduce the idea of generalized binary binomial group testing. The
generalized group tests provide different information about the number of defectives in a group than does the
conventional group test. In particular, motivated by problems in finite-user random-access communication
systems, we investigate the following two generalized binary group tests: the so-called conflict/no conflict test
which indicates whether there is at most one defective item in a group, and the so-called success/failure test
which indicates if there exists exactly one defective item in a group. We introduce and analyze group testing
procedures for the above generalized group testing problems. The proposed procedures perform better than
the scheme of testing each item individually and the algorithms based on binary tree search methods.
Optimality of the proposed algorithms is also discussed.

Key words, group testing, blood testing, random-access communication

AMS(MOS) subject classifications: 62, 60, 5

1. Introduction. The problem of conventional group testing is concerned with
correctly classifying each of the units in a population of size M as defective or non-
defective. In the binomial group testing problem, each unit represents an independent
Bernoulli trial with probabilities p and q-l-p of being defective and non-defective,
respectively. A conventional binary group test is a simultaneous test on n units with
only two possible outcomes. A "good" reading indicates that all n units are non-
defective, and a "bad" reading shows that there is at least one defective unit among the
group. The goal is to design sequential testing procedures that minimize the expected
number of group tests. Hereafter, the above problem will be referred to as
conventional binary binomial group testing or simply conventional group testing.

Group testing was first introduced during World War II by Dorfman [1].
Dorfman introduced a method that identified all syphilitic men called up for induction
using up to 80 percent fewer blood tests than in the previously-employed method of
testing each individual. In Dorfman’s scheme, after the blood samples were drawn,
they were pooled in groups of n, whereupon groups, rather than individuals, were
subjected to the test. If none of the n individuals in the group were syphilitic, then the
test would be negative. If, however, one or more of the individuals in the group
carried the syphilitic antigen, the test would be positive. In this latter case, the
individuals in that group had to be tested individually. Dorfman computed the most
efficient group size, n, and showed that on the average, his scheme required fewer
blood tests.

Sterrett [4] improved upon Dorfman’s procedure by testing individual members
of a defective set only until a defective unit was found. (A defective set is one which is

*Received by the editors September 1, 1983, and in final revised form February 15, 1985. This paper
was typeset at AT&T Bell Laboratories, Holmdel, New Jersey, using the troff program running under the
UNIX(R) operating system. Final copy was produced on July 10, 1985.

’AT&T Bell Laboratories, Holmdel, New Jersey 07733.
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known to contain at least one dcfcctive item.) Then the remaining units from that
defective set were pooled and tested. This was continued until that particular defective
set was completely analyzcd. Sobcl and Groll [3] further generalized this idea by
testing small subsets of a defective set rather than immediately testing individual units.

In Section 2, we introduce the idea of the generalized binary group testing
problem. In particular, we describe two generalized group tests that were motivated
by problems in the area of random-access communication systems under a finite-user
model [2]. The first is rcfcrrcd to as the Conflict/No Conflict (CNC) test, and it
indicates whether there is at most one defective unit in a group. The second is referred
to as the Success/Failure (SF) test, and it shows whether there is exactly one defective
item in a group. Sections 3 and 4 contain the description and analysis of group testing
proccdurcs employing CNC and SF tests, respectively. The proposed proccdurcs
perform better than the method of testing individual items and the methods based on
binary tree search for small values of th probability, p, that an item is defective, and
adapt themselves to testing one item at a time for higher values of p. In addition, the
optimality of thcse procedures is discussed.

2. Generalized binary binomial group testing problem. In this section, we
introduce the idea of a generalized binary group test and formalize the corresponding
binomial group testing problem. Hereafter, we make use of the following terminology:

1. A non-defective set is a set that contains no defectives.

2. A defective set is a set that contains at least one defective item among its
members.

3. A conflicted set is a set that contains at least two defective items among its
members.

4. A binomial set is a set whose members are each defective with probability p
independently of one another.

DEFINITION 2.1. Let R (G) be the random variable representing the number of
defective items in a group G. A generalized binary group test T(a,b;G) is a
simultaneous test on group G with only two possible outcomes. A "good" reading
indicates that a<R(G)<b, and a "bad" reading shows otherwise (i.e.,
R(G)<a or R(G)>b), where the integers a and b satisfy O<a<b<[G[.

By choosing the integer pair (a,b), the generalized test T(a,b;G) will provide us
with specific binary group tests which provide different kinds of information. Three of
these tests that are the subject of this paper are identified below.

1. Something/Nothing (SN) Test: Let a-0 and b=0 in the definition of
T(a,b;G). The resulting test indicates whether there is at least one
defective in a group. Note that the SN test coincides with the conventional
group test.

2. Conflict/No Conflict (CNC) Test: Let a-0 and b=l in the definition of
T(a,b;G). The resulting test indicates whether there are at least two
defectives in a ,group.

3. Success/Failure (SF) Test: Let a-1 and b-1 in the definition of
T(a,b;G). The resulting test indicates whether there is exactly one
defective in a group.
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The SN group testing problem that coincides with the conventional group testing
problem has been studied by many authors including Dorfman ], Sterrett [4], Sobel
and Groll [3], and Ungar [5]. A simple procedure was proposed by Sobel and Groll
[3] for solving the SN problem that has been shown to be optimum (in the sense of
minimizing the expected number of group tests) for large values of p and to be close
to the (yet unknown) optimum strategy for small values of p. Let HSN (M) represent
the expected number of group tests needed to classify a population of size M by using
this procedure. For the sake of completeness and comparison, the values of HsN(M)
for Mffi64 have been illustrated in Figure as a function of p. This procedure is
shown to be optimum for the range of p > (3-)/2 where the strategy adapts itself to
testing individual items [5].

3. Conflict/No Conflict group testing. Consider the CNC group test that was
introduced in the previous section. This particular test was motivated by the following
problem in the area of random-access communication systems under a finite-user
model [2]. In such systems, simultaneous transmission by two or more active
transmitters results in interference. The task is to partition a population of
transmitters into subsets so that each subset contains at most one active transmitter.
Then, granting transmission rights to one subset at a time would result in
interference-free transmission. We now want to investigate the generalized group
testing problem that was motivated by this communication problem. A CNC group
testing problem is defined as follows:

DEFINITION 3.1. A Conflict/No Conflict (CNC) group testing problem is
concerned with partitioning a population of size M into subsets such that each subset
contains at most one defective object. Members of the population are each associated
with an independent Bernoulli (p,q-l-p) random variable, where p is the probability
that an object is defective. We have at our disposal a Conflict/No Conflict generalized
binary group test T(0,1;G). The goal is to design efficient algorithms for correctly
partitioning the population.

We will consider the problem only for finite M where efficiency is defined in the
sense of minimizing the expected number of group tests needed to partition the
population. CNC group testing differs from conventional (SN) group testing since the
latter is capable of identifying the individual defective items, whereas the former is
only capable of distinguishing between groups of items with at most one defective
(non-conflicted group) and groups with two or more defectives (conflicted group). In
addition to the application of CNC group testing in random-access communication
systems, this type of group testing can be used in any industrial and/or medical setting
where the presence of two or more items (devices, molecules, cells, insects, etc.) having
the same property would be undesirable and needs to be avoided in the most efficient
way.

We now propose and analyze an algorithm for the CNC group testing problem.
The proposed procedure is in the same class as the one introduced by Sobel and
Groll[3] for the conventional (SN) group testing problem. In what follows, we use the
same definitions and terminology used by Sobel and Groll. The definitions of a
defective set, a non-defective set, a conflicted set, and a binomial set are the same as
those in Section 2. If a subset S of a conflicted set T is known to contain at most one
defective, the set T-S is called a "mystery" set. The proposed procedure has the
property that, at each step, the unclassified portion of the population is divided into a
binomial set, a conflicted set, and a mystery set. Let n and m represent the number of
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unclassified items and the size of the conflicted set at some step of the algorithm,
respectively.

Let random variables Z and V represent the number of defectives in two disjoint
binomial sets of size x and m-x, respectively. Let the random variable Y be equal to
Z+V, i.e., Y represents the number of defectives in a binomial set of size m. To
describe the proposed protocol, we introduce the symbols a(x), ’V(x,m), (x,m) which
are defined as:

a(x) P (Z 2),

"y(x,m ) P (Z 21 r>2),

iS(x,m) P(V>/21Y>/2, Z < 1).

These quantities can easily be expressed in terms of p,

a(x) qX xpqX-, x)2, (3.1)

(x,m ) P (Z 21Y> 2) P(Z >2, Y>2)
P(Y>2)

P (Z > 2, V>O)
P(Y>2)

P(Z>2)
P(Y>2)

c(x)
(m)

0

for x>2,

for x-1.

(3.2)

(x,m) P(V)2IY>/2, Z < 1) P(V>2, Y>2, Z<l)
P(Y>/2, Z < I)

P(V>/2)P(Z < I)
P (Y>2)[ 1-P (Z >21Y> 2)

ot(m -x) [1-a(x )
a(m ) [1-ot(x )/a(m )

a(m-x)[1-a(x)]
a(m) c(x) for m-x > 2,

for m-x-1.

(3.3)

Before describing the procedure, consider the following simple fact that was given in a
more general setting by Sobel and Groll [3].
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FACT 3.1 Let a be equal to 0 and b be any integer in Definition 2.1 of a
generalized binary group test. Let S1 and $2 be two disjoint binomial sets of
objects. If a test T (0,b; S1 LI S 2) produces a "bad" outcome and another test
T(O,b;S 1) also produces a "bad" reading, then the conditional distribution of objects
in S 2 is the same as the original binomial distribution.

If at the beginning of some step, the conflicted and mystery sets are both empty
(i.e., we are faced only with a binomial set), we call this an "H-situation"; if the
conflicted set is not empty and the mystery set is empty, we call this a "G-situation"; if
the mystery set is not empty, we call this an "F-situation." By "resolving" a particular
situation we mean that we classify the unclassified portion of the population when we
are faced with that particular situation. Let H (n) be the expected number of group
tests needed to resolve an H-situation when the binomial set is of size n. Let G (m,n)
be the expected number of group tests needed to resolve a G-situation when the
conflicted set is of size m and the binomial set is of size n-re. Let x (H) and x (G)
be integers to be optimized later. The proposed group testing procedure is as follows:

CNC group testing procedure. If we have an H-situation, then a subset of the
binomial set of size x (H) is tested; if we have a G-situation, then a subset of the
conflicted set of size x (G) is tested; if we have an F-situation, then the entire mystery
set is tested. After each test, the binomial, conflicted, and mystery sets are updated
using the outcome of the test and Fact 3.1.

The operation of the protocol can be expressed as a pair of recursive equations
along with a set of boundary conditions. These equations are:

H (n) + min {[ a(x) IH (n-x) + a(x)G (x,n)}
l<x<n

for n>2,

(3.4)

G (m ,n) + min {3’(x,m)G (x,n)
<x <m-1

+ [1 -3’(x,m)][1 + tS (x ,m )G (m -x ,n-x )

+ (1 6(x,m))H(n-m)l} for n>m>3.

(3.5)

The boundary conditions are:

H (0) 0, (3.6)

G(O,n) H(n), (3.7)

G (2,2) 2, (3.8)

G (2,n) 2+H(n-2) for n > 3. (3.9)

Let integers x(H(n)) and x(G(m,n)) be the values of x that achieve the
minimization in (3.4) and (3.5). These integers define the procedure implicitly. They
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can be found by solving (3.4) and (3.5) recursively, starting with the boundary
conditions (3.6)-(3.9). If rn is greater than 1, it is assumed that a subset of the
conflicted set of size x with <x <m-1 will be tested without mixing it with items
from the binomial set. This is referred to as the "nonmixing" rule. (Note: Consider a
G-situation where the conflicted set is of size two. In such a situation, the
defectiveness of the two members of the conflicted set can be deduced without any
further tests. However, in some applications this observation is not sufficient to satisfy
the objectives of that particular application. For example, in the communication
problem, the objective is to transmit the active users’ messages. In such application,
knowing that the pair of users are both active is not sufficient, and the algorithm has to
use two "steps" to transmit their messages. The above discussion explains why
G (2,2)---2 and similarly explains the 2 in expression for G (2,n). Conversely, there are
other applications where the knowledge of defectiveness of items is sufficient; in that
case G(2,2) should be zero and the 2 in the expression of G(2,n) should be
eliminated.)

The algorithm is initiated in an H-situation where the binomial set is of size M.
Hence, the performance of this algorithm is measured by H(M) which is given by
(3.4). Figure shows H(M) as a function of p for M-64.

The rest of this section is devoted to a brief discussion of some of the properties
of the proposed algorithm. Let Plvc(M) be the value of p where the above algorithm
adapts itself to testing groups of size one only. One of the interesting properties of
this algorithm is that Pclvc(M)-Pcvc--" 1/r independently of the original
population size [2]. It has also been shown that this algorithm is the optimum strategy
for p > 1//; i.e., if p > 1/v/, the best strategy in the sense of minimizing the expected
number of group tests is to test groups of size one only. The proof is given in [2] in
terms of the communication problem. Upper-bounds to the performance of the (yet
unknown) optimum strategy for CNC problem is a communication setting is given in
[2]. The above algorithm also outperforms algorithms based on binary tree search
techniques originally designed for the communication problem. A comparison of such
tree search algorithms and the above algorithm can be found in [6].

4. Success/Failure group testing. Consider the SF group test that was introduced
in Section 2. The SF test was also motivated by a problem in the area of random-
access communication systems [2]. A SF group testing problem is defined as follows:

DEFINITION 4.1. A Success/Failure (SF) group testing problem is concerned
with partitioning a population of size M into subsets such that each subset contains at
most one defective item. We associate independent Bernoulli (p, q--l-p) random
variables with each of the M objects, where p is the probability that an object is
defective. We have at our disposal a Success/Failure generalized binary group test,
T(1,1;G). The goal is to design efficient algorithms for correctly partitioning the
population.

Again, for finite M, the efficiency is defined in the sense of minimizing the
expected number of group tests.

We now propose and analyze an algorithm for the SF group testing. Consider
the setting where p is close to zero. Then, with high probability, a population of
objects does not include any defective. However, since the SF test is not capable of
distinguishing between a non-defective group and a conflicted group, a "bad" reading
could be misleading. This inefficiency suggests the introduction of an (M/ 1)st item
that we shall refer to as the "auxiliary" item. The auxiliary item is a defective item
that is always exclusively included (by the tester) in the first group to be tested, i.e.,
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when the algorithm is initiated. Therefore, when none of the "real" items are defective,
the auxiliary item is the only defective item. Hence, the auxiliary item transforms the
SF group test into a conventional (SN) group test for the first step of the algorithm.

We shall refer to the first step of the algorithm, when all M items are in a
binomial set, as an H-situation. If at some later step all of the unclassified items are
in a binomial set, we call it an "H-situation". Let H(M) be the expected number of
group tests needed to resolve an H-situation and let (n) be the expected number of
group tests needed to resolve an -situation when the binomial set is of size n. Let
x(H) and x() be integers to be optimized later. The proposed algorithm is as
follows:

SF group testing procedure. If an H-situation exists, test a subset of the
binomial set of size x(H). If this results in a "bad" reading, then the same x(H)
items are tested individually in the next x(H) tests, after which the size of the
binomial set is reduced by x (H). If, however, a "good" reading is obtained, the subset
does not require_ any more tests and the size of the binomial set is again reduced by
x(H). If an H-situation exists, then proceed as above except use x(r/) instead of
x(H).

The role of the auxiliary item becomes clear by studying the following pair of
recursive equations describing the operation of the algorithm. These equations are:

H (M) + min {qXI (M-x) + (1-qX)[x +t(M-x)]},
<x<M

(4.1)

/(n) + min {xpqX-lITI(n-x) + (1-xpqX-1)[x+I(n-x)l},
l<x<n

with the boundary conditions

(4.2)

H (0) (0) 0. (4.3)

Equation (4.1) represents the operation of the algorithm for the first step of the
algorithm where the auxiliary item is present. The next equation is for the remaining
steps where the auxiliary item is not being used.

The performance of this algorithm is shown in Figure for M=64 as a function
of p. Note that the protocol performs better than testing individual items for small

Mvalues of p. Let PSF( ) be the value of p at which the algorithm tests individual
items. The value of H(M) for this algorithm is equal to M+I for p >pF(M), which
is one more than is required for testing individual items. This is due to the one test
used by the auxiliary user. Hence, a better strategy would be to use the proposed
algorithm for O<p <s(M) and then test individual items without the help of the
auxiliary item for p >s(M), where s(M) is the value of p at which W(M)--M.
In contrast to the CNC and the conventional group testing, p(M) depends on the
value of M. Note that a slightly better procedure can be obtained by deploying the
auxiliary item throughout the entire procedure; however, this may bring some hardship
for the tester. Upper-bounds to the performance of the (yet unknown) optimum
strategy for SN problem in a communication setting is given in [2].
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FIG. 1. Performance ofthe group testing procedures.
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ON THE EIGENVALUE PROBLEM FOR A CLASS OF BAND MATRICES
INCLUDING THOSE WITH TOEPLITZ INVERSES*

WILLIAM F. TRENCHf

Abstract. We study the eigenvalue problem for a class of band matrices which includes as a proper
subclass all band matrices with Toeplitz inverses. Toeplitz matrices of this kind occur, for example, as
autocorrelation matrices ofpurely autoregressive stationary time series. A formula is given for the characteris-
tic polynomial pn(A) of an nth order matrix Hn in , with bandwidth k + 1-< n, as the ratio of k x k
determinants whose entries are polynomials in the zeros of a certain kth degree polynomial which is
independent of n and has one coefficient which depends upon A. The formula permits the evaluation of
p,(A) by means of a computation with complexity independent of n. Also given is a formula for the
eigenvectors in terms of these zeros and k coefficients which can be obtained by solving a k x k homogeneous
system.

AMS(MOS) subject classification. 15A18

1. Introduction. We consider the eigenvalue problem for the class of matrices

(1) Hn (hon) i,j =0,

defined as follows. Let

v=O / =0

where

(2) aobo O and r+s=k<n,

and {ho.} are defined by the generating functions

zA(z) , bz-, 0 <= <= s 1,

H,,() ho,,= A()B(1/), s<-i<-n-r-1,
n--i--I

zB(1/z) az, n-r<=i<-n-1.

Explicitly,

(3) hjn=Cj_i ag_i+b- bi_+,a,, O<-i,j<=n-1,
v=i+l I=n--i

if we define

p

(4) al 0 if l> r or < O, b 0 if > s or < O, 0 if q > p,
q

(5)

and

c=O if v> r or v<-s,

(6) C(z) A(z)B(1/z)= c,z".

* Received by the editors March 1, 1984, and in revised form December 5, 1984.
f Department of Mathematics and Computer Science, Drexel University, Philadelphia, Pennsylvania

19104.
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The class is connected with Toeplitz matrices; i.e., matrices of the form

T. (6_,) i,j=O"

From (3) and (4),

and r<-j-n-1,

(7) hij. cj_i if or s<=i<-n-r-1,

orn-r<-i<-n-1 and0<-j<=n-s-1;

thus, H. is quasi-Toeplitz (a term used in [7]) in that h0. is a function of j-i alone
except in the s x r submatrix in the upper left corner of H. and the r x s submatrix in
the lower right corner. Moreover, H. is banded; i.e.,

(8) hij =0 ifj-i> r or i-j> s,

from (3), (4), and (5).
Matrices in the class have been encountered by the author [ 10] in connection

with prediction of stationary time series, and by Greville [4], [5], [6], in connection
with a smoothing problem. Greville and the author studied them in [7], and obtained
results which can be summarized as follows.

THEOREM 1 (Greville-Trench). The matrices H. (n > k) are invertible if and only
if A(z) and zSB(1/z) are relatively prime, in which case their inverses are the Toeplitz
matrices

H’ T. (bj_,)rt--1i,j=O, n > k,

where {$j} is determined as follows: Obtain [cks_, ck-2,’", ck_] as the (unique)
solution of the k x k system

(a)
v-’-0

(9)
(b) b.b_j+ 0,

/=0

O<-_j<-_s-1,

l<=j<=r,

and then compute

(10) dpj a aqbj_ j >-- s,

and

(11) b_j -b b,b_j+,, j > r.
/=1

Moreover, if H, (n > k) is a matrix of the form (1) such that (8) holds and H-’ is a
Toeplitz matrix, then H, Y(.

Greville continued the investigation of these matrices in [2] and [3].
The main result of this paper reduces the evaluation of the characteristic poly-

nomial p,(A) of H, to finding the zeros of the polynomial

(12) P(z; A)= c.z"+-Az
(which are obviously independent of n) and evaluating a kth order determinant whose
entries are polynomials in these zeros. The complexity of this representation of p.(A)
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depends only on k (cf. (2)), and is independent of n. Moreover, we give an explicit
formula for the eigenvectors of Hn corresponding to a given eigenvalue, which depends
on k coefficients that can be obtained by solving a kth order homogeneous system
with complexity independent of n. The results are analogous to those obtained in 11
for Toeplitz band matrices

(13) T, (c_,) "-1i,j =0r

where {cv} satisfies (5) and r+s= k<n. However, the arguments needed here are
considerably more complicated than those in [11].

Our results here are not restricted to the case where A(z) and zSB(1/z) are
relatively prime, so that H, is invertible; however, this case is especially important,
since Theorem 1 implies that the eigenvalue problems for invertible matrices in and
for Toeplitz matrices with banded inverses are equivalent. Although there is a large
body of literature on inverting Toeplitz matrices and solving systems with Toeplitz
matrices, little has been published on approaches to the eigenvalue problem for these
matrices which take full advantage of their simple structure. (For examples, see
Grunbaum [8], [9]; Dini and Capovani [1]; and Trench [11].)

2. Preliminary definitions and lemmas. We take the underlying field to be the
complex numbers.

It can be seen from (7) and (8) that if r or s is zero, then H, is a triangular
Toeplitz matrix. Since the eigenvalue problem for such matrices is trivial, we assume
henceforth that (2) holds, and also that

(14) rsarbs 30.

Then rscrc_ O, so P(0; A) 0.
It was shown in [11] that there are at most k values of A for which P(z; A) has

fewer than k distinct zeros. We call such points critical points of P(z; )t). All other
values of A are ordinary points. For completeness, we phrase all definitions so as to
include the case where A is a critical point; however, for notational convenience we
illustrate the definitions only for ordinary points.

DEFINITION 1. For a fixed A, let Zl,"’, Zq be the distinct zeros of (12) with.
multiplicities ml, ", mq’, thus,

q<-k, mj>-l(l<-j<-_k), m+...mq=k.

If Q(z), , Qk(Z) are given polynomials, define the k-vector function

w(z) col [Q(z), Q(z),..., Q(z)],

and let f be the k x k matrix defined as follows" its first ml columns are w()(Zl)
(0-< <= m- 1); its next m2 columns are w()(z2) (0 <= l-< m2-1); and so forth. Let V
be the matrix resulting from this construction in the special case where Qi(z)= z i-a,
1 -< <_- k, and define

det
(15) A(X)-

det V"

Thus, if h is an ordinary point of P(z; h), then q k, ml mk 1,

=(Q,(z)) i,j=

and V is the Vandermonde matrix

i--1 kV= (z ),.--1.
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It can be shown in general that

det V= Ko 1-I (zj-zi)"J (Ko=constant0),
i<-_i<jq

where the ro’s are positive integers (all ones if q k); hence, det V rs 0.
We refrain from using the functional notation zi(A) for the root z, since this would

necessitate an irrelevant appeal to the theory of multiple-valued algebraic functions.
Note that there is an ambiguity in the definitions of f and since the numbering of
the roots is arbitrary; however, since renumbering z,..., z would simply permute
the columns of both matrices in the same way, the ratio of the determinants in (15)
is uniquely defined for each A.

To avoid cumbersome two-dimensional displays in proofs which follow, we also
denote the function A(A) defined by (15) in the form

(16) A(A) [Q(z),..., Qk(Z)l(h);

thus, if h is an ordina point of P(z; h), then

det O,(z k

(17) [Q(z),. ., Qk(Z)](h)=
det (z- k,

There is an abuse of notation here, since (17) is not a function of z as the symbol on
the left appears to indicate; however, the convenience of the notation outweighs this
drawback.

In the following we adopt the convention that the polynomial p 0 has degree -.
LEMMA 1. Let n, , nk be nonnegative integers, and m max {n, , nk}. en

the function
(18 I,
is a polynomial of degree m k + 1.

This lemma was proved in [11], where the function in (18) was denoted by
q(h; n,. ., nk). e main result in [11] is that the characteristic polynomial of the
Toeplitz band matrix T in (13) is

det [hI- T] (-1)(-c[1, z,..., z-, z+, z+k-(h).
We will obtain an analogous result here for H.

LEMMA 2. Let Q(z),..., Qk(Z) and A(h) be as in Definition 1, and let m
maxlk {deg Q(z)}. en A(h is apolynomial ofdegree m k + 1. Moreover, A(A
0 for a given complex number h ffand only if there are constanu c,. , Ck (not all zero)
such that the polynomial

(19) Q(z) cQ(z)+. .+ cQ(z)

is divisible by P(z; h). In particuhr, fire,k-l, so that A(A)=C (constant), then
C =0 ffand only ffQl(Z),"’", Qk(Z) are linearly dependent.

oofi If

Q,(z) E a,z, 1 k,
j=0

then

A(A au a,,Iz,, zl(A),
where the sum is over all jl, ,jk such that O<-jl, ,jk <- m, so A(A) is a polynomial
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of degree -< m k+ 1, by Lemma 1. From (15), we see that A(A) 0 if and only if the
system

(20) ll’Y 0 (’ transpose)

has a nontrivial solution Y cl, , Ck]. From the definition of fl, it can be seen that
(20) is equivalent to

(21) Q(zj) 0, O<-l<-_mj-1, l<-j<-q,

with Q(z) as in (19). But (21) holds if and only if P(z; A) divides Q(z). This implies
the stated conclusions.

LEMMA 3. With the assumptions of Lemma 2, suppose that

Qi( z) otzm 4-

for some m >--_ k and in {1,. .. k}, and that

(22) deg Q(z) < m ifj i.

Then A(A) as defined in (16) can be written as

(23) A(A)= crAc-llQ(z), Q,_,(z), zm-, Q,+l(Z), , Qk(Z)I(A)+ O(lm-k),

where O(A m-k) denotes a polynomial of degree <- m k.
Proof. From elementary properties of determinants,

(24) m(,)--I ", olzm, I(x)/l ., Q,(z)-azm, I(A),

where the first "..." denotes "Qi(z)," ", Qi_(z)" and the second "..." denotes
"Qi/ (z)," , Qk(z)" throughout this proof. From (22) and Lemma 2, the second term
on the right of (24) is O(A"-k); hence,

(25) A(A) a]... ,zm, I(X)4-o(xm-k).
Now we use the identity

r--1

zm 1 xzm-r-- E

(see (12)) to write

(26)

CtZI+m-r 4" zm-kp(z A )]

From Definition 1, the ith row of the determinant in the numerator of

zm-kp(z, A ), I(A
consists entirely of zeros, so the last term on the right of (26) vanishes. Lemma 2 and
(22) imply that the sum on the right of (26) is O(A m-k). Therefore,

zm, [(i ,C711 zm- I(/ 4" O(im-k).

This and (25) imply (23).
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We now establish a useful connection between the eigenvalue problem for H,
and a boundary value problem for a related difference equation. Let

and

(27)

Then,

Therefore, from (3),

U col [Uo," ", Un-1]

V HnU col [Vo," ", vn-1].

n--1 n--i-1

vi , hij,uj= Z
j=0 j= --i

O<__i<_n-1.

(28) v,= Z c- a+b- b_+,a, u+,,
j=--i v=i+l tz=n--i

O<=i<=n-1.

Proof. The extrapolated components are uniquely defined by Uo,’" ", un-1 and
(30) and (31). They can be computed recursively from the equations

(32) U_p -a alUl_p, 1 <= p <- s,
/=1

and

(33) u,+p-1 -b birth+p-l-I, 1 <- p <= r.
1=1

to

j=-i v=i+l

We have already verified (29) for s =< =< n r 1. If 0 -<_ =< s 1, then (28) reduces

because of (2), (4), and (5). From (6),

q a+b, -s<-j<--i-1,
v=i+l

(31) bltln+p_l_l--O l <=p<=r.
/=0

and

(30) alUl_p O, 1 _-< p =< s,
/=0

For our purposes it is convenient to have this equation hold for 0-< -< n 1, but this
is impossible as things stand, since (29) would then involve the undefined quantities
U_s, , u-1 and un,. , u,+r-1. This defect can be remedied by defining extrapolated
components for the vector U, as in the following lemma.

LEMMA 4. The components of V in (27) are given by (29) for O<=i<= n- 1 if and
only ifthe extrapolated components u_s, , U_l and u,, , u,+r_l satisfy the equations

If s -< =< n r- 1, then the sums with respect to/z and u both vanish, and (28) reduces
to

(29) vi cu+i.
j.
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(since aj+ 0 ifj + v < 0); hence, we can change the lower limit of summation in (34)
to j =-s for any choice of u-s," ", u-1. Therefore,

j=--s j=--s v=i+l

The double sum in (35) can be rewritten as

v=i+l j=--s v=i+l l=,--s
allll+ i-

b, altll_(v_i),
v=i+l l=O

O<=i<_s-1

(since al=O if I<0 or 1> r). From this it can be seen that (29) holds for O<-i<-s-1
if and only if (30) holds.

Now suppose n r<_- <_- n 1. Then (28) reduces to

(36) v,= cj- b_j+,a, uj+,.
j=--s i n--i

Since (6) implies that

cj= b_j+,a,, n-i<-j<_-r
i n--i

(recall that b_j+, 0 if -j +/z < 0), we can change the upper limit of summation in
(36) to j r for any choice of u,,..., u,+r_. Therefore,

j=--s j=--s p.=n--i

The double sum on the right can be rewritten as

a bllztz-l+i,
tx =n-i /=o

n-r<_i<_n-1.

n-r<_i<__n-1

(since bl 0 if < 0 or I> s). From this it can be seen that (29) holds for n r -< -<_ n 1
if and only if (31) holds.

Lemma 4 obviously implies the following lemma.
LEMMA 5. A complex number A is an eigenvalue of H, if and only if there are

complex numbers

(37) u_s," ",u,+r_,

not all zero, which satisfy the difference equation

(38) cjuj+i hui, 0 <- <-_ n 1,

and the boundary conditions (30) and (31). In this case the vector

(39) U col [Uo,. ", u,,_]

is an eigenvector of H,, corresponding to A.
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It is important to observe that if the sequence (37) satisfies these hypotheses, then
U in (39) is nonzero, since if Uo u,-1 =0, then (32) and (33) imply that the
remaining elements in (37) vanish.

3. The main results. In the following (x) is the factorial polynomial"

(x)) 1, (x)t) x(x -1) (x + l ), >- l.

THEOREM 2. Let A satisfy the assumptions of Definition 1, and let fl, be the k x k
matrix which results from the construction specified in Definition 1 when

thus

(40) [l,,

Q,(z) z,+i_lB(1/z),
l <--i<--_s,

s+l<-i<-k;

A(z,) A(z) A(z)

z’+SB(1/z,) z’+SB(1/zz) z,+SB(1/Zk)

z’+’-’B(1/z,) z’+k-’B(1/zz) z,+-’B(1/Zk).

if A is an ordinary point of P(z; A ). Then A is an eigenvalue of H, if and only if l’l, is

singular, in which case the components of the eigenvector (39) are given by

(41)
q m-]

u, y y (s+ i)z+’-
j=l v=0

for 0 <--_ <-- n 1, where the vector

(42) X =col [ao,’", am,-,,,, no2,’", am2-1.2,’", aoq,’", amq-l,q]

is a nontrivial solution of the k x k system

(43) f,X =0.

(Note that (41) and (42) can be written more simply as

k

Ui
_s+i

tjzj O<-i<=n-1,
j=l

and

X=col In1, a2,’", ak]

if A is an ordinary point of P(z; A).)
Proof We use Lemma 5. The general solution of the difference equation (38) is

of the form (41) for -s <- <= n + r 1. (See the proof ofTheorem 1 in 11 ].) Substituting
(41) into (30) and summing first on yields

q mj--1

otvj a(s+l-p)<)z+t-P-v=O, l<=p<=s.
j= v=O 1=0

This is equivalent to

q mj--1
(44) Y [(z-’A(z))()lz=z]=O, l <--p<- s.

j=l ’=0
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By a similar argument, substituting (41) into (31) yields

q j--1
(45) ot,j[(zs+n+p-lB(1/z))(v)lz=zj]--O 1-<p<=r.

j=l v=0

Since (44) and (45) together are equivalent to (43), the conclusion follows.
If we let ll =II, in (15), then A(A) in (16) becomes

(46) A,(A) IA(z),..., z’-lA(z), z"+’B(1/z), zn+k-ln(1/z)l(A),

which is a polynomial of degree-< n, by Lemma 2. Since l’l, is singular if and only if
A,(A) 0, Theorem 2 clearly implies that there is a connection between A.(A) and the
characteristic polynomial

(47) p,(A)=det[AI,-H,].

The following results make this connection precise.
THEOREM 3. If A(z) and zSB(1/z) are relatively prime, then

(48) p,(A)=(-1)r-1)"R-IcTA,(A), n> k,

where R is the (nonzero) value of the k k determinant with rows 1, , k asfollows:
(a) For 1 <- <- s, there are i- 1 zeros, then ao, , a, then s- zeros.
(b) For s + 1 <- <- k, there are i- s 1 zeros, then bs,. , bo, then k- zeros.

Proof Although p,(A) has meaning only if n > k, A,(A) is defined for all n-> 0.
We first prove by induction that

(49) A,(A) (-1)r-)"Rc-"A" + g,(A), n_->0,

where deg g, (A) < n. It suffices to consider only the case where A is an ordinary point
of P(z; A), since there are at most k critical values of A, and we already know that
A,(A) is a polynomial of degree_-< n.

From (40), 1)0 WV, where V is the Vandermonde matrix of Definition 1 and
det W= R. This implies (49) for n =0, with go=O. To see that R 0, suppose R =0.
Then (40) with n 0 and the last sentence of Lemma 2 imply that

A(z),’’’, z’-’A(z), zB(1/z), zk-’B(1/z)
are linearly dependent. Therefore, there are polynomials f(z) and g(z), not identically
zero, such that degf(z) < s, deg g(z) < r, andf(z)A(z) g(z)zB(1/z). By an argument
in [12, 27], this implies that A(z) and zB(1/z) have a nonconstant common factor,
which contradicts our assumption.

We now complete the proof of (49) by showing that

(50) A,+I(A)=(-1)-’c-’AA,(A)+O(A"), n>-O,

where O(A") denotes a polynomial of degree -< n. From (46) with n replaced by n+ 1,

A,+I(A) I’’’, z"+S+lB(1/z), z"+B(1/z)l(A ),

where the first "..." denotes "A(z),..., z-A(z)" throughout this proof. The poly-
nomial of highest degree appearing in the definition of A,/I(A) is z"/kB(1/ z); hence,
Lemma 3 implies that

(51) A,+,(A)=boAc;ll...,z"++lB(1/z),...,z"+k-’B(1/z),z"+l(A)+O(A"),
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where z"+S+l B(1/ z), z"+k-lB(1/ z) is absent if r= 1. We rewrite (51) as

An+I(A) 1)-IAc711 ,Oozn+s, zn+S+I B(1/ z), z,+k-IB(1/Z)I(A)+ O(A,)
(52) =(-1)r-lAc71[A,,(A)+F,,(A)]+O(A"),
where

(53) [’n(A) [.’’ ,zn+S(bo-B(1/z)),zn+S+lB(1/z), ,zn+-IB(1/z)J(A).
(See (46).)

We will now show that

(54) F,(,) 0(,’-1).

If r 1, then k s + 1 and (53) reduces to

I’", z"+S(bo B(1/z))l(A )"

so Lemma 2 implies (54). If r> 1, then successively applying Lemma 3 to (53) r-1
times yields

F,(A) (boAcT’)-’l ., z"+’(bo- B(1/z)), Zn+s-r+l, Zn+S-l[(

--(boAcT’) r-1 b.I...,z"+*-*,z"+’-+l,...,a"+*-ll(A ).
=1

The terms in this sum are identically zero for 1-<_/.-<_max (s, r-1) (since they are
essentially determinants with two identical rows), and O(h "-) for r_-</. -< s (by Lemma
2). This implies (54). Since (52) and (54) imply (50), this completes the proof of (49).

Now (49) implies that the polynomial

/(A)--(-1)(r-1)nR-1 "crAn(A

is monic and of exact degree n, as is the characteristic polynomial p.(a) in (47). From
Theorem 2,/. (a) and p. (a) have the same zeros; therefore certainly/. (a) p. (a) if
H. has n distinct eigenvalues. There remains the possibility that H. has only m (<n)
distinct eigenvalues and

with r # s for some i; however, this possibility can be excluded by a continuity
argument of the kind given in 11].

Theorems 1 and 3 yield the following result, which makes explicit the connection
between our results and the eigenvalue problem for Toeplitz matrices with band
inverses.

THEOREM 4. Suppose A(z) and B(z) satisfy (2) and (14), and A(z) and z*B(1/z)
are relativelyprime. Let T, and { dp} be as in Theorem 1. Then the characteristicpolynomial
of T, is given by

det [AI, T,]=[A,(O)]-IAnA,(I/A).

Moreover, if A is an eigenvalue of T,, then the corresponding eigenvectors (39) can be
obtained as in Theorem 2.

Our results have specific applications to statistics in the case where

B(z) A*(z) tiz,
’=0

so that the matrices H. (n > 2r) are Hermitian. Greville [3] has shown that in this case
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H, is positive definite for all n > 2r if and only if the zeros of A(z) are all outside the
unit circle, or positive semidefinite if and only if none are inside the unit circle. He
also obtained results on the spectral radii of the matrices {H,}.

If the roots of A(z) are all outside the unit circle, then A(z) and zrA*(1/z) are
relatively prime. It can be shown in this case that the sequence {br} defined by (9),
(10), and (11) (with b,= a,) is proportional to the autocorrelation sequence of the
purely autoregressive weakly stationary time series {y,.} defined by the stochastic
difference equation

aoy, + alYm-1 +" "+ ay,,_ Xm, --0 < m < o,

where {x,,} is uncorrelated and weakly stationary.
The formula (48) is clearly invalid if A(z) and zSB(1/z) have a nonconstant

common factor, since R is the resultant of zA(1/z) and B(z), which would also have
a nonconstant common factor, and therefore R 0 12, 27]. In this case we have the
following result.

THEOREM 5. Suppose A(z) and zSB(1/z) have greatest common divisor

(55)

and let

D(z) (z- ,) (Z-- m) (m >= 1),

A(z)
(56) O(z)- Al(Z)= ao+"" + a,_,zr-",

(57)
zSB(1/z)
D(z)

zs-mB,(1/z)= _,, +... oz-m.

Then the characteristic polynomial p,(A) in (47) is given by

(58) p,(A)
(--1)m(k+l)+(r-1)(n-m)cn x "g.(x), n > k,

R1[1""" m]

where

(59) ,,(,)=lA,(z),’’’,z-’A,(z),z"+-’Ba(1/z),...,z"+t’-"-lB(1/z)l(A),
and R is the (nonzero) value of the k x k determinant with rows 1, , k as follows:

(a) For 1 <= <= s there are i- 1 zeros; then ao, , a_,,, then s + rn zeros.
(b) For s + 1 <- <-_ k there are rn + i- s 1 zeros; then _,,, , o, then k- zeros.

Proof Again we consider only ordinary points A of P(z; ,). For 1 <=j <-_ k, D(zj)
is a common factor of the jth column of the determinant in the numerator of A,().
(See (46) and recall (40).) Removing these common factors shows that

(60) A,(A) D(z,)... D(Zk)7,(A),
with ,()t) as in (59), because of (56) and (57). From (55),

(61) D(z,).’. O(Zk)= 1-[

Since z,..., z are the zeros of P(z; ), (12) implies that

(z,-,) (Zk--t)=(--1)kc-’P(l; X), l <=l<=m.

But A(’I) 0, so (6) and (12) imply that P(’; A) =-A’. This and (61) imply that

D(z)... D(Zk)=(--1)m(k+l)c-m(l’’" m)Si m.
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This and (60) yield

(62) An(A (--1)m(k+’)c-m(, m)S,mn(t ).

An induction argument like the one used to prove (49) shows that

(63) n(A)--(-1)(r-)(a-m)Ra+mAa-mq-,n(A), n>-_m,

where degffn(A)<n-m. To see that R#0, we observe that since A(z) and
zs-mBl(1/z) are relatively prime and AI(0)#0, it follows that A(z) and zSB(1/z)
are relatively prime. Therefore, an argument like the one used in Theorem 2 to prove
that R 0 applies here.

From (62) and (63), the polynomial on the right of (58) is monic and of exact
degree n. An argument similar to that used in the proof of Theorem 2 now establishes
(58). This completes the proof of Theorem 4.

Laplace’s development provides a convenient method for expanding the deter-
minants in (46) and (59); see [11, 5].

Now let En(A) be the solution space of the system

HnX AX.

The following lemma is analogous to a lemma obtained in [11] for Toeplitz band
matrices.

LEMMA 6. Let A and z,.. ., zq be as in Definition 1. Then A is an eigenvalue of
Hn if and only if there are polynomials

(64) f(z)= Co+" "+C_z-, g(z)= Do+" "+ Dr-Zr-l,

such that the polynomial

(65) h(z) f(z)A(z)+ zn+g(z)B(1/z)

is not identically zero and has zeros at Zl, ", zq with multiplicities at least m, ., mo;
i.e.,

(66) h(zj)=0, O<=l<-_mj-1, l <-_j<-q.

Moreover, if Sn(A is the vector space ofpolynomials h of the form (64) and (65) which
satisfy (66), then

dim Sn(A) dim En(A).

Proof. A polynomial h of the stated form satisfies (66) if and only if the vector

Y=col [Co,.. ", C_,Do, ", Dr_]

satisfies the system

fltnY=O.
Therefore, dim Sn (h) nullity of fl ’n nullity of fin dim En (h). (See the proof of
Theorem 2.)

Lemma 6 implies the next two theorems. Since the proofs of these theorems are
the same as those of Theorems 3 and 4 of [11], we omit them.

THEOREM 6. /f A is an eigenvalue of Hn then

dim E, (A) -< min r, s).
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THEOREM 7. Suppose A is an eigenvalue of Hn and dim E,(A)>_-2. Then A is also
an eigenvalue of H._I (if n > k + 1) and Hn+l; moreover,

and

dim E._(A) > -1 +dim E,,(A)

dim E,,+(A) => -1 +dim E,,(A).

Acknowledgments. The author thanks T. N. E. Greville for reviving his interest in
the matrices discussed here several years after the publication of [10]. The present
paper was strongly influenced by the joint paper [7], and by Greville’s subsequent
work [2]-[6] on these matrices and on their applications to data smoothing. In
particular, the crucial step ofintroducing the extrapolated components of U in Lemmas
4 and 5 was motivated by a similar device used by Greville in [4], [5], and [6] to
extend symmetric smoothing formulas to the extremities of data.
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LU-DECOMPOSITIONS OF TRIDIAGONAL IRREDUCIBLE H-MATRICES*

W. J. HARRODf

Abstract. In this paper bounds are developed and investigated on the growth factors and the multipliers
resulting from Gaussian elimination applied to an irreducible tridiagonal H-matrix. These results extend
the study of the stability of Gaussian elimination without pivoting on certain tridiagonal matrices by
Gunzburger and Nicolaides.
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1. Background and information. By an M-matrix we will mean an n n real matrix
A (aij) such that aij =< 0 for all j and the principal minors of A are nonnegative
(see Berman and Plemmons [1979, Chap. 6]). Assume that A is an irreducible
tridiagonal matrix of order n, written in the form:

[al.. 0
C

A--
bn_
a

Let rk denote the kth leading principal minor of A. Then it follows that A is an
M-matrix if and only if

c, b<=O, l <=j<=n-1,

%>0, l<=j<=n-1,

rn >- 0.

Research that involves concepts related to tridiagonal matrices is of widespread
interest. Recently, papers have been published that investigate the stability of Gaussian
elimination applied to tridiagonal Toeplitz matrices (Gunzburger and Nicolaides
[1982]), characterizations of tridiagonal D-stable matrices (Carlson, et al. [1982],
Carlson [1984]), and the characterization of nonnegative nonsingular tridiagonal
matrices that belong to the class of inverse M-matrices (Inman [1983]).

If A is an irreducible matrix, then cb O, for 1 -<j =< n 1. For notational purposes
A will be denoted by

(1) A=[% a, bj].

If any of the sequences {c}, (aj}, or {b} are constant, then the corresponding unsub-
scripted variable will replace the subscripted variable in (1). A matrix B (bi) is a
Toeplitz matrix if there exists a sequence {/3k} :__n+l, such that bi =/3j_i, for 1 -<_ i, j <- n.
Hence, a tridiagonal Toeplitz matrix will be denoted by A c, a, b].

Let A be a complex matrix of order n, such that A has all nonzero diagonal
elements. We define its comparison matrix (A) (i) by

lajjl if =j,

’-- -la,l if j.

* Received by the editors May 15, 1984 and in revised form September 15, 1984.
f Departments of Mathematics and Computer Science, University of Kentucky, Lexington, Kentucky

40506.
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Then A is called an H-matrix, if d(A) is an M-matrix. Assume that M (mb) is an
M-matrix. We define the set IIM of complex matrices by

II {A C""IM <= I(A)}.

Thus A (ao) lM if and only if

if j,

lal >-- m if i=j.

We will define an LU-decomposition of a matrix A to be a decomposition A LU,
where L is a unit lower triangular matrix and U is an upper triangular matrix. Funderlic
and Plemmons [1982] show that if there exists a vector x such that xrM >=0 and x >>0,
then for each A II and each permutation matrix P, PAPr has an LU-decomposition.
Also, if A and M have the LU-decompositions

A=LU, M=L’U’,

I//1 <-I/hi for .all and j,

(2) lu,l -< lu,l for all j,

for all j.lul--> u
Let A)= A and Ak) denote the matrix that results after the first k-1 steps of

Gaussian elimination without pivoting applied to A. The rounding error analysis for
Gaussian elimination without pivoting shows that the method is stable only when the
entries in the matrix L and the matrices A) for 1 k n- 1 do not grow excessively
during the course of the elimination process. The growth factor ga for Gaussian
elimination applied to A is defined by

-()l/max [al.ga max la, ,...
i,j, k ,j

In Wilkinson [1961], it was shown that if A is a strictly column diagonally dominant
matrix, then for each 1 i,j n, [/1 1 and gA 2. Therefore Gaussian elimination,
when applied to a column diagonally dominant tridiagonal matrix, is a stable method.

The purpose of this paper is to investigate the set of irreducible tridiagonal
H-matrices with respect to the stability of the LU-decomposition without pivoting.
We will show that pivoting is not necessary to control the growth in the entries of the
matrices L and U. Explicit upper bounds will be provided for the values [lol, [u[ for
l i,j n and gA.

2. Main results. Theorem 1 implies that an irreducible H-matrix admits an LU-
decomposition.

THEOREM 1 (Fiedler and k [1962]). Let A be an irreducible H-matrix. en
there exists a vector x such that x (A) 0 and x >> 0. Moreover, A is singular then
x(A) 0.

If A is an H-matrix, then A (A- Thus, if A is also irreducible, then A admits
an LU-decomposition. In paicular, an irreducible tridiagonal H-matrix A [c, a, b]
admits an LU-decomposition, and it can be shown that

L=[m,l,0] and U=[O,%,b],
where the multipliers m and the diagonal entries % satisfy the following difference

then
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equations

(3) otj aj- bj_lmj_l, 2 <-j <-_ n,

(4) mj cj/aj, l <-_j <-_ n -1,

and al al.
Applying the above difference equations, some useful properties concerning the

LU-decompositions of tridiagonal matrices are provided.
PROPOSITION 1. Let A [cj, a, bj] be a tridiagonal H-matrix of order n, such that

c)bj 0 for 1 <-_j <- n 1. IfA LU and Ar (j, where

L= [mj, 1, 0], V=[O,a,b],
and

then

(5)

L [rfi, 1, 0], U [0, ci, cj],

a ff., l <--j <-- n,

m () r, l<-j<-_n-1.

Proof Combining (3) and (4), it follows that

otj=aj
-bj-lcj--- 2-<_j < n.

Oj--I

Also, it can be shown that

bj-lC-I
<=j= n.6z= a-,_ 2

Clearly, al c1 al, so both a and 6j satisfy the same difference equation, with the
same initial condition. Therefore it follows that a c for 1 =<j-< n. Since rfi b/j
for 1-<j-< n- 1 it can be shown that (5) follows.

PROPOSIa’ION 2. Let A c, a, b] be a tridiagonal M-matrix such that cbj 0 for
1 <-j <- n 1. IfA LU is the LU-decomposition ofA and U (uo), then

lu, l-<-m.ax {a,

Proof. If A LU is the LU-decomposition of A, then L and U are both M-
matrices. Thus it follows that m-< 0 and a > 0 for 1 <-j <-n- 1 and c,-> 0. Since

aj a m_lb_l, 2 <-j <- n,

it follows that a-< aj for 1-<j-< n and the proof is complete, l-1

Therefore, when Gaussian elimination is applied to a tridiagonal irreducible
M-matrix there is no growth in the magnitude of the elements of the matrix U, hence
ga 1. Let tr denote the jth principal leading minor of A c, a, b]. Then, it can be
shown, by induction, that the ’s satisfy the following difference equation

(6) o)+1 aj+lo’j + cjbjo’j-1 0, 1 _--<j _-< n 1

where trl al and tro= 1. Lemma 1 will be used to prove necessary and sufficient
conditions for a Toeplitz tridiagonal irreducible matrix to be an M-matrix.

LEMMA 1. Assume that a > 0 and y > O. Then the difference equation

(7) o)+1 atr + 3’o)-1 0
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where r and o 1, has positive solutions o for 1 <= k <= n if and only if one of the
following conditions is true"

1)

(x/4)’ a 2) "rr2) a2 4y < 0 and tan-1 <.
a n+l

Proof. If a2-4y > 0, then the solution to the difference equation (7) is

rj--
A1-A2

where A.2=(a+/-/a2-4,)/2. Clearly, it follows that AI>A2. Thus, %>0 for all
ljn.

If a-4 0, then the solution to the difference equation (7) is

Thus, > 0 for all 1 Nj N n.
If -4<0, then the solutions to the difference equation (7) is

/ sin ((j+ 1)0)
sin (0)

where 0=tan-’((4-)/). Since (-)/>0, it follows that 0e (0, /2).
Thus, sin ((j + 1) 0) > 0 for 1 N k N n if and only if 0 < (j + 1) 0 < for 1 N k N n. ere-
fore, it holds that

0<0<
n+l

Hence, % > 0 for all 1 -<j-< n if and only if

tan- (x/4-a2) n+l

Next we state Theorem 2 which establishes necessary and sufficient conditions
for A to be a Toeplitz tridiagonal M-matrix.

THEOREM 2. Let A c, d, b] be a Toeplitz tridiagonal matrix of order n. If a > 0
and b, c < O, then A is a nonsingular M-matrix ifand only ifone ofthefollowing conditions
is true"

i) a2-4bc>-O,

ii) a2-4bc<0 and tan- <.
n+l

Proof If % denotes thejth leading principal, the difference equation for % reduces
to the following:

%+ oa + %_cb =0, l<_j<_n-1.

Let a a and y bc. Then it follows, by applying Lemma 1, that % > 0 for 1 _-<j-<_ n
if and only if one of the conditions i) or ii) hold true. [3

The matrix A- [c, a, b], where a > 0 and b, c < 0, is a singular M-matrix if and
only if o3 > 0 for 1 =<j _-< n 1 and tr, 0. Let a a and y bc. Then by examining the
proof of Lemma 1, it is clear that for trn =0, it must hold that a2-4bc < 0. Corollary
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1 provides necessary and sufficient conditions for A to be a singular irreducible
M-matrix.

COROLLARY 1. Let A c, a, b] be a Toeplitz tridiagonal matrix oforder n. Ifa > 0
and b, c < 0, then A is a singular M-matrix f and only if aE-4bc 0 and

x/4bc- a2) "rr
tan

a n+l

Theorem 3 provides a sufficient condition for a tridiagonal matrix to be a nonsin-
gular M-matrix.

THEOREM 3. Let A- cj, aj, bj] be a tridiagonal matrix of order n, such that aj 0

forj 1, 2,. ., n and bj, cj 0 forj 1, 2,. ., n 1. Let a mini aj and y (maxj cj)
(maxj bj). If one of the following conditions is true, then A is a nonsingular M-matrix:

i) t2--4’ 0,

ii) a2 43, < 0 and tan- <
n+l

Proof. Let c=-maxj Icj[ and b =-max Ib]. Then M =[c, a, b] is a nonsingular
M-matrix, by Lemma 1. Clearly M-<_ A. Thus it follows from well known properties
of M-matrices (see Berman and Plemmons [1979, Chap. 6]) that A is a nonsingular
M-matrix.

The solution of the homogeneous linear system Ax 0 where A is a singular
irreducible M-matrix is important in many areas of mathematical sciences such as
input-output analysis in economics (e.g., Berman and Plemmons [1979, Chap. 9],
compartmental analysis tracer models (e.g., Funderlic and Mankin 1981]), and finite
Markov chains (e.g., Berman and Plemmons [1979, Chap. 8]).

Theorem 4 provides a difference equation for the entries in a vector x such that
xTA >= 0 and x >> 0, when A is a tridiagonal irreducible M-matrix.

THEOREM 4. Let A cj, aj, bj be a tridiagonal M-matrix oforder n, such that cjbj 0

for 1 <=j <-n- 1. If x (xj) where the xj’s satisfy the following difference equation:

(8)
9+1x+2 + a+lxj+l + bx O, 0 <-j <= n 2,

X 1, Xo 0,

then x >> 0 and xTA >-- O. Furthermore, ifA is a singular matrix, then xTA O.

Proof Multiplying the difference equation (6) for the leading principal minors of
A by -(I-I=l [cl) -1 and since Ic, l--c,, it follows that

Ic, Ic, raj+,/ Ic, o’j_lb =0.
\/=1 /=1

-1 <=j= n and Xo 0. Then, the sequence ’txj1j_-o satisfiesLet xj+ H/=I ]Cl[) O’j for 0 < ,,+1

the following difference equation:

9+xj+ + aj+xj+ + bjxj O, X 1, xo=O.

Therefore, x > 0 for 1 _-<j _-< n and x,+l -> 0.
Let zT--XTAo Then it follows that

(9)
X2C de- xla

zj Xj+ Cj + Xjaj + Xj- bj-1
ifj= 1,
if2__<j-< n- 1,
ifj= n.
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Applying the recurrence equation (8), it follows that zj 0 for 1 _<-j <= n 1. Therefore,
zr= xTA aer, and it can be shown that a => 0, since A is an irreducible M-matrix.
Therefore, xrA >= O. If A is a singular irreducible M-matrix, then A is almost monotone
(see Fiedler and Ptik [1962]); that is, xrA > 0 implies that Ax =0.

Next, a strict upper bound on the moduli of the elements of L will be derived,
where A LU is the LU-decomposition of a tridiagonal irreducible H-matrix. Lemma
2 provides a useful expression for the multipliers of A.

LEMMA 2. Let A cj, a, b] be a tridiagonal H-matrix oforder n, such that bycy 0
for 1 <-j <- n 1. IfA LU is the LU-decomposition ofA and L mj, 1, 0], then

m c try-1 for j l, 2, n -1,

where o) denotes the jth principal leading minor ofA and tro 1.
THEOREM 5. Let A- [c, aj, b] be an M-matrix of order n, such that cb 0 for

1 <-j <-n- 1. Let MA max mjl, where m is the jth multiplier of A. Then

lmjl < a+ <-j= n 1--Ibjl’ 1 <

and thus

MA <= IIax
aj+

Ib l"
Proof. Solving the difference equation (6) for tr/ yields

trj+ aj+ trj cjbjo)_ 1.

Since trj+ > 0 for 1-<j-< n- 2 and tr, => 0, it follows that

0<-_ aj+trj- cbjtr_l, 1 <-j <- n 1.

Thus

icjl trj_.._._2 _< aj+ 1 _-<j < n- 1.

Applying Lemma 2, the proof is complete.
COROLLARY 2. Assume that A [c, a, b] is a Toeplitz tridiagonal M-matrix oforder

n _-> 3, such that cb O. Then, either MA < 2 or MAr < 2.
Proof. It follows by Theorem 4 that MA <- alibi and that MAr<= a/IcI. If Ibl_-> a

and cl->-a then cb >-a2, or 0 -> a2- bc. This is a contradiction since O"2 --a2- bc and
tr2 > 0. Thus, either Ibl < a or Icl < a.

Assume that Ibl < a and Ic[-> a. Then a/[c[-< 1 and MAr<- 1. Assume that Ib[--> a
and Ic[ < a. Then a/Ib _<- 1 and MA--<-- 1. Assume that Ibl < a and Icl < a. If A is column
diagonally dominant, then it is well known that MA <- 1. Thus assume that A is not
column diagonally dominant. Therefore it must be true that a <[bl+[c1. If [c <[b[,
then a < 21bl and MA < 2. If Ibl--< Icl, then a < 21c

In a recent paper by Gunzburger and Nicolaides [1982], it is shown that it is
possible to find a Toeplitz tridiagonal matrix A-[c, a, b], where b-c--1 and
0 < a < 2, such that the multipliers may become excessively large. However, A is not
an M-matrix.

Assume that A=[c, aj, b]C is an irreducible tridiagonal H-matrix. Then
(A)-[-Icl, lal,-Ibl] is an irreducible tridiagonal M-matrix. Also, (A) admits
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an LU-decomposition (A)= L’U’, where

L’= Imp, , 0], U’= [0, 5, Ibl],
(10)

<_--j= n 1mj= -Iel/, 1 <

’= lbl 2-<j < n,
(11)

aj lal+ mj_
-Ia,I.

Theorem 6 provides upper bounds for MA and gA, when A is an irreducible
H-matrix.

THEOREM 6. Assume that A [ cj, aj, bj is a tridiagonal H-matrix of order n, such
that cjbj # 0 for j 1, 2,. ., n 1. IfA LU where

L= [mj, 1, 0], U=[O, aj, bj],

(12)
mj j/ olj, l <=j <= n -1,

aj aj- mj_lbj_l, 2 <-j <- n,

then

Iml <la+’l <_--j n 1
Ibl

1 <=

I1 21aul, l <=j <- n

so that MA--<maxj (la/l)/(Ibl), and gA<--_2.
Proof. Applying Theorem 5 to the matrix t(A), it follows that

Imjl< la/l l=<j<n-1
Ibl

where mj is given by (10). Since A fA), we can apply (2) and get

(13) Imllml <laj/’l 1 <j<n-1.
Ibl

Therefore
MA <= max (le+,l/Ibsl).

Taking the absolute value of both sides of (12), it follows that

I,.,I--< lel + b-,I I-,-,I,
If we apply (13), one obtains

I1 <- lal + Ib-,I lal

l<__j<-n.

l<=j<--n,

or

I1--< 21el, 1 --<_j _--< n.

Therefore ga <- 2.
Thus, for a tridiagonal H-matrix A the growth of the entries in the matrix U is

bounded above by two and the multipliers mj cannot become excessively large.
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Finally, we can derive a lower bound for the multipliers of A cj, aj, b]. Applying
Theorem 6, it follows that

1 1
<_ l<=j<n.(14)
2lal-- I1

From (4) we have that Imul--Icl/ll forj= 1, 2,. ., n 1. Thus, by Theorem 6 and (14)

Icl <-Iml<_- l <=j <= n -1.
21al- Ibl

When A is a reducible tridiagonal M-matrix it is possible that one ofthe multipliers
rn may become excessively large. As an illustration, consider the following nonsingular
reducible M-matrix

A -2 2 1 > e >0,
0 -1

which admits the following LU-decomposition:

e -2)/2 1 e

0 1/e 1 0 0

Then, MA -1/e so that MA approaches infinity as e approaches zero.
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INVERSE PROBLEMS FOR MEANS OF MATRICES*
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Abstract. Given two positive Semidefinite Hermitian matrices A and B there are, natural definitions for
their arithmetic and harmonic means. In this work we consider the following question: Given positive
semidefinite matrices C and D, when do there exist positive semidefinite matrices A and B such that C is
the arithmetic mean of A and B and D is the harmonic mean of A and B. Uniqueness questions are also
answered. Similar questions are answered concerning the geometric mean.

AMS(MOS) subject classifications. 15A24, 15A45

1. Introduction. Many ofthe familiar means of nonnegative scalars may be defined
on pairs of positive Hermitian operators. The reader is referred to 12] for an introduc-
tion to means of matrices; also see the paper by Kubo and Ando [10]. The primary
object of this paper is to determine when two positive semidefinite matrices C and D
can be the arithmetic and harmonic, or arithmetic and geometric, means of matrices
A and B. These questions were considered in the scalar case by Gauss, see [8]. In
particular Gauss derived the scalar equation of Theorem 2 below.

We restrict our attention to the finite dimensional case. A positive semidefinite
matrix will always be assumed to be Hermitian. We will use the partial order induced
by positive semidefiniteness, that is A>_-B means A-B is Hermitian positive semi-
definite (HSD).

For HSD matrices A and B, the arithmetic mean of A and B is defined by

AAB=(A+B)/2.

If A and B are invertible, the parallel sum of A and B, denoted A’B, is defined by

A.B=(A-I+B-1)-1.
In the general case, one may define the parallel sum using Lemma le below, or

by the formula A: B-A(A+ B)-B, where any 1- inverse may be chosen (that is
(A + B)(A+ B)-(A/ B)= A+ B).

Using the parallel sum, the harmonic mean of A and B is defined by

A!B=2(A’B).

We next wish to consider a generalization of the geometric mean of scalars. In
order to define the geometric mean of the HSD matrices A and B, let Ao A and
Bo B. Inductively, let An+l An A Bn, and Bn+l An !Bn. The sequences An and Bn
both converge to the geometric mean, which we denote by A 4 B [3], 10]. If appropriate
invertibility is available, the following definitions are equivalent to the iterative process
[10], [7] and [3].

A B A1/2(A-1/2BA-1/2)l/2A1/2,
A B (AB-I)I/2B,
A, B=(A+B)((A+B)-A(A+n)-n)/.

* Received by the editors March 15, 1985, and in revised form April 2, 1985. Portions of this paper
were presented at the 1980 IEEE International Symposium on Circuits and Systems, Houston, TX, April 1980.

Department of Mathematics and Computer Science, Fairleigh Dickinson University, Teaneck, New
Jersey 07666., Department of Statistics and Computer Science, West Virginia University, Morgantown, West Virginia
26506.
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If A and B commute, it is easy to see that A # B (AB) 1/2", it is this property and
Lemma 1 below which justify calling A # B the geometric mean.

It is immediate from the iterative definition that A # B (A A B) (A B).
The properties of the means which we shall need are summarized in Lemma 1.

Proofs are contained in references 1] and 10].
LEMMA 1. Let A and B be HSD matrices, and let C be a matrix. Let m denote any

of the means arithmetic, geometric or harmonic. Then
(a) AmA=A.
(b) AmB=BmA.
(c) C(AmB)C*<-_ (CAC*)m(CBC) with equality if C is invertible.
(d) If B1 <-- BE then AmB1 <-_ AmB2.
(e) If A, and B, are sequences of matrices monotonically decreasing to A and B

respectively, then A,mB, decreases monotonically to AmB.
(f) A!B<-A#B<-AAB.
(g) range (A !B) range (A) range (B).
(h) range (A # B) range (A) range (B).
In the next section, we consider the inverse mean problems; in 3, we discuss

various duality questions pertaining to the inverse means.

2. Inverse mean problems. In this section, we consider two inverse mean problems.
First we are interested in when can two HSD matrices C and D be the arithmetic and
harmonic means respectively of two other HSD Matrices A and B? Our Theorem 1
below supplies the existence and uniqueness results. Theorem 2 answers a similar
question for the arithmetic and geometric means.

THEOREM 1. Let C and D be HSD matrices, with C >-D. Then there exist HSD
matrices A and B such that

(la) C=AA B,

(lb) D=A!B.

Moreover, if we require A >-B, then the solution is unique.
Proof. In the scalar case we can solve for A and B using the quadratic formula,

obtaining A C + (C2- CD)1/2. We are thus led to consider the solutions

(2a)

(2b)

A=C+C(G-D),

B=C-C(C-D).

First we note A defined by (2a) is HSD, since C- D is HSD by hypothesis. To
see that B, defined by (2b) is HSD, note that C >-C-D, so that C=C4C->_
C#(C-D).

It is clear that A + B 2C, so that (la) is satisfied.
In order to show that (lb) holds, let us first assume that C is invertible. Let E

denote C-I/2DC-/2. Then the following sequence of equalities holds"

A!B=(C+C #(C-D))!(C-C (C-D))

C/2((I + I (I-E))!(I-I 4 (I-E)))C1/

C1/2((I+(I-E)I/2)!(I-(I-E)I/2))C’/2
2C/((I / (I- E)l/2)’(I-(I E)I/2))C
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2C/2((I + (I- E)/2)(2I)-I(I-(I- E)I/2))C 1/2

C1/2(I-(I E))C 1/2

C1/2EC 1/2 D.

We therefore have the formula

D=(C+C (C-D))!(C-C =(C-D))

for invertible C, and the general result holds by taking limits, using Lemma l(e).
Therefore formulas (2) furnish a solution to equations (1). It remains to consider
uniqueness.

Again let us assume that C is invertible. Then from equations (1) we pre-multiply
and post-multiply by C-/ to obtain the equivalent system

(3a) I X + Y,

(3b) Z X" Y

where Z -4C-1/2DC-1/2. Note, we already know that (3) has at least one solution.
For any solution pair X, Y we must satisfy the following equation, where we

replace Y by I-X from (3a)

(4) Z=X’(I-X)=X-X2.

We have assumed that A _-> B and therefore X _-> Y. Since Y I- X, the condition
X_-> Y is equivalent to the condition X>-_I/2. Using equation (4), we obtain the
following equation

(X- I/2)2= 1/4- Z.

Since the HSD square root of a HSD matrix is unique, we have that Z uniquely
determines X- 1/2 or equivalently X is unique.

If C is not invertible, we note that from (la) we must have range (A)c range (C)
and range (B)c range (C). Then from (lb) we have range (D)c range (C). Since all
matrices under consideration have their ranges contained in the range of C, we may
transform from (1) to (3) using the Moore-Penrose generalized inverse and the result
follows.

Finally, we note that in the absence of the condition A_-> B the solution will not
be unique unless C D.

THEOREM 2. Let C and D be HSD matrices with C >-D. Then there exist HSD
matrices A and B such that

(Sa) C A/k B,

(5b) D A # B.

Moreover, if we require A >-B, then the solution is unique.
Proof. As before, we consider the scalar case to motivate the solutions

(6a) A= C +(C 4- D) # (C- D),

(6b) B C C 4- D) # C D).

Since C _-> D it is clear that A defined by (6a) is HSD. To see that B defined by (6b)
is HSD, we note the following equality and inequality of Lemma If

C (C + D)/2+(C- D)/2 >- (C + D) (C- D).
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It is clear that A + B 2C, so that (Sa) holds. For (Sb), we again first assume that
C is invertible. Then, letting E C-1/2DC-1/2, we have the following string of equalities

A : B=(C +(C + D): (C-D)) (C-(C / D) (C-D))

C1/2((I /(1/ E) (I- E)) (I-(I / E) (I- E)))C 1/2

C 1/2((i + (I E2)1/2) (i (I E2)1/2)) C 1/2

C1/2(I-(I E2))1/2C1/2
CI/2EC 1/2 O.

The noninvertible case is similar to the proof of Theorem 1. The uniqueness
argument is analogous to that given in the proof of Theorem 1, except that (4) is
replaced by

Z (X(1-X))1/2

3. Duality. An important concept in electrical network theory is duality. The
parallel sum of matrices, derived from the parallel connection of networks, is the
natural dual of the ordinary sum of matrices (the series connection). Duality concepts
may also be extended to means of matrices.

For every mean there is a dual mean, see [ 10]. The dual of the mean m is denoted
by m+/- and defined by Am+/-B (B-lmA-1)-1 if the indicated inverses exist. Noninvert-
ible cases are defined using Lemma l(e).

The duality of ordinary and parallel addition, which is apparent from the definition
of the parallel sum, yields that the arithmetic and harmonic means are duals 1 ], [6].
The geometric mean is self-dual, 10]. The dual of the difference A- B is the parallel
difference A / B, which is defined by (A-1- B-l)-1 when the indicated inverses exist.
In general, if A<=B and range(B)=range(B-A) then A+B may be defined by a
limiting argument, or by the explicit formula A/ B A(B-A)+B, where the Moore-
Penrose generalized inverse is used, see [2] or [11]. The dual to the equation A
B + (A B) is then the equation A B: (A / B).

The dual of Theorem 1 merely interchanges equations (la) and (lb), yielding
nothing new. The duals to formulas (2a) and (2b) give alternate expressions for the
solutions (1). The dual to Theorem 2 is more complicated and deserves a separate
treatment. In Theorem 3 below, we consider the inverse mean problem for the geometric
and harmonic means.

THEOREM 3. Let CandD be HSD matrices with C <- D, and range (C) range (D).
Then there exist positive semidefinite matrices A and B with

(7a) C=A!B,

(7b) D A 4 B.

Moreover, if C and D are invertible, the condition A <= B will ensure uniqueness of the
solution.

Proof. First let us consider the invertible case. From C =< D we have C-1-> D-1

so that DC-1D >= DD-1D D >= C. Then the hypotheses of Theorem 1 hold so that
there exist A and B with A/k B DC-1D and A!B C. For this A and B we then
have the following equalities

A 4C B (A /X B) 4 (A B)

C (DC-1D)
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C1/2( C1/2DC-1DC-1/2)I/2CI/2
C1/2( C-1/2DC-1/2C-1/2DC-1/2)1/2C1/2
C1/2C-1/2DC-1/2C1/2

=D.

Thus A and B furnish a solution for equations (7).
For uniqueness, we reverse the above computation and observe that if A and B

satisfy (7), then A A B DC-1D. Theorem 1 then implies that the solution to (7) is
uniquely determined by the condition A_-< B.

If C and D are not invertible, they still must have the same range. The above
existence argument holds with the inverses replaced by the Moore-Penrose generalized
inverses. The resulting solutions A and B will be zero on the orthogonal complement
of the range of C and D. Either (but not both) of A or B may be prescribed arbitrarily
on this orthogonal complement without affecting (7), so that uniqueness does not hold
in this case.

When the parallel difference C / D is defined, the solutions to (7) may be written
as the duals to (6), that is

(8a) A C" ((C" D) (C -: D)),

(8b) B C / ((C" D) 6 (C / D)).

Formulas (8) may be verified by taking the dual of every line in the proof of
Theorem 2.

Acknowledgment. The authors wish to thank the referees for improving the clarity
of the proof of Theorem 1.
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INCOMPLETE FACTORIZATION OF SINGULAR M-MATRICES*

J. J. BUONI

Abstract. In 1981, Varga and Cai characterized those M-matrices A (perhaps singular) which admit a
factorization into M-matrices L and U (A LU) where L is required to be a nonsingular and lower triangular
M-matrix and U is required to be an upper triangular M-matrix, a result that was first proved by Fiedler
and Ptak (1962) in the case when A is nonsingular. Because this factorization may, as a result of fill-in,
produce a lower triangular matrix which is considerably less sparse than A, one attempts to control the
fill-in of the factorization of A by means of a graph. This method leads to the concept of incomplete
factorizations of A. Meijerink and van der Vorst (1977).who have shown that incomplete factorizations of
nonsingular M-matrices are possible, while Manteuitel (1980) has extended this result to the H-matrix case.
The purpose of this paper is to give a condition on a singular M-matrix which guarantees the incomplete
factorization of a singular M-matrix.

Key words. M-matrices, incomplete factorization
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1. Introduction. An n x n M-matrix A (aij) is said to admit an LUfactorization
into n x n M-matrices if A can be expressed as

(1.1) A=LU

where L:= (lij) is an n x n lower triangular M-matrix (i.e. 1,>0, 1 <0 for all i>j and
1 iy 0 for all j > i, where 1 <_- i, j -<_ n) and where U := (uo) is an n x n upper triangular
M-matrix (i.e., u,>0, u0<0 for all i<j and u0=0 for all j< i, where l <-_ i,j <- n). A
well-known result of Fiedler and Ptak in 1962 (of. [4]) gives that any nonsingular
M-matrix admits such an LU factorization (1.1) into M-matrices, with L and U both
nonsingular. In 1977, Kuo [6] extended this result by showing that any n x n irreducible
M-matrix (singular or not) admits an LU factorization (1.1) into M-matrices, with
say, L nonsingular. In 1981, Varga and Cai (of. [13, Thm. 1]) characterized those
M-matrices which admit an LU factorization into M-matrices with L nonsingular with
the following result:

THEOREM 1. Let A be an n x n M-matrix. Then the following are equivalent:
1. A admits an LUfactorization into M-matrices with nonsingular L.
2. For every proper subset S’,-’(SI,’’" ,Sk) of (n):=(1,... ,n) for which A(s) is

singular and irreducible, there is no path in the directed graph G, (A) ofA from vertex
v, to vertex vg for any > Sk and q in s.

Because the factorization in (1.1) may, as a result of fill-in, produce a lower
triangular matrix L which is considerably less sparse than A, one attempts to control
the fill-in of the factorization of A by means of a graph, an idea which seems to have
first been suggested by Varga 10] as a specific technique for generating regular splittings
(cf. 11, p. 88]) of certain finite difference equations. This method leads to incomplete
factorizations of A, and is described below.

For n any positive integer, let A (a0) with real entries, and let G (for graph)
denote any nonempty set of ordered pairs of integers (i, j), with i<= i,j <= n and with

j. Then given any A (a) and given any graph G, we attempt to produce a splitting
of A
(1.2) A= M-N,

* Received by the editors January 7, 1985, and in revised form April 24, 1985.
f Department of Mathematical and Computer Sciences, Youngstown State University, Youngstown,

Ohio 44555.
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where M- LU and L and U are sparse lower and upper triangular nonsingular
M-matrices with the properties"

lo-0 if (i,j) in G,

uij=0 if(i,j) in G.

Meijerink and van der Vorst [8] have shown that (1.2) is possible when A is an
nonsingular M-matrix, while Manteuffel [7] extended this result to the H-matrix case.

The purpose of this paper is to show that a condition which is slightly weaker
than that of Theorem 1 will guarantee the incomplete factorization of a singular
M-matrix into the form of (1.2).

2. Main results, in this section we establish our main results.
LEMMA 1. Let A be an M-matrix. Let the elements ofB- bij) satisfy the relations

(2.1) ao <- bo <- 0 for
Then

1. B is an M-matrix.
2. If B is a singular M-matrix, then A is a singular M-matrix.
3. If A is an irreducible M-matrix and if bo 0 for some j where ao 0 then B

is nonsingular.
Proof. For A an M-matrix, 1) and 2) follow immediately from arguments which

appear in [13], while 3) may be found in [5].
Set P ((i,j): a(i,j)=0 where j), i.e. the graph of the off-diagonal zero entries

of A.
The Incomplete Factorization Algorithm (IFA) may be given recursively as follows:

A=A,
(2.2) Ck Ak-1 d- R k,

Ak= LkCk
where k > 0,

k-1 if (i, j) in P,r a
otherwise,

and Lk is equal to the unit matrix, except for the kth column, which written row-wise
is as follows:

k(2.3) [0, 0,’’’ 1, -ck+,/c, k--Cn/ ckk] whenck0;

otherwise,

Lk is the identity matrix.
k-1Remark. The algorithm fails if c =0 and Ctk 0 for > k.

LEMMA 2. Let i, j >--_ k and j. Then i,"- is an arc in the graph ofA iff i, j is an arc
in Ck.

Proof. Without loss of generality, we may assume that k--2. If i,j is an arc in
the graph of A, then a 0, then from (2.2), i.e. first step in the Gaussian elimination,

o +(2.4) ao=-al*
o for i,j> 1 all O,

2and r=0 because i,j is not in P(a is not zero).
Since a,q,< 0 for q, then ail < 0, i.e. i,-) is an arc in the graph in A. Now r2 0

implies that i, j is an arc in C..
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Conversely, let i,j be an arc in C2. Since R2 removes arcs from A which were
in P, then i,j is not an element of P, e.g. originally it was not removed from A. Hence
.,’..
t, j is an arc in A.

The case for all- 0 follows immediately.
If A is a reducible M-matrix, then there exists a permutation matrix P and an

integer s with 1 _-< s _-< n such that A may be placed in a normal reduced form

(2.5) PAP

AI A12 Als
0 A22
0 0 Aas

where each Aij is an irreducible M-matrix. Furthermore, if A is singular then Aj is
singular for some j 13].

LEMMA 3. Let A an M-matrix. If at any completed step k of (2.2), a kk-1 in Ak is
zero then A is singular.

Proof. Since akk-1 is a diagonal element of the upper triangular block of Ak, then
Ak and Ck, are singular and Lk is constructed nonsingular. By the second part of
Lemma 2, one finds that Ak-1 is singular. Backtracking yields that A A is singular.

THEOREM 4. Let A an M-matrix, and let s--(Sl,’’ ", Sk) be any subset of (n) :=
(1,..., n) for which A(s) is singular and irreducible. If

(2.6) atp 0 for all > Sk and all p in s

then the Incomplete Factorization Algorithm (2.2) does not fail at any step.
Proof. Assume (2.2) fails at step k, i.e. one cannot form Ak LkCk. Then it follows

from the remark following (2.2) that Ckkk 0 and ckrk 0 for some r > k. However, the
algorithm does work through k-1 steps and (2.2) did work for A[(k-1)]. But as
C[k=O, then from (2.2) akk;l=o, and when one views Ak-l[(k)] one obtains

Ak-l[(kAk-’[(k>]=
L ****

1>] , ]Ckk

i.e. Ak-[(k>] is singular; hence, a singular M-matrix. Therefore, similar to Lemma 3,
A[(k>] is a singular M-matrix by Lemma 1.

Now as in [13], we set 1 _<-Sl < s2 <’’’ < s k, be the largest subset of (k> for
which A[s] is irreducible. Since s= k and a[-I =0, then Ak-l[s] is singular and by
Lemma 1, A[s] is singular. Now since Crk 50, it follows from Lemma 2 that ark 0,
which contradicts (2.6).

3. Regular splittings. For a real n x n matrix A (possibly singular), the splitting
A M- N is regular iff M-l>- 0 and N-> 0. Unfortunately, for singular matrices A,
regular splittings may only semi-converge, (cf. [1, p. 154]).

THEOREM 5. If A is an n x n irreducible M-matrix which satisfies (2.6), then the
splitting A LU- R produced in (2.2) is regular, provided R is a nonzero matrix.

Proof. Theorem 4 produced candidates for L, U, and R. It remains to construct
the splitting.

First observe as in [8] that

LkR R if k < m, LkRk > O.
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Proceeding as in [8], one immediately obtains from (2.2) that

An-2 Rn-1An-1 Ln-1Cn- Ln-1 + Ln-1
Rn-1-L,,_IL,_: L1A+ Ln-1 L1R1 + Ln-1 L:zR + at- Ln-1

By considering these equations, we find

A"-1= L,,-1 LI(A+ R + + R"-I).

Let us now set U=A"-1, L=(L,_I’." L1)-1 and R R+ +Rn-l’, then

LU=A+R, R>-O.

It only remains to show that U is nonsingular and that U-=> 0. To this end, assume
that A is irreducible. Then after the first elimination step, A of (2.2) has a nonzero
element in (1, 1) position and an irreducible matrix in the (2,..., n) position
(cf. [13, p. 187]). If R2 deletes an element from this submatrix then by Lemma 1.c, we
are finished. If not, then continue the argument until some Rk does delete a nonzero
element from an irreducible submatrix of some Ak-1. E]

4. Examples. In [13] the following example is given to illustrate an M-matrix
which does not admit an LU factorization. However, by Theorem 4 it admits an
incomplete factorization.

Example 1.

6-1

-1

0
A=

0
0

-1

6-1

6

0

0-1

0 0

0 0

0 0

0-1

-1

0

0
U=

0

0

0

0 0

0-1

0 1 -1

0 0 1

0 0 0
0 0 0

0 0

0-1

0 0

1 0 0
0 6-1
0-1 6

0 0

0-1

0 0

0 0

6-1

0

0

0

0

0

0
0

0

0
0

0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0-1 1 0 0

0 0 0 1 0

0 0 0-- 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

o o o o
It is clear that A does not satisfy the conditions of Theorem 1 (cf. [13]); however,
A=LU-R.

In the following example we illustrate an example which does not satisfy the
hypothesis of Theorem 6 and does not factor.

Example 2.

A= -1 1

0 -1
then in the notation of (2.2) one finds

L 1 1 and
0 0

Hence, the incomplete factorization fails.

L1A 0

-1
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For singular matrices regular splittings of the form A M-N may only converge
for relaxation parameters c such that 0< c< 1, as substantiated by the following
example due to Hans Schneider that appeared in [2].

1 -1

0 1

0 0 0

-1 0 0

1 - 0

0 1 -1

0 0 1

Example 3.

0 0

-1 0

Then

1 0 0 0 0

o0 1 0 0

L= -1/2 0 1 0 O, U=
0 0 0 1 0

1-1 0 0 0

1 -1 0 0 0

0 1 -1 0 0

0 0 1 -1/2 0

0 0 0 1 -1

0 0 0 0 1

and

Now M-1 may be written as

while M-1N is

0 0 0 0 0

0 0 0 0 0

o-1/2 o o o
0 0 0 0 0

o0 1 0 0

2111/21/2
1111/21/2
1011/21/2,
10011
10001

-0 1 0 0 0-

0 1 0 0 0

0 1 0 0 0

0 1 0 0 0

0 1 0 0 0
_0 1 0 0 0_
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PACKINGS BY COMPLETE BIPARTITE GRAPHS*

P. HELLY AND D. G. KIRKPATRICK

Abstract. Given any set 3 of complete bipartite graphs, we ask whether a graph H admits a G-factor,
i.e., a spanning subgraph, each of whose components is a member of 3. More generally, we seek in H a
maximum G-packing, i.e., a 3-factor of a maximum size subgraph of H. We first treat the interesting special
case when is a set of stars. The results are generalized to arbitrary 3 in the last section. We prove for
most of these problems that they are AC-hard; we also show that the remaining problems admit polynomial
algorithms based on augmenting configurations. The simplicity of these algorithms, as well as the implied
min-max theorems, resemble the theory of matchings in bipartite, rather than general, graphs.

AMS(MOS) subject classifications. 05C70, 68R10

1. Introduction. Let (g be a (possibly infinite) set of (finite) graphs. A (g-factor of
a (finite) graph H is a spanning subgraph of H consisting of a number of disjoint
copies of elements of (g. Equivalently, a (g-factor of H is the union G of subgraphs
G1, G2,’", Gd of H whose vertex-sets partition V(H) and such that each Gi is
isomorphic to an element of (g. The G-factor problem can be described as follows:

INSTANCE: A graph H
QUESTION: Does H admit a (g-factor?

It is worth stressing that the set (g is fixed, and not part of the instance. Also note
that a {K2}-factor of H is precisely a perfect matching of H, and hence we can view
our problem as a kind of generalized matching problem.

As in the case of matchings, we may wish to find a (g-factor of a maximum-size
subgraph of H. Formally, a (g-packing of a graph H is a (g-factor G of a subgraph H’
of H; the vertices of/-/’ are said to be saturated, the other vertices of H exposed by
G. The number of vertices saturated by a (g-packing G is called the size of G, and a
(g-packing of maximum size is called a maximum (g-packing.

Clearly, every H admits a {K1}-factor. As noted above, the {K2}-factor problem
is precisely the perfect matching problem, and hence admits a polynomial-time solution
[12]-[14]. Maximum matching algorithms can also be used to solve the {G}-factor
and {G}-packing problems in the case when each component of G is K1 or K2 [28],
[29]. We have shown that in all other cases the {G}-factor problem is -complete,
[28], [29]. We have also studied the (g-packing problems for various families (g,
[20]-[23], [28], [29]; other recent works can also be viewed in this light [1]-[3],
[8]-[ 10], [34]. In particular, for any family of complete graphs (g there exist polynomial
algorithms when K1 or K2 (g [9], [20], [23], [29] and it can be shown that the (g-factor

problem is -hard in all other cases [20], [29].
In this paper we concentrate on the case where (g is a family of complete bipartite

graphs.
Some theoretical and practical motivation for the study of (g-factors and

(g-packings was given in [28], [29]. In particular, packings by complete bipartite graphs
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(and especially by stars) are of interest as a fruitful area in which analogues of results
from traditional matching theory [4]-[6], [12]-[14], [26], [36], [37] are to be found.

2. Packings by sequential star sets. A star, Si, is the complete bipartite graph Kl.i.
A sequential star set is either S={$1, $2," "} or ={$1, S:,..., Sk} for some
positive integer k.

Our results on star packings date to the summer of 1979. They were discussed by
the first author in several talks on generalized matchings and star packings, among
others 19]; cf. also [29, Thm. 5.4] and [22]. We have since become aware of the related
(and earlier) work in [7], [31]; moreover, other papers have since appeared [2], [3]
which also directly or indirectly duplicate some of our results. Consequently we will
restrict ourselves in this section to a brief outline of the main results; a more detailed
version is available from the authors, [22].

PROPOSITION 1. A graph H has an {S1, $2, .}-factor ifand only ifit has no isolated
vertices.

Remark 1. Proposition 1 follows from the observation of Las Vergnas [31, Remark
3.5], that H has an {S1, $2,’’ ", Sk}-factor if and only if it has a (1, k)-factor, i.e., a
spanning subgraph with all degrees between 1 and k. In fact, Las Vergnas’ proof
suggests an O(IEI) algorithm to find a star-factor in a graph H without isolated vertices
(clearly, a graph with isolated vertices has no star-factor): Examine each edge uv of
H in turn, and delete it if both u and v have degree greater than 1 (updating the
degrees of u and v if uv was deleted). After all edges have been examined, we are left
with a star-factor G of H. Evidently, if all degrees of H were between 1 and k, then
G will be an {$1, $2,’’" Sk}-factor, so the same algorithm can be used to modify a
(1, k)-factor of H to an {$1, $2,""", Sk}-factor of H.

Remark 2. The algorithm discussed in Remark 1 will, when applied to an arbitrary
graph H, find a maximum {S1,$2,’" .}-packing; thus the maximum {S,$2," "}-
packing problem is in . Moreover, the {S, $2,"" ", Sk}-factor problem can also be
solved in polynomial time, because the (1, k)-factor problem can be solved in poly-
nomial time 14], [35]. Finally, as we explain below, we shall give polynomial algorithms
for (among others) the maximum (1, k)-packing problem (i.e., finding a subgraph of
a given graph H with the maximum number of vertices and all degrees between 1 and
k) [24], which can, using the algorithm in Remark 1, be translated to maximum
{S, $2," , Sk}-packing algorithms. A direct polynomial algorithm for the maximum
{S1, $2,"" ", Sk}-packing problem, based on familiar augmenting path techniques, is
inherent in Theorems 1 and 2 below (cf. Remark 6).

Let G be an {S, $2," ", Sk}-packing of a graph H. Figure 1 sets out three basic
augmenting configurations in H with respect to G. Figure 2 describes the corresponding
augmentations. In these figures we depict the edges of G by double lines and the other

1

0 I y 0 k ii’::

1 1 i i i 1 i 1

(0 _< x k) ( y _< k)

(i) (ii) (iii)

FIG. 1. Basic augmenting configurations.
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(i) (ii) (iii)

FIG. 2. Corresponding augmented configurations.

edges of H by single lines. Each vertex is labelled by its degree in G. The shorthand
of Fig. 3a stands for any number (=>0) of repetitions of Fig. 3b. Note that all vertices
depicted (or implied by the shorthand) are assumed to be distinct.

(a) (b)

FIG. 3. Shorthand for augmenting configurations.

It should be clear from Figs. 1 and 2 that the absence of basic augmenting
configurations is a necessary condition for G to be maximum. In fact, it is a sufficient
condition as well:

THEOREM 1. An {$1, $2,"’, Sk}-packing G of H is maximum if and only if it
admits no basic augmenting configuration.

Remark 3. It is useful to view entire augmenting configurations to see how a
packing G is modified. However, as Figs. 1 and 2 make clear, augmentation takes
place along a path in H. Indeed, we can characterize the presence of basic augmenting
configurations in terms of familiar alternating paths. (An alternating path starts at an
exposed vertex and alternates edges of H- (3 and G). H admits a basic augmenting
configuration with respect to (3 if and only if it admits an odd length alternating path
ending at a vertex v whose degree d in G is less than k. We call such a path an
augmenting path with respect to (3. Note that each basic augmenting configuration
contains an augmenting path.

On the other hand, if such a path exists then one of minimum length can be
expanded to configuration (i) (if d > 1) or (ii) (if d 1 and the star of G containing
v is different from all the preceding stars on the path) or (iii) (if d 1 and the star
containing v is the same as the star containing its predecessor on the path). (Because
of minimality, it is easy to see that the star containing v cannot be the same as any
other star meeting the path.)

Theorem 1 will now follow from the proof of the following Theorem 2.
THEOREM 2. Let k>-2. The size of a maximum {S1, $2, Sk}-packing of H is

equal to the minimum, over all T V(H), of n / k. TI- i7. where n V(H)I and ir
denotes the number of isolated vertices ofH- T.

Remark 4. Theorem 2 (although discovered independently) is a special case of
[31, Prop. 4.1], if one takes into account the relation between {S1," ", Sk}-factors and
(t, k)-factors discussed earlier (Remark 1). In Proposition 4.1, Las Vergnas gives
the rank function of the matroid on V(H) whose independent sets are vertex-sets
V’_ V(H) which can be saturated by some {S, $2,"" ", Sk)-packing of H; in that
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terminology, our Theorem 2 only gives the rank of the entire matroid. (However, the
extension to the rank of any set is easy, cf. the proof of [31, Prop. 4.1].)

COROLLARY. Let k >- 2. A graph H admits an {S1, $2," ", Sk}-factor if and only if
it does not admit a set Tofvertices whose deletion results on more than k T isolated vertices.

The corollary was also discovered by [3], [7], [31] (and [2] when k-2). Our
proof of Theorem 2 is different from that of Las Vergnas, but similar to the recent
proof of the corollary by [3]. Hence we shall only give an outline:

Outline ofproof of Theorem 2. If T is any subset of V(H), then at least iT- k. TI
vertices are exposed in any {$1, $2," ", Sk}-packing G. Hence the maximum number
of saturated vertices is at most n (iT k. TI) n + k. TI iT for any T

_
V(H). To

prove the equality, we shall define an {S1, $2,’’ ", Sk}-packing G and a set T such
that G saturates precisely n / k. TI- iT vertices of H. Let G be any {S1, S2,..., Sk}-
packing of H which admits no basic augmenting configuration. Let U denote the set
of vertices exposed in G. Let T (respectively W) denote the set of vertices reachable
from some vertex u U by a nontrivial alternating path of odd (respectively even)
length. Since G admits no augmenting configuration in H, it follows by Remark 3 that
every vertex T has degree k in G. All vertices of U U W are clearly isolated in
H- T and hence iT >----IUI +[W[. Thus G saturates

n-lUI n +lwl- iT n + k. TI- iT

vertices.
It follows from the above proof that an {Sl, $2,’’’ Sk}-packing G which does

not admit a basic augmenting configuration admits a set T c__ V(H)I such that G
saturates n + k. TI- iT vertices and hence G is a maximum packing. This completes
the proof of Theorem 1 when k >-2. When k 1, the basic configurations (ii) and (iii)
are impossible and the statement reduces to the well-known augmenting path
theorem [5].

There is an interesting distinction between the {S, $2,’’’, Sk)-packing problem
when k 1 and when k => 2. While the former is exactly the matching problem in
general graphs, the latter situation is similar to the theory of bipartite graphs, cf.
Remarks 5 and 6.

Remark 5. Theorem 2 is false when k 1. For instance when H K3, the minimum
of n +[TI- ir is 3. In fact, it follows from [4] (cf. also [15], [18], [37]) that the minimum
of n +ITI- i is the maximum size of a {K2, C3, C5, C7," .}-packing. Note however
that when H is bipartite such a packing is necessarily an {S1}-packing, and so Theorem
2 does hold for bipartite graphs; it simply becomes a reformulation of K6nig’s theorem
[30].

Remark 6. Theorem 1 and Remark 3 following it suggest an algorithm for
maximum {S1, $2,’’ ", Sk}-packings: Begin with the empty packing G (E(G)=
and given an {S1, $2,"’, Sk}-packing, find an augmenting path, expand it to an
augmenting configuration, and update the {$1, $2," ", Sk}-packing as explained after
Theorem 1. In fact, when k 1, this is the typical approach to maximum matchings
[5], [12], [13]. In the case of matchings, finding an augmenting path turns out to be
at least conceptually easier in the case when H is bipartite" In general, a vertex can
be reached from a fixed exposed vertex by augmenting paths of both even and odd
lengths, and sometimes only paths of one parity can be continued; this leads to the
need to blossom, [12], [13], in maximum matching algorithms based on the search for
augmenting paths. In bipartite graphs, each vertex can be reached from a fixed vertex
by either odd paths only or even paths only; therefore a breadth first search will be
sufficient to identify an augmenting path. (Despite this intuitive simplification, the best
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current implementations of maximum matching algorithms have the same time bound
O(IEI.x/IVI) for both bipartite, and general graphs [26], [33].) Similarly, for the
{S1, $2,’’ ", Sk}-packing algorithms, when k_->2, the vertices labeled k can only be
reached by odd augmenting paths and those labeled 1 by even augmenting paths. Thus
a breadth first search will find an augmenting path (in time O(IEI)) and the straightfor-
ward implementation of our maximum {S1, $2," ", Sk}-packing algorithm would run
in time O([E]. VI). Employing ideas similar to [11], [26], we can improve this time
bound to O(IEI.X/), [22]. We do not present this algorithm here, because in a
companion paper [24] we plan to give a general algorithm to find a degree-constrained
subgraph with maximum number of vertices, which has the same time bound of
O(IEI .x/-]) in the special case when each degree is constrained to be between 1 and
k. (As pointed out in Remarks 1 and 2, such a degree-constrained subgraph can be
modified to a maximum {$1, $2,’’ ", Sk}-packing in time O(IE]).)

Remark 7. There is one more sense in which the result of Las Vergnas [31] is
more general than Theorem 2. Namely, in his case, the stars used for packing in H
are not all bound by the same number k, but the bound f(v) depends on the vertex
v: A maximum starred (1,f)-packing of H is a star packing of H of maximum size
such that the star with center at v is S1, $2, or Synod. If each f(v) _-> 2 both Theorem
1 and Theorem 2 remain valid, with obvious modification: In the augmenting configur-
ations, replace each occurrence of k by the corresponding f(v); in Theorem 2, the
statement becomes:

The size of a maximum starred (1, f)-packing of H is equal to the minimum, over
all T

_
V(H) of

n+ f(t)-iT-.
tT

While this result also follows from [31], our proof based on augmenting configurations
(as outlined above) offers an algorithm, as well as an interesting alternative to the
proofs in [31]. (Cf. also [27] for the case of bipartite graphs, and for an interesting
application.)

Remark 8. We note an important difference between the (1, k)-packing and the
{S1, , Sk}-packing problems. As noted above, they are equivalent when we maximize
the number of vertices. However, they are substantially different when we maximize
the number of their edges. A (1, k)-packing with maximum number of edges can be
found in polynomial time, [14], [35]. The same problem is -complete for
{$1, $2,’’ ", Sk}-packings, since a graph H with n vertices has an {Sk}-factor if and
only if the maximum number of edges in an {S1, $2," ", Sk}-packing of H is k/(k +
1).n. (The {Sk}-factor problem is V-complete for k_->2, [28], [29].)

3. Packings by general star sets. Since describing a set of stars 6e
_

{S1, $2," "}
amounts to giving a set of positive integers Ise {ilSi 6e}, it should not be surprising
that there exist star sets S for which the 6e-factor problem is undecidable. This fact,
as well as the fact that decidable b-factor problems can be arbitrarily complex can be
deduced from [25] and statement (a) of the following proposition:

PROPOSITION 2. (a) The S-factor problem is at least as hard as the membership
problemfor Ise (b) Ifthe membershipproblemfor Ise is in V’, then so is the 6f-factorproblem.

Proof. Statement (a) follows from the observation that I if and only if Si has
an 6e-factor. Statement (b) is easy to deduce from the definition of c, 17].

The emphasis of our paper is on star sets S for which the membership problem
for Ie is in . Hence according to Proposition 2, all -hardness results we state
translate to C-completeness results for such star sets
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THEOREM 3. The 6e-factor problem is Aft-hard unless 6e is a sequential star set.

Proof. The {S2}-factor problem is V-complete by [17]. If 6e is not a sequential
set and 5 {$2}, then for some _-> 3 and r < t, St 6e, St+l e 6e, and S, e 6e. (We may
have r+ 1 t.) We shall reduce to the 6e-factor problem the following well-known
problem (t-dimensional matching):

INSTANCE: An integer n and a subset P of {1, 2,. ., n}
QUESTION" Does P admit a subset M with n elements no two of which agree

in any coordinate? (Such a subset M is called a t-dimensional
matching of P.)

This will prove Theorem 3, as the t-dimensional matching problem with -> 3 is known
to be -complete, [17].

"",P i)" 1 <i <l} and consider the graph Hp definedSuppose P {(p, P2,
as follows (see Fig. 4). The vertices of Hp are A UBC D, where A=
{a: l<=k<-l-n,l<=j<=r}, B={bk" l<-k<=l-n}, C={c," l<=i<-_l} and D=
{1, 2,. , n} x {1, 2,. , t}. In Hp each bk is adjacent to all a and all ci; moreover,
each ci is adjacent to (p1, 1), (p2, 2),""., (p,, t).

I i 2 2 J-n -n
a a a a

al am 1 m 1 m

Cl ---c
(1.1) (1.9) (1,t)

(2.1) (2,) (,t)

(n I) (n,2) (n,t)

FIG. 4. The graph Hp.

Hp can clearly be constructed from P in polynomial time. We claim that Hp admits
an 6e-factor if and only if P admits a t-dimensional matching. If M is a t-dimensional
matching of P, then each of the n t-tuples in M defines a copy of St with the center
at some c and the endpoints in D. These stars contain n vertices c and all vertices of
D. The remaining l-n vertices c together with all vertices bk and a have an obvious
partition into copies of St+l; hence Hp has an 6e-factor. Conversely, in any 6e-factor
Hp each vertex bk lies on a star Su with u -> r + 1, and hence at most l-(l- n) n of
the vertices ci belong to stars involving D. Since each such star uses at most vertices
of D, there must be precisely n vertices c forming centers of stars St with all other
vertices in D. The t-tuples corresponding to these n stars define a t-dimensional
matching M

_
P. [3

4. The general h-factor problem. Let be an arbitrary set of complete bipartite
graphs. In this section we show that the case where 3 is a sequential set of stars is
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essentially the only one for which we should expect a polynomial solution to the
-factor problem; in all other cases the problem is N-hard.

The qualifier "essentially" can be made precise with the following notions. The
set is said to be reducible if any one of its elements, say B, admits a -{B}-factor;
otherwise is said to be irreducible. It should be clear that for every set there is a
unique irreducible subset ’

___
(the kernel of ) such that for each B , B admits

a ’-factor. In the following lemma we observe that it is sufficient to focus our attention
on irreducible sets of complete bipartite graphs.

LEMMA 1. Let be any set of complete bipartite graphs and let Yd’ be the kernel of. Then for any graph H, H admits a -factor if and only ifH admits a ’-factor.
The main result of this section can now be stated precisely.
THEOREM 4. Let J be an irreducible set of complete bipartite graphs. If is not a

sequential set of stars, then the -factor problem is N-hard.
The remainder of this section outlines a proof of Theorem 4. Some details are left

to the reader. For the remainder of this section let be an arbitrary irreducible set
of complete bipartite graphs and let s fq {i: => 1}, the set of stars in .

We first observe that the proof of Theorem 3 generalizes directly to the following:
THEOREM 3’. If s is a nonsequential set of stars, then the J-factor problem is

.N’-hard.
It remains to consider the case where s is a sequential set of stars and Yd contains

at least one nonstar. Our -hardness proof constructs a bipartite graph whose only
-factors are in fact Ks,t-factors for some specified Ks, . Of central importance in
establishing this as well as other properties is the following simple observation.

LEMMA 2. IfH is any bipartite graph with parts of sizes p,q where p <= q, and ifH
admits a Ks,,-factor, where s <= t, then q/p <= t/ s.

Our -hardness proof makes use of the following notation first presented in
[28], [29].

A module is a graph M together with a nonempty subset C
_
V(M) of distin-

guished vertices that we call the connector vertices of M. (The elements of V(M)- C
are called the interior vertices of M). If G is any fixed graph, then M is said to be a
G-module if M admits a G-packing saturating all of its interior vertices (plus some,
possibly empty, subset of its connector vertices).

A graph H is a modular extension of the module M if H contains M as an induced
subgraph in which no interior vertex of M is adjacent to a vertex of H-M (that is,
M is connected to the rest of H only through its connector vertices). Let
{G1,’’ ", Ga} be any G-packing of some modular extension H of M. A vertex of v
of M is said to be bound to M by 7r, if v V(Gi) implies V(Gi) V(M). A G-module
M is internally G-coherent if every G-factor of every modular extension of M binds
to M all of its interior vertices.

Now suppose s is a sequential set {$1,’’ ", Sq} of stars and that contains at
least one nonstar. We say that a nonstar Ks, with 1 < s <= t, is minimal in if Ks,,
and for all Ks,,,, with s’<= t’ either s’= 1, or s’> s, or t’> t. By the irreducibility of, it follows that > qs.

Suppose Ks,, is minimal in . An s,t-fork is a complete bipartite graph Ks/l,t in
which three vertices in the part of size s + are distinguished as connector vertices.
Similarly an s,t-cross is a complete bipartite graph Ks+z,t in which four vertices in the
part of size s + 2 are distinguished as connector vertices.

We find it convenient to depict an s,t-fork and s,t-cross schematically as in Fig. 5.
It should be clear that both s, t-forks and s, t-crosses are internally Ks,,-coherent,

and that an Ks,t-factor of any modular extension of either one binds to that module
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FIG. 5. An s, t-fork (a) and s, t-cross (b).

its interior vertices plus exactly two of its connector vertices. If we say that in such a
situation the unbound connector vertices are chosen, then a fork (respectively, a cross)
can be used to force an arbitrary choice of one out of three (respectively, two out of
four) vertices. We use s, t-forks and crosses to build larger modules with similar
properties.

We define a c by d s, t-array to be the graph formed by connecting s, t-forks and
s, t-crosses into a c by d array as shown in Fig. 6.

A c by d s, t-array can be viewed as a Ks,,-module with connector vertices
Xl, , Xd. The following lemma summarizes the relevant properties of such modules.

LEMMA 3. Let M be a c by d s, t-array with c <-d. Then
(a) Any Ks,t-factor of any modular extension ofM binds to M its internal vertices

plus at least d-c of its connector vertices: and
(b) The graph M minus any c of its connector vertices admits a Ks,t-factor.
Proof (a) It is easy to confirm that M is a bipartite graph with sizes cds + c and

cdt, where all of the connectors belong to the part of size cds + c. The result follows
by Lemma 2.

(b) Suppose xil, xi2, , xc are the chosen connector vertices, where < i2 <" <
ic. Then the module in array position (j, k) binds

(i) its left and right connectors if k =/j;
(ii) its left and lower connectors if k < ij;
(iii) its right and upper connectors if k i,, >j; and
(iv) its right and lower connectors if k >/j and k # i,, >j.

The resulting Ks,-packing saturates all of the vertices of M except the connectors
Xi1, Xi.

Yc

Yc-1

x1
FIG. 6. A c by d s, t-array.
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It follows from Lemma 3 that, with regard to Ks,t-factors, c by d s, t-arrays,
wherever they appear as modules in a larger graph, force a choice of at most c of their
d connector vertices. This choice is exploited in the following reduction of the
t-dimensional matching problem to the -factor problem.

Let n be an integer and let P
_

{ 1, 2, , n}’. Suppose P
{(pi1, P2, pit): 1 <-- <-- 1} and consider the graph H(s, t, P), depicted in Fig. 7, in
which each xj, 1 <- -<_ l, 1 _-<j _-< s, is adjacent to each of (pit, r), 1 _-< r_-< t.

zI

(,1) (_,2) (1,t)

(Z) (,2) (t)

FIG. 7. The graph H(s, t, P).

H(s, t, P) is clearly a modular extension of an sn by sl s, t-array. Our concentration
on Ks,,-factors is justified by the following lemma.

LEMMA 4. H(s, t, P) admits a :-factor ifand only ifH(s, t, P) admits a Ks,,-factor.
Proof. H(s, t, P) is easily seen to be a bipartite graph with parts of size s3nl + sn

and s2tnl + tn. Furthermore, no set of s vertices in the part of size s3nl + sn has more
than common neighbors. This, together with the minimality of Ks,, in implies that
no bipartite graph with a ratio of part sizes at least t/s except Ks,, appears in any
-factor of H(s, t, P). But since the average ratio of the part sizes of the bipartite
graphs in any G-factor of H(s, t, P) is t/s, it follows that any -factor must be a
Ks,t-factor. [3

As a consequence of Lemma 4 the proof of Theorem 4 is completed with the
following lemma.

LEMMA 5. H(s, t, P) admits a Ks,,-factor if and only if P admits a t-dimensional
matching.

Proof. Suppose {(,... ,): j{i,..., i,}} is a t-dimensional matching of P.
Let F be any Ks,,-factor of the array-module of H(s, t, P) minus its connectors xj,
i{il,"’, i,}, l<-j<=s (the existence of which is guaranteed by Lemma 3). Then F
together with the n subgraphs induced on the vertex sets

2) (p t)} for i{i, i,} forms a K,-factor of{xi,’’’ X’s,(p’ 1) (P2,1, t

n(s,t,P).
Conversely, suppose H(s, t, P) admits a K,t-factor F. By Lemma 3, F binds all

but at most sn of the connector vertices to the array-module of H(s, t, P). But H(s, t, P)
minus the internal vertices of its array module is easily seen to be a bipartite graph of
sizes In and tn, and hence F restricted to this graph must induce a partition of
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{(j, i): l<-i<= t, l<=j<=n} into exactly n t-tuples each belonging to P--i.e., a
t-dimensional matching of P.

Acknowledgment. We wish to express our sincere thanks to an anonymous referee
for his/her critical review of an earlier version of this paper.
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VALUES OF GRAPH-RESTRICTED GAMES*

GUILLERMO OWENS"

Abstract. We consider the problem of modifying n-person games so as to take account of the difficulties
imposed by lack of communications, and the opportunities this might accord to intermediaries.

In this model, the members of a finite set are simultaneously players in a game and vertices of a graph.
A combination ofthese two structures gives rise to a new, modified game in which the only effective coalitions
are those corresponding to connected partial graphs. We study the relationship between the power indices
of the original game and the restricted game; for the special case where the graph is a tree, this relationship
is especially easy to analyze.

Several examples are studied in detail.

Key words, game theory, graphs, Shapley value, centrality

AMS(MOS) subject classification. 90

Preliminary. Let N {1, 2, , n} be a finite set. In this paper the elements of N
will be, simultaneously, the players in a game v and the nodes in a graph F.

The game v is merely a characteristic function. Thus v is a mapping from 2, the
set of subsets of N, into the reals, satisfying

(1) v() =0.

If, moreover, v satisfies the condition

(2) v(SU T) >-v(S)+v(T) ifSt3T=,

we shall say v is a proper or super-additive game. The space GN of all n-person games
is a (2"-l)-dimensional real vector space; the set of all proper games is a full-
dimensional cone Qv in Gv.

The graph F is a pair (N, A), where N is as above and A is a collection of pairs
{ i, j}, # j, i, j N. The pairs are unordered, so that the graph is undirected. The members
of A are arcs of the graph F.

If S is a subset of N, we define As to be the set of all pairs {i, j} where {i, j} A
and i, j S. The partial graph Fs is then the pair (S, As). Thus the partial graph includes
all nodes in S and all arcs which lie between such nodes. We shall say $ is connected
(in F) if the partial graph Fs is connected. The components of S are the maximal
connected subsets of $ (in F).

1. The restricted game. In what follows, we shall assume F is a fixed but otherwise
arbitrary graph. The game v is also arbitrary (but not fixed); no relationship is assumed
between v and F other than that the players in the former are nodes in the latter.

Heuristically, we shall assume that the game v represents the economic capabilities
of the players, i.e., the coalition S can obtain utility v(S) only if its members can come
to an agreement to cooperate. Unfortunately, this may not be possible since there may
be no lines of communications open among them. The graph F, now, represents the
communications channels available" can communicate directly with j if and only if
{ i, j} A. Of course, even if { i, j} A, it may still be possible for to communicate with

* Received by the editors August 14, 1984, and in revised form February 1, 1985.
? Department of Mathematics, Naval Postgraduate School, Monterey, California 93943 and School of

Social Sciences, University of California, Irvine, California 92717.
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j. This will, however, require the cooperation of some intermediaries who can relay a
message, i.e., players who define a path, in F, from to j.

With this in mind, we can now define the graph-restricted game, v/F, as a game
w (with the same players) gi.ven by

I Vm(S) if S iS connected,
(3) w(S)

lk= D(Tk) otherwise,

where T1, T2,’’’, Tm are the components of $ (in F).
It is easy to see that the mapping Lr defined by Lr(v)= v/F is a linear mapping

of GN into itself. It is not so obvious that Lr preserves the cone QN of super-additive
games. We prove this in the Appendix.

THEOREM 1. The mapping Lr is a linear mapping ofG into itself, preserving the
cone QI,.

Clearly, Lr is not full-dimensional (its kernel is not zero). It is of interest to find
its image. To do this, we first define a basis, the unanimity game basis, for G.

If T is an arbitrary (nonempty) subset of N, the game ur, defined by

1 if Tc S,
(4) ur(S)=

0 otherwise

is the unanimity game on T. There are 2n-1 unanimity games in G, and they can be
shown to form a basis (see e.g. Owen [1982]).

Since the unanimity games form a basis, each game v can be expressed as a linear
combination of them:

T

The coefficients in this linear combination are given by the formula

(5) A(S)--- E (-1)S-’v(T)
TcS

where s, are the cardinalities of S and T. Following Harsanyi [1958], we shall call
them the dividends in game v. They satisfy, of course,

(6) v(S)= E A(T).
TcS

We note that the two systems (5) and (6) are equivalent, i.e. any set of numbers
Ao(T) which satisfy (6) necessarily satisfy (5) as well.

To study the behavior of the mapping Lv, we will consider the images of the basic
games uT-. In fact, if T is connected (in F), it is not too difficult to see that Lv(ur)=
If T is not connected, however, we find that Lr(uT-)= uT-/F is given by or, where

1 if there is a connected set K such that T c K = S,
cr(S)

0 otherwise.

Just as ur is usually called the unanimity game on T, so er could be called the
"connect T in F" game. It is now necessary to express cr in terms of the unanimity
games.

(7) cT.=EAc(S)us.
s

Calculation of the dividends Ac(S) is not trivial. It is easy to see, however, that
AcT (S)= 0 unless T c S. Not so easy, but very important, is the next result.
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THEOREM 2. If S is disconnected, then Ac(S)= 0 for all T.
The proof is in the Appendix.
An important consequence of Theorem 2 is
THEOREM 3. The image of the mapping Lr is the set spanned by the unanimity

games Us, where S is connected in F. These games form a basis for the image, IM(Lr).
Proof. By Theorem 2, the image Lr(ur) of any basic game is a linear combination

of games Us, where S is connected. Moreover, Us is its own image whenever S is
connected, so each Us belongs to the image space. It follows that these Us span the
image space. Since they are known to be independent, they form a basis.

A further important consequence is a formula which relates the dividents Av in
the original unrestricted game to those, Aw, in the restricted game. We have, in fact,

(8) aw(S) E
TS

The validity of (8) follows from the fact that the Av are the coefficients of v in terms
of the ur, while the Ac are the coefficients of the images of the ur in terms of the us.
The result follows from the linearity of the mapping.

2. The power indices. In [1977] Myerson, treating these games, suggested that
their Shapley value should be studied. We will not discuss his arguments here, but
propose to look at the Shapley value (Shapley [1953]) and, to a lesser extent, at the
Banzhaf-Coleman value (Banzhaf, [1965], Coleman [1971]) of the games v/F as well
as its relation to the value (or index) for the original game v.

As is well known, the Shapley value of a game v is given by the formula

s!(n-s-1)!
(9) 6,Iv] E [v(St.J{i})-v(S)].

srv n!
ieS

In terms of the dividends, however, the value has the simpler form

(10) 6i[v] E 1A(S).
iS

Similarly, the Banzhaf-Coleman index can be expressed as

(11) if, Iv]= E 21-Ao(S)
SN
ieS

If we think of either b or ff as a linear mapping from G into R, expressions
(10) and (11) tell us that the mapping is most easily handled in terms of the unanimity
base.

Unfortunately, of course, computation of the dividends Av(S), for an arbitrary
game v, is usually quite lengthy. An attempt, then, to compute either the Shapley value
or the Banzhaf-Coleman index for an arbitrary v/F through the use of equations (8),
(10), and (11) would probably require too many computations. There are situations,
however, when both the unrestricted game, v, and the communications network, F,
are easy enough to analyze. In such cases, use of (8), (10), and (11) is probably the
fastest way to compute the indices of power.

3. Trees. Of particular interest is the case where F is a tree, i.e., a connected graph
with no circuits. (A circuit is defined in the usual manner as a sequence i, i, ia,. , ik
of k_-> 3 nodes such that {i, i2}, {i2, i3},""", {ik-1, ik}, {ik, il} all belong to A.) In this
case, computation of the power indices is simplified by the following results.
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THEOREM 4. In a tree, the intersection of connected subgraphs is connected.
The proof appears in the Appendix. An important corollary is
THEOREM 5. Let F be a tree. For any T c N, there exists a unique minimal (in the

sense of set inclusion) connected S such that T S.
Proof. Let us define

H(T) fq {S T c S, S is connected}.

Clearly T H(T) and, by Theorem 4, H(T) is connected. Also, by definition, H(T)
is a subset of any connect S with T c S, and so is minimal.

We shall call H(T) the (connected) hull of T. As an example, in the tree of Fig.
1, the hull of {1, 7, 8, 12} is {1, 2, 6, 7, 8, 11, 12}. Note, moreover, that S H(S) if and
only if S is connected.

10

FIG.

The importance of this lies in
THEOREM 6. If F is a tree, then Lr(uT)= un(T.
Proof. We have already seen that Lr(uT-)=c7 That UH(=C follows directly

from their definitions.
The importance of Theorem 6 is due to the fact that the dividends Ac take the

simple form

Ac(S) {10 ifS=H(T),
otherwise,

so that (still assuming F is a tree) the formula (8) takes the form

(12) Aw(S)= F A,,(T).
T

H(T)=S

This can be further simplified if we ask for the conditions that make H(T)-- S.
We will say that S is an extreme point of S if, in the partial graph Fs, has order
0 or 1 (i.e. there is at most one other j S which is directly connected to i). Let E(S)
denote the set of extreme points of S. Now we have

THEOREM 7. If I" is a tree, then a necessary and sufficient condition Jbr H(T) S
is that

S is connected,
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(ii) T c S,
(iii) E(S)c T.
The proof of Theorem 7 appears in the Appendix. (12) further reduces to

(13) Aw(S) X ao(T).
T

E S) Tc S

This is a considerably simpler expression. In Fig. 1, for example, the set
S {1, 2, 6, 7, 8, 11, 12} is connected. Now E(S) {1, 8, 12} and so S H(T) if and
only if T contains 1, 8, 12 and some subset of {2, 6, 7, 11}. It is clear that there are
24= 16 such sets T.

4. Examples. We consider several cases here. In each case, F is assumed to be a
tree.

(a) Inessential games. Let/z (1," ",/xn) be a vector. The game v, given by

v(S)-- E i
iS

is an inessential game.
It is not too difficult to see that, in this case, v/F v. In fact, we have here

Av({i}) =/zi for all i; Ao(S =0 for all other S. Since the sets {i} are trivially connected,
v and w will coincide. The Shapley value is of course given by bi[ v] =/.,i for all N.
This is also the Banzhaf-Coleman index. (All this will still be true even if F is not a tree.)

(b) Unanimity games. The unanimity games have already been defined. We have
also seen that, whenever F is a tree, ur/F un(r). The values here are easily obtained:

b,[ur] {;/ if T,
ifi T,

l/h ifiH(T),
@,[u/r]

0 if H(T),

where t, h are the cardinalities of T, H(T) respectively.
In case F is not a tree, the results can be very complicated.
(c) "Pure overhead" games. Let T be an arbitrary (nonempty) subset of N. The

pure overhead game on T, Pr, is defined by

-1 ifSf) T#,
pr(S)=

0 ifSfqT=.

Thus, PT- is the negative dual of the unanimity game u-; its Shapley value is

qb[pr] {l/ if e

= r.

To analyze the game pr/F, we first note that, if S is not a subset of T, or if S
Ap(S) O. Assuming S is a nonempty subset of T, we have

Ap(S)= E (--1)s-kPT"(K)

and, since pr(K) -1 for all K c S, K # , this is

K
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or (-1) s. (See the Appendix for this.) Thus

Av(S)={(0-1)s if S c T, S

The graph-restricted game, pr/F, is given by w(S)= m, where m is the number
of components of S which have a nonempty intersection with T.

Application of (13) gives us, for connected sets S,

aw(S) E G(K)
K

E S) K SCI T

Since Ap(K)-0 unless K T, we see that Aw(S)=0 unless E(S)c T. Assuming
that this holds (and also that S is connected and nonempty), we will have

aw(S) E (-).
K

E(S) KcSf-IT

Suppose E (S) has e elements and S f) T has s’ elements. Then

(s,_ eetAw(S)= E (-1)
k=e k-

This expression equals (- 1) if s’ e and 0 otherwise. Thus we conclude that Aw(S) 0
unless E (S) S f’) T, i.e. all the extreme points ofS, and none of its interior points belong
to T. For such S, Aw(S)=(-1) e, except that Aw() =0.

A special, very simple case occurs when T N. In this case, Aw(S) will be zero
unless S E(S), i.e. all points of S are extreme. For connected S, this can only happen
if S reduces to either a single point {i} or an arc {i,j}. We would have, in this case,

-1 if S {i},

Aw(S) 1 ifS={i,j}A,

0 otherwise.

Application of formula (10) gives us

dib,[ w] -1 +--
2

where d is the degree of node in the graph F, i.e. the number of arcs incident on i.
In the more general case, where T is a proper subset of N, computation is more

complicated and requires some combinatorial arguments. As an example, consider the
network in Fig. 2, where n 13, and T= {1, 2, 3, 4, 6, 7, 10, 11, 13}.

A game such as this is best handled by subdividing the graph into the partial
graphs corresponding to $1 {1, 2, 3, 4, 5}, $2 {2, 6, 7, 8} and $3 {6, 9, 10, 11, 12, 13},
i.e. the graph is split at its two interior "costly" nodes, 2 and 6. (The point is that any
S with Aw(S) 0 must be a subset of one of these, as it must be connected and have
no interior costly nodes.) Once this is done, we can compute 4, with some work. For
i= 1, we note that the only S such that i S and Aw(S)O are (a) {i} alone, and
(b) sets which include 1, 5, and at least one of 2, 3, and 4. Of case (b), there are
three which include one, three which include two, and one which includes all three of
these nodes. We have then

b,[ w] (-1)+(3)(-1)2+(3)(-1) +(-1)4- --1__.1
20.
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FIG. 2

Similar calculations will give us the value vector

[W]__(__ll 11 116 11 737 } 1---})ff6 --20 20 5 60 12 4 10 5

(d) Quadratic measure games. If/x (1, 2,"" ", ,) is a nonnegative vector,
the set function

(S)= X ,
is of course a measure. Any game which can be expressed as a quadratic function of
such a measure (or even of several such measures) is a quadratic measure game.

Let us write

v(s)= , Z i-
iS

This is as general a function as we need consider since any quadratic can be written
as a linear combination of such functions, plus or minus an additive set function. The
specific form chosen has the advantage of being 0-normalized, i.e. v({i})=0 for any i.

Games such as this have an interesting propey, namely that the only coalitions
with nonzero dividends are the two-person sets. In fact, it is easily checked that

2i ifS={i,j}, ij,
Ao(S) L0 otherwise.

From this the Shapley value is easily computed; we have

ji

and so

6,[v]

The graph-restricted game is best analyzed by using (13). Since Av(T)= 0 unless
T has exactly two elements, it will follow that Aw(S)=0 unless S has at most two
extreme points. But if $ has only one extreme point, it has only one point and so
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Aw(S) 0. Thus Aw(S) is zero except for connected sets with two extreme points. In
a tree, such an S is necessarily a path. We have

2/xj/Xk if S is the path fromj to k,
Aw(S)

if S is not a path.

Application of (10) now gives us

4[ w] 2 Z d(j,k)+l

where the sum is taken over all pairs j, k such that lies on the path from j to k, and
d(j, k) is the distance from j to k (so that the denominator is in fact equal to the
number of nodes on the path).

The computation of this last sum can now be readily carried out, even for large
trees, by purely combinatorial methods, i.e. generating functions. As an example,
consider the tree of Fig. 3, letting the measure vector give weight 1 to each node. With
this measure, v takes the simple form v(S)= s(s-1) where s is the cardinality of S.
Thus v(N) 156.

13

FIG. 3

To compute b[w], we note that, if we were to cut the three arcs incident on node
1, the graph would have four components: So {1}, $1- {2, 5, 6, 7}, $2 {3, 8, 9, 10},
$3--{4, 11, 12, 13}. For each component, we form the generating function which gives
the number of nodes lying at a given distance from node 1. Thus So has one node at
distance 0; the others have each one node at distance 1, and three at distance 2, and so

0o 1, 01 02 0 X -}" 3X2.

Next, we compute

(4 (x= E (0)2 1 + 3x + 9x2)2-1 3(x + 3x2)2.
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Thus
Fl(x) 6x + 24x2 + 36X + 54X4.

This is the generating function for the number of paths of a given length passing
through node 1. (Each path is actually counted twice, once in each direction.) To see
why formula (14) works, we note that any path through node 1 must start in one of
the four components So, $1, S_, $3 and terminate in another; its length will be the sum
of the distances of its two end-points from 1. The "square-of-the-sum" term in (14)
considers all paths to and from 1 and adds their lengths. This counts too much, however,
as it will include pairs of paths to 1 from nodes in the same component. Hence, the
"sum-of-the-squares" term is subtracted so as to remove all these unwanted pairs.

It is now trivial to evaluate bl; by (12), it will be

Alternatively, game theorists may notice that F(x) is nothing other than the partial
derivative, with respect to x, of the multilinear extension (see Owen [1972]) of the
game w, evaluated at the point (x, x,. , x). The value can be obtained by integrating
this from 0 to 1, giving, of course, the same result.

Similar considerations will give us

(2-- )3 (4 22.5633, b5--" 6 (13 6.4.

In case a different measure were used, the procedure would be the same, except
that the generating functions Or(X) would give, not the number of nodes at a given
distance from the node being evaluated, but rather the total measure of such points.
Thus for node 1, $3 {4, 11, 12, 13}, would have

03 /’/"4x + (/d’l +/’12 +/"13)X2.

Formula (13) is applied to the several Or and integration from 0 to 1 gives the value.
If the Banzhaf-Coleman index, instead, were desired, we would use the formula

[w] F(1/2). (See Owen [1975].)

5. Centrality. In [1982], Grofman and Owen suggested that centrality in social
networks could be measured by computing the power indices of games such as we
have in this paper. In fact, if v is a game, F a graph, and w v/F, then i[w] or bi[w]
measure something which is related to player i’s ability to "bring people together".

Generally speaking, if we consider the quantity bi[w], it will depend on two
things: (1) i’s role in the original game v; and (2) i’s position in the graph F. Thus
one possibility would be to measure both b[w] and b[v]; the difference would then
measure i’s centrality in some way. An alternative would be to choose a very symmetric
game v: in this case any difference between the values bi[w] and bj[w] would be
purely due to the difference in centrality of nodes and j. It is this latter approach
which was used in Owen and Grofman [1982], with the symmetric game v(S) s(s- 1),
as analyzed above, in 4(d). Readers might like to consider other possible games.

(15)

Appendix. Proofs.
We give here proofs of the theorems. The following lemma is of use.
LEMMA. For integer n >= O,

E (-1)"
k=O 1 ifn =0.

Proof. This is the binomial expansion of (1-1)", and is thus 0 if n is positive.
For n 0, the sum reduces to a single summand, 1.
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Proof of Theorem 1. For a fixed F, the components T, T2," ", T,, of the set S
are fixed. Thus formula (4) is clearly linear.

To prove Lr maps QN into itself, assume v is super-additive. Let S N T , set
K S U T, let Si and Tj be the components of S and T respectively, and let K, , Kp
be the components of K.

Every component of S or T will be a subset of one of the components of K. Now,
if K is a component of K, we have

U s, u U
where the unions are taken over some subcollections. By super-additivity of v,

v(K,)_->E v(S,)+E v(L.)

where the sums are taken over all i, Sic K, and all j, Tj c Kt. Then

p q

w(K)= E v(K,) >- E v(S,)+ E
l=l i=l j=l

where the right-hand sums now include all the components of S and T. Hence,
w(K) => w(S) + w(T). Thus w Qv as desired.

Proof of Theorem 2. Let S be disconnected, and let T be arbitrary. If T is not a
subset of S, or if there is no connected K with Tc K c S, then Cr(S)=0, and,
moreover, Cr(M) =0 for all M m S. Thus Acs) 0.

Suppose, however, there is some connected K with T m K m S. Since K is con-
nected, $ has a component L such that K m L.

If M m S, we write M M U M2, where M m L, M2 S-L. Clearly Cr(M)=
CT(M1) whatever M2 may be. Now,

aq-s) E (--1)s-"CT(M)
MmS

E E (-1)’-"’(-1)s-’-’CT(M,)
M=L M2=S-L

McL McS-L

M L M 0 m2

since S-L will have (-) subsets of cardinality m2. Now, since S is disconnected,
S L , so s 1 and hence, by the lemma, this last bracket is zero. Hence (S) 0.

Proof of eorem 4. Let F be a tree, and let S, T be connected subsets of N. We
must show S T is connected.

Take any two nodes, and j, in S T. Since F is a tree, there is a unique path
between and j. Since S and T are both connected, this path must be a subgraph of
both the paial graphs Fs and FT. But then it must be a subgraph of their intersection
Fs F T, which is the same as FSOT. Thus and j are connected in Fsv It follows
S T is connected.

Proof of eorem 5. Necessity. We have already seen H(T) is connected and
TH(T). To prove (iii), suppose jE(S) but jT. In this case TS-{j}, and
S-{j} is connected. Thus S is not minimal, and so S H(T).

Suciency. Suppose (i), (ii), and (iii) hold. then T S and S is connected; we
need to show S is minimal in this sense.
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Since F is a tree and S is connected, Fs is also a tree. If j S, then either j is
extreme or not extreme in S. If j is extreme, then by (iii) j T and so j H(T).

If j is not extreme in S, then it lies on a path joining extreme nodes i, k S. (This
is most easily seen if we merely start from j in two different directions" eventually the
paths must end at extreme points i, k since there are no circuits.) Now, by (iii), i, k T
and hence any connected set containing T must include the entire path from to k
and, in particular, node j. Thus j H(T).

Thus, whether j is extreme or not, j H(T). But j was arbitrary in S, and so
S c H(T). Hence S is minimal, i.e. S= H(T).

Example (c). The expression

can be rewritten as

Since (--1)-k= (--1)k, application of the lemma tells us that the term in brackets
will vanish whenever s _>- 1, so that only the term (-1)s will remain. In case S-, or
if S is not a subset of T, Ap(S) is clearly zero.

Similarly, the expression

, (-1) k

can be rewritten, setting j- k-e, as

E (-1)J(-1) =(-1
j=0 j E (-1)

e

j=O j

and, by the lemma, this will be 0 if s’-e >- 1, and (-1)e if s’-e O.
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Abstract. Numerical optimization algorithms often require the (symmetric) matrix of second derivatives,
V2f(x). If the Hessian matrix is large and sparse, then estimation by finite differences can be quite attractive
since several schemes allow for estimation in much fewer than n gradient evaluations.

The purpose of this paper is to analyze, from a combinatorial point of view, a class of methods known
as substitution methods. We present a concise characterization of such methods in graph-theoretic terms.

Using this characterization, we develop a complexity analysis of the general problem and derive a roundoff
error bound on the Hessian approximation. Moreover, the graph model immediately reveals procedures to
effect the substitution process optimally (i.e. using fewest possible substitutions given the differencing
directions) in space proportional to the number of nonzeros in the Hessian matrix.

Key words, graph coloring, estimation of Hessian matrices, sparsity, differentiation, numerical differences,
NP-complete problems, unconstrained minimization
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1. Introduction. We are concerned with the estimation of a large sparse symmetric
matrix of second derivatives V2f(x) for some problem function f: Rn-> R 1. In par-
ticular, we note that the product V2f(x) d can be estimated, for example, by forward
differences

(1.1) Vf(x) d=[Vf(x+d)-Vf(x)]+o(lldll).
When the structure of 7Zf(x) is known, then usually a few well chosen differencing
directions d,. ., d, affords the recovery of estimates of all nonzeros of Vf(x). Let
us denote our estimate by H. We will assume that the sparsity pattern of H is known;
the diagonal elements are specified as nonzero; H is symmetric. (Restricting the
diagonal to be zero-free is reasonable in many contexts: In particular, a minimizer of
f usually possesses a positive definite Hessian matrix.) We will be concerned with
methods that use differencing directions dl, d,..., d, that are based on a partition
of columns C,. ., C,. In particular, let S denote the set of columns in group C
and let h be the steplength associated with column i, 1,. ., n. Finally, define

(1.2) d= he
iS

for k 1,..., p, where e is the ith column of the identity.
There has been considerable work recently concerned with this problem, especially

with trying to make p as small as possible. Curtis, Powell, and Reid 1974] suggested
a method, CPR, for the unsymmetric problem. Their idea was to build groups of
structurally independent columns in a left-to-right greedy fashion. (Two columns
(vectors) x, y are structurally independent if xi * yi =0, for all i.) It is easy to see that
such a p-partition allows for the estimation of a matrix with p differencing directions.
Specifically, let C1, Cp be a partition of the columns of H where each group
consists of structurally independent columns. Then, if [Vf(x + dk)- Vf(x)]i 0 it
follows that there is exactly one column j in group Ck with Hj a designated nonzero

* Received by the editors October 10, 1984, and in revised form April 24, 1985. This work was supported
in part by the Applied Mathematical Sciences Research Program (KC-04-02) ofthe Office of Energy Research
of the U.S. Department of Energy under contract DE-AC02-83ER13069.

" Computer Science Department, Cornell University, Ithaca, New York 14853.
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and we can assign

[Vf(x + Vf(x)],

Coleman and Mor6 [1983] analyzed and modified this method by taking a com-
binatorial point of view. In particular, a column intersection graph can be formed by
associating with each column of H a node vi and defining an edge between node vi
and node vj if[ there is an index k such that both Hk and Hkj are nonzeros. A p-coloring
of this graph is an assignment, b, of "colors" to nodes such that if there is an edge
between node v and node v then b(v) b(v). It is not hard to see that a p-coloring
of this graph induces a valid partition of structurally independent columns and vice
versa.

Coleman, Garbow, and Mor6 [1984] have developed FORTRAN 77 codes based
on this work. Such (unsymmetric) methods can be applied to the symmetric problem
(McCormick 1983] discusses the complexity of this approach); however it is probably
worthwhile using symmetry when it is present.

Powell and Toint [1979] were the first to try to exploit symmetry. They pointed
out that symmetry can be used both in a direct and an indirect fashion. A direct method
is one in which each unknown of H is determined independently of the others. More
specifically, let C1," ", C, be a partition of the columns of H. Since each off-diagonal
nonzero is represented twice, it is no longer necessary that each group consist of
structurally independent columns. It is necessary, however, that for each nonzero (i, j)
either column resides in a group Cr such that no other column in this group has a
nonzero in row j or column j resides in a group Cs such that no other column in this
group has a nonzero in row i. If the latter condition were true then He would be
determined

[Vf(x+ds)-Vf(x)],,-

and /-/ji <-" H/j. Clearly a similar (symmetric) rule would hold for the former condition.
Coleman and Mor6 [1984] analyzed such methods from a combinatorial point of

view and produced a simple graph-theoretic characterization of all partitions that can
be used to induce a direct symmetry-exploiting determination of H. Let us represent
the structure of H by the usual adjacency graph G(H)= (V(H), E(H)). That is, if H
is a symmetric matrix of order n, then V(H) consists of n vertices /)1, Vn (associate
column of H with vertex vi) and E(H) consists of pairs of vertices (edges) where
(vi, v)e E(H) if and only if Ho(/-/i) is considered a nonzero. A p-partition of the
columns of H, C1,’", Cp can be viewed as an assignment of colors, , to the nodes
of G, b: V-> {1,. , p}. This assignment is a p-coloring if (v, w) e E (v) (w).
A path p-coloring is a p-coloring with the additional stipulation that every path in G
of length 4 (distinct) vertices uses at least 3 colors. The characterization of direct
symmetric methods given by Coleman and Mor6 is simply

THEOREM 1.1. The mapping dp is a path p-coloring ifand only ifdp induces a partition
of the columns ofH consistent with direct determination.

Note: We have changed the notation used by Coleman and Mor6 [1984]; here
we use "path coloring" instead of "symmetric coloring" because in our context the
term path coloring is more appropriate.

This characterization led to a deeper understanding of the direct estimation
problem on symmetric structures which in turn yielded a complexity analysis and
algorithmic possibilities.
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Indirect estimation of symmetric matrices may be preferable because fewer groups
(i.e. differencing directions) will be needed, in general. Powell and Toint concentrated
on substitution methods where directions are chosen so that nonzeros can be determined
via a substitution process. (They restricted their attention, as we do, to substitution
methods based on a partition of columns.) So in this case there is interdependence of
the matrix unknowns (nonzeros) to the degree that an underlying lower triangular
system is defined. Powell and Toint proposed an algorithm to determine the differencing
directions and then solve for the unknowns (lower triangular substitution method
(LTS)). Subsequently, Coleman and Mor6 [1984] analyzed this process from a com-
binatorial point of view. This analysis led to a modified and empirically superior
procedure (the resulting FORTRAN 77 code is described in Coleman, Garbow, and
Mor6 [1985]). However, a simple insightful characterization, in the vein of Theorem
1.1, was not provided.

The purpose of this paper is to provide such a characterization. This result is as
simple as Theorem 1.1 and is clearly the analogous result. This view provides enormous
insight into the combinatorial nature of the problem as well as suggesting algorithmic
possibilities. Furthermore, the graph theoretic interpretation reveals that if a partition
of columns allows for the recovery of H via a substitution process, then it is always
possible to do so efficiently. In particular, every unknown can be solved for in (roughly)
less than n/2 substitutions and the space required to compute H is proportional to
the number of nonzeros. This is somewhat surprising since the Powell-Toint procedure
relies heavily on a regular matrix structure produced by LTS which is not present for
an arbitrary feasible partition. Finally, the graph model allows one to derive a growth
of error bound for a general substitution method, which is essentially analogous to
the result achieved by Powell and Toint for a specific method, LTS.

Section 2 will provide the characterization of substitution methods followed by a
roundoff error discussion in 3. In 4 we establish the complexity of the problem and
discuss its combinatorial relationship to the symmetric direct problem (path coloring).
Section 5 deals with algorithms for ettecting the substitution process in space propor-
tional to IEI (i.e. the number of nonzeros of H). Finally, observations on parallelism
are provided in 6.

2. Substitution methods and cyclic coloring. A partition of columns of a symmetric
matrix induces a substitution method if there is an ordering of the matrix unknowns
such that all unknowns can be solved for, in that order, using symmetry and previously
solved elements. This notion is fully general (subject to the partition restriction) but
seems to be a difficult one to work with. There is, however, a very elegant and simple
graph theoretic interpretation. The major purpose of this section is to present this
characterization.

First it is necessary to formalize the concept of a substitution method in matrix
terms. Let U be the set of indices of matrix unknowns (identify (i,j) with (j, i)) and
suppose that U is ordered: U={(ik, jk)}. Let the columns of H be partitioned
C1, Cp and define

(*) So:, Sk Sk- [-J { ik, jk }, l <= k <-- UI
The ordering induces a substitution method

eitherjk belongs to a group C, say, and if is any other column in C with a
nonzero in row ik then (ik, l)E Sk-1 or ik belongs to a group C’, say, and
if l’ is another column in C’ with a nonzero in row jk then (jk, l’) Sk-1.
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The essence of this statement is that, at the kth step, it is possible to solve for element
(ik, jk) or, equivalently (jk, ik), by substitution. We call a partition, for which there
exists such an ordering, substitutable. For example, if H is a tridiagonal matrix, then
it is easy to verify that the partition ({1, 3,. .}, {2, 4,. .}) is substitutable.

Obviously there are substitutable partitions for any symmetric matrix. For example,
every partition consistent with a path coloring is substitutable. Alternatively, a partition
that induces a "lower triangular substitution method" is substitutable. (Coleman and
Mor6 [1984] and Powell and Toint [1979] discussed lower triangular substitution
methods.) However, here we are interested in minimizing the number of groups in a
general substitutable partition. The above 2 examples are restrictive in that they consider
only particular classes of substitutable partitions. The general problem is

Partition problem. Obtain a substitutable partition of the columns of a given
symmetric marix H with the fewest groups.
How difficult is the partition problem? This is a hard question to answer considering
the rather clumsy matrix formalization of a substitution method. Fortunately a substitu-
table partition has a simple expression in the language of graphs.

DEFINITION. A mapping th: V- {1, 2,-.., p} is a cyclic p-coloring of G if th is a
p-coloring and if b uses at least 3 colors in every cycle of G.
As the following theorem indicates, we now have a simple characterization of a
substitutable partition.

THEOREM 2.1. Let H be a symmetric matrix with a nonzero diagonal. The mapping
ch induces a substitution method if and only if ch is a cyclic coloring of G(H).

Before providing the proof, let us consider an informal argument based on the
following example. Let the adjacency graph of H, G(H) be as shown in Fig. 1. Both
assignments of the colors r, s, are valid colorings but assignment 1 is not a valid cyclic
coloring" the cycle Vl, v2, v3, v4 uses only 2 colors. Assignment 2 is a valid cyclic
coloring. The edges (off-diagonal nonzeros) can be determined by considering each
pair of colors in turn. For example, consider the subgraph, Fr, induced by the nodes
colored r or s as shown in Fig. 2. Edges (1, 8), (3, 7), and (3, 9) can all be determined
immediately. Consider for example edge (3, 7). Column 3 has a nonzero in row 7 and
residues in group C, There is no other column in group Cr with a nonzero in row 7
(else node 7 would have another incident r-node). Therefore, H7,3 (hence H3,7) can
be determined directly. Once (3, 7) and (3,9) are determined, edge (2,3) can be
computed: column 2 has a nonzero in row 3 and resides in group Cs. Columns 7 and
9 are the other columns in group C with nonzeros in row 3. However, H3,7 and H3.9
are now known quantities; hence, H3,2 can be computed with 2 substitutions.

Clearly the process can be carried to completion until every edge in F, is
determined. (It is easy to see that the diagonal elements can be directly determined:
this follows from the fact that b is a coloring.) But every pair of colors induces a
forest, otherwise b would not be a cyclic coloring, and therefore every nonzero can
be determined by considering each pair of colors in turn.

v v
/() va

v3

v9 v9

FIG. FIG. 2
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The "if" part of Theorem 2.1 is proved along the lines of the example given above.
The "only if" part is perhaps a bit surprising but not difficult to prove.

Proof of Theorem 2.1. First we prove that every cyclic coloring of G(H) induces
a substitution method. Since is a coloring, every diagonal element of H can be
computed. In particular, if (vj)=r, then j is the only column in group Cr with a
nonzero in row j (otherwise b is not a coloring). But then (1.1) and (1.2) yield

[Vf(x+dr)-Vf(x)]j
I-tj

Consider next (i,j) U, ij. Suppose that column is in group Cr and column
j is in group Cs. Clearly, since is a coloring, r s. Consider the subgraph induced
by the nodes colored r and the nodes colored s, say F,s. Since is a cyclic coloring,
F, contains no cycle and therefore is a forest. The edges in F. correspond to
off-diagonal unknowns of H. They can be solved, or ordered, independent of the rest
of the unknowns of H. In particular, each leaf-incident edge can be solved directly
since there is no conflict. We can now "delete" all such edges and consider each new
leaf-incident edge. Each such edge is now incident to known edges and can therefore
be solved. Clearly the process can be repeated until an edge-less graph remains. The
entire procedure can now be repeated for each pair of colors until every unknown is
determined.

We now show that if induces a substitution method, then is a cyclic coloring.
First it is clear that must be a valid coloring, otherwise the diagonal elements would
not be determined. To see this, suppose that (i, j) U, and vi and v are assigned the
same color r. Hence both column j and column are in the same group, C, Since
column j belongs only to group Cr, it follows from (.) that/-/z can be determined only
after either H0 or Hji is determined. Similarly, H, can be determined only after either
Hj or/-/i is determined. But the determination of one of Ho,/-/ must be preceded by
the determination of one of H,, Hjj, by (.), which is a contradiction.

Suppose then that is a coloring but is not a cyclic coloring. Hence there must
be a cycle, with at least 4 edges, colored with just 2 colors, say r, s. Let (i,j) be the
first edge in this cycle to be solved (ordered) and let us assume, without loss of
generality, that v is colored r and vj is colored s. Let node v be incident also to node
Vh(On the cycle) and let v be incident also to node Vk (on the cycle), as illustrated in
Fig. 3. But (i,j) cannot be determined from group C because columns j and h both
reside in this group with nonzeros in row (and (i, h) is not yet known (ordered)).
Similarly, (j, i) is not determined from group C because columns and k both reside
in this group with nonzeros in row j (and (j, k) is not yet known (ordered)). Therefore
no edge in this cycle can be solved first and cannot induce a substitution method.

Hence the partition problem is equivalent to the

Cyclic coloring problem: Obtain a minimum cyclic coloring of G(H).

Note that once we have found a cyclic coloring of G(H), then the coloring induces
a substitutable partition and the corresponding ordering of U is available, as the proof
of Theorem 2.1 indicates. A tridiagonal matrix provides a simple example. The graph

FIG. 3
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is shown in Fig. 4 and a valid cyclic coloring is provided by assigning r to the even
nodes and s to the odd nodes. The diagonal elements can be solved directly and the
off-diagonal elements are obtained via substitution: edges (1,2) and (n-l, n) are
obtained first (directly), followed by (2, 3) and (n- 2, n- 1), with 1 substitution each,
and so on. The middle edge will be the last determined element with approximately
1/2n dependencies or substitutions.

G(H): 0 /L. ( -0 0
v, v, v,., v,

FIG. 4

Suppose we modify the above example by adding an edge from node v to node
v,. A cyclic coloring would then require 3 colors; for example, we could use our
previous assignment except we apply a new color, t, to node 1. Now (1, 2) and (1, n)
can be determined directly (or, ordered first) and the remaining elements can be
determined, as before, via substitution.

3. Substitution methods and roundoff error. The above two examples raise an
interesting question with numerical significance: Is there a limit to the number of
dependencies or substitutions? The amount of computational work as well as the
potential growth of roundoff error depends, in part, on this number; therefore, a bound
tighter than the total number of nonzeros in H may be consequential. Powell and
Toint [1979] established that for a particular class of substitution methods, triangular
substitution methods, the bound is n- 2. The cyclic coloring characterization leads us
immediately to a more general result. Every unknown can be determined by considering
the forest induced by a particular pair of colors. But each forest can have at most n- 1
edges and therefore we have the following result.

THEOREM 3.1. Let be a substitutable partition. Then, each unknown in H is
dependent on at most n- 2 other unknowns.

Clearly this result is the best possible worst case upper bound, if we allow any
possible feasible ordering of the unknowns or edges. To see this, just consider the
tridiagonal case: if the edges are solved from one end of G(H) to the other, then the
last edge requires n-2 substitutions. However, certain orderings are preferable over
others. For example, in the tridiagonal case one can achieve a bound of [1/2(n-2)J if
each edge is solved by substituting from the nearest end of G(H). It is not hard to
see that, over different orderings, this is the best possible worst case upper bound;
again, just consider the tridiagonal case.

Is it possible to order the unknowns, in general, so that the maximum number of
substitutions is less than or equal to /1/2(n-2)J ? In order to answer this question,
consider when it is feasible, during the solution process, to solve for edge A (x, y) in
Tr, where Tr, is a tree in the forest induced by the colors r and s. Note that if an
edge (x, y) is removed from a tree (but the nodes x, y are not removed) then two
subtrees remain" Let

T,,(x) (V,,(x), E,,(x)), T.,(y) (V.s(y), E,,(y))
represent the two subtrees, rooted at x and y respectively, that remain when edge is
removed from Tr." consider Fig. 5. It is clear that (x, y) is ready to be solved if and
only if either every edge in T.(x) is solved or every edge in T,(y) is solved.
Furthermore, (x, y) requires at least

Xmincost (x, y) a min {IE,.,,( )l, IEr,(Y)I}
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FIG. 5

substitutions. Note that an ordering that computes edge (x, y) using mincost (x, y)
substitutions, for each edge (x, y), is optimal and requires less than [21-(n- 2)J substitu-
tions for each edge.

Such an ordering is possible and is provided by the following algorithm. Let
T - (Vr, E) be the tree under consideration, with IV[ n _-< n.

ALGORITHM solve_tree

T1 &(V1, El) where V1- Vr, E1- Er
for each vertex v V1 do value(v) <- 0 endo
for i= 1 to [E[ do

choose a leaf x of T, of smallest value
let y be the vertex such that (x, y) E
value (y) <- value (Yi) + value (xi) + 1
solve (xi, y)
E,+l-E,-{(x,,y,)}
V/+ - V/--{Xi}
T/+I <- V/+,, Ei+I)

endo
end solve_tree

THEOREM 3.2. Algorithm solve_tree solvesfor each edge (x, y) E using thefewest
possible substitutions, mincost (x, y). Hence, solve_tree requires at most

max {mincost (x, y)" (x, y) E } -< [1/2(n 2)] -<_ [1/2( n 2)]
substitutions to determine any edge of E.

Proof First we establish that algorithm solve_tree terminates" Since T is a tree
and x is a leaf in T, it follows that T+ is a tree. Therefore T+I will have a leaf
(indeed at least 2) and X+l will be found. It follows that the algorithm will determine
every edge.

Assume then that solve_tree does not solve for each edge using the fewest possible
substitutions. In particular suppose that at step vertex xi is the chosen leaf in T and
edge A (xi, y) will be determined nonoptimally. That is, [E(x,)[ > [El(y)[ and hence
IE’(x,)l value (x)> [1/2(nT--2)J, since IE’(x,)l/lE’(y,)l nT--2.

Consider a leaf, v, in T(y) (there must be at least 1). But

IE’(xi)l> [1/2(nT-2)3 =>lE(y,)[ < [1/2(nr-2)]
and therefore,

value (v) <= [1/2(nr 2)] < value (x,).

Therefore (x, y) would not be chosen at step a contradiction. [3
In summary, Theorem 3.2 says that for an arbitrary substitutable partition algorithm

solve_tree will compute each edge with the fewest possible substitutions (with respect
to that partition) and that number is always bounded by [1/2(n-2)].

We conclude 3 by considering the accuracy of the estimated Hessian matrix in
more detail. We will show that an error bound, similar to that achieved by Powell and
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Toint 1979] for a particular class of algorithms (lower triangular substitution methods)
holds for any substitution method provided the unknowns are solved for in the manner
suggested by solve_tree.

Every substitutable partition with p groups, or cyclic p-coloring, allows for the
recovery of the matrix unknowns via a back substitution process provided the differenc-
ing vectors are consistent with the coloring b. In particular, let Sk denote the set of
nodes (columns) colored k (i.e. in Ck) and again define

dk hiei
iS

where h is the step-length associated with column i. Let x be a given point in R" and
define u f(x + d)- Vf(x), for k 1,. , p. If H denotes the approximation to
Vf(x), then, since b is a coloring and by (1.2),. h f(x+ d) Vf(x) forj S

and therefore, since every column belongs to a group, every diagonal element can be
determined. The diagonal approximations are defined by these equations, and will not
paicipate in any subsequent calculations. Indeed such equations usually guide the
choice of h" h is chosen to balance truncation and roundoff errors in order to
approximate the diagonal elements as accurately as possible (e.g. Gill, Murray,
Saunders, and Wright 1983]).

Our previous analysis has shown that it is only necessary to consider 2 colors
(directions) at a time when solving for the off-diagonal elements. Let us concern
ourselves then with a tree, T,, induced by colors r and s. Let u f(x + d)-f(x),
u f(x + d)-f(x) and let

denote the computed quantities (i.e. contaminated with rounding error).
The solution process is provided by algorithm solve_tree with the statement

"solve (x, y)" expanded, to read

(3.) n. h=(a),- X n,. h
kN(i)

where we identify vertex x with index i, and vertex y with index j. N(i) is the set of
neighbours of node x in T.(x), and c (y), which is one of r, s (for brevity we
will write T.(x) instead of T(x) where l=(x, y). In other words, when H0 is
solved for, every other element in row of columns in group Cc has already been
solved for; the right-hand side of (3.1) is adjusted accordingly.

Following Powell and Toint, we define the error matrix F to be H-V2f and let

(3.2) (c)i=(ac)i 2 (V2f(x))i h.
kN(i){j}

In other words, () measures the difference between the computed quantity (ac) and
the ideal (V2f(x) d)i. Hence (c) is a composite of roundoff and truncation errors.
If we assume that the second derivatives off are Lipschitz continuous, then a standard
bound is obtained:

A max {l(),l} c. max {Ihl2} + max {l(
c, k c,

where C is a positive constant.
The following result establishes a bound on the elements in the error matrix
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THEOREM 3.3. IfH is obtained by algorithm solve_tree (with "solve (xi, yi)" effected
by 3.1) then

IFol <- (lEs(x,)l / l n max ( Ih’ },,.k Ih,hl

_-<([1/2nJ). . max { Ihl },,, h,hl
where again we identify column with node xi, columnj with node yi, and {c (xi), c (yi)}
{r,s}.

Proof. Combining (3.1), (3.2) and the definition of F yields

Fk’hk
keN(i)

which implies the bound

keN(i)

-Ih,(),l + E IFkihkh,[
keN(i)

But this same decomposition can be applied, recursively, to each Fkihkhi, for k N(i),
to yield

(3.3) IFoh,hl <=
Vr,(X)

where Tr,s(x,)=(Vr,s(xi),Er,s(x,)). Since the tree Tr,s(x,) has (IEr,(x,)l+ 1) nodes, the
result follows immediately from (3.3) and Theorem 3.2. l-]

One can conclude from this result that the growth of roundott error is quite limited
if the steplength does not vary greatly in size. On the other hand, if there is significant
variance (recall that stepsizes are chosen to accurately approximate diagonal elements)
then this result may allow for unacceptable growth of error: a direct method may be
preferable.

Indeed recent experiments by Coleman, Garbow, and Mor6 [1985] support the
conclusion that unacceptable error pollution can occur when stepsizes vary noticeably
in size. The resulting matrix is essentially unuseable as an approximation to the Hessian.
This suggests that an automatic monitoring process that switches from an indirect
method to a direct method, when necessary, might be useful. Unfortunately we have
no specific suggestions at, the moment as to what quantities to monitor. (Of course it
is always possible to estimate the Hessian by both an indirect and a direct method,
occasionally, and compare the resulting matrices.)

4. The cyclic chromatic number. How difficult is the cyclic coloring problem? We
address this question in this section. The reader who is unfamiliar with the fundamentals
of complexity theory and NP-completeness is urged to consult the excellent resource
book Computers and Intractability: A Guide to the Theory of NP-Completeness, by
Michael R. Garey and David S. Johnson [1979].

We will first consider the cyclic coloring decision problem (CCDP) and show that
this problem is NP-complete" we do this by transforming the general graph coloring
decision problem (CDP). We then conclude that the corresponding optimizaion prob-
lem, the cyclic coloring problem, is NP-hard. The consequence of this result is just
this: if we could solve the cyclic coloring problem in polynomial time (P-time) then
we could also solve the graph coloring problem in P-time (as well as a host of other
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"intractable" problems). Since this is deemed highly unlikely, an expedient approach
to our problem is to investigate efficient heuristic and approximation schemes (we
discuss this in 5).

It is common, when considering complexity questions related to discrete optimiz-
ation problems, to consider the decision problem formulation. In this case we have the

Cyclic coloring decision problem (CCDP): Given an integer p >_-3 and an arbitrary
graph G, is it possible to assign a cyclic p-coloring to the nodes of G?

We have excluded the simple cases p 1, 2 since it is easy to see that polynomial
algorithms exist for such cases. The following theorem shows that CCDP is not so
simple for p => 3.

THEOREM 4.1. CCDP is NP-complete.
Proofi The first step is to show that CCDP is in the class NP. In particular, we

must show that we can validate, in P-time, whether or not a particular assignment of
p colors is indeed a cyclic coloring. To do this, one must merely consider each pair
of colors, in turn, and decide whether or not the induced graph is a forest. Clearly
this is a polynomial time operation.

We now proceed to transform the general coloring problem (CDP), which is
known to be NP-complete, to CCDP. Consider an arbitrary graph G (V, E) and
integer p => 3. Let vI-- n and IEI- m. We construct a new graph, G’= (V’, E’) as
follows. For each edge el (vi, vj) E, define a bipartite graph G with vertices

{vi, vj, wl ,’’

and edges

vi, WkO V, Wk k 1,

Graphically, this transformation is shown in Fig. 6.

V Vi

Wl. Wp

vj
vj

FIG. 6

and

Now define a bipartite graph G’ by setting

V’= V(G)U{Wk" l <-k<=p, l <=l<-m}

E’= U E(G;).
/=1

We now show that if G can be p-colored using an assignment b, then G’ can be
assigned a cyclic p-coloring, b’. In particular, for each v V let b’(v)= b(v). Hence
if we consider any G, induced by e (vi, v) E, then b’(vi) # b’(v). Let b’ assign
vertices wJ,j= 1,..., p any color different from b’(v) and b’(v).

We claim that b’ is a cyclic p-coloring of G" Clearly any cycle in G’ must contain
a path (vi, Wk, Vj) for some 1 <--l <--m and 1 _<-k <-p where (vi, v) E. But b’ assigns 3
colors to each such path and hence every cycle uses at least 3 colors. Moreover, the
transformation from G to G’ can obviously be done in P-time.
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Finally we show that if G’ can be assigned a cyclic p-coloring, then G can be
p-colored. Assume that b’ is a cyclic coloring of G’. Define

c c( vi) d’( vi), 1 <- <-_ n.

We claim that b is a p-coloring of G. Suppose instead that b(vi)= b(vj) where
el=(Vi, vj) E. Then b’ must assign a different color to each w, 1 <-k<-p; otherwise,
there is a bi-colored cycle in G. But it follows that th’ uses at least p+ 1 colors, a
contradiction. D

The proof above has actually established a stronger result than indicated by the
statement of Theorem 4.1, since the constructed graph G’ is bipartite.

COROLLARY 4.2. The cyclic coloring decision problem on bipartite graphs is NP-
complete.

Since the cyclic coloring problem is the optimization version of CCDP, it follows
that it cannot be an easier problem. Hence the cyclic coloring problem is NP-hard
(even if we restrict our attention to bipartite graphs).

There is a marked similarity between the proof given above and the NP-complete-
ness proof provided by Coleman and Mot6 [1984] with respect to the path coloring
problem (symmetric direct problem). Indeed it turns out that the transformation given
above will also establish that the path coloring decision problem is NP-complete.
(Recall: b V--> { 1, 2, , p} is a path p-coloring of a graph G if b is a p-coloring and
if b is not a 2-coloring for any path in G of length 3 edges).

We conclude this section with a short discussion on the relationship between path
colorings and cyclic colorings. Let x(G), x(G), Xo(G) denote the chromatic number,
the path chromatic number, and the cyclic chromatic number of graph G, respectively.
That is, x(G) is the smallest integer p such that G has a p-coloring. Similarly, x(G)
[Xo(G)] is the smallest integer p such that G has a path p-coloring [cyclic p-coloring].

The first observation is that a path coloring is a cyclic coloring. To see this, consider
any cycle O in G and suppose that b is a path coloring. Clearly if O has only three
edges then, since b is a coloring, O must be assigned 3 colors. If O has more than 3
edges, then O contains a path connecting 4 distinct vertices and hence at least 3 colors
are assigned by b. Therefore,

(4.1) Xo( G) <-_ x(G)

for any graph G.
Of course a cyclic coloring is not necessarily a path coloring: a cycle O of arbitrary

large circumference needs only 1 vertex to be assigned a third color and effect a valid
cyclic 3-coloring however this assignment is not a valid path coloring in general. This
raises an interesting question: how large can x(G)/Xo(G) be? This ratio can be
arbitrarily close to 2 for band graphs; however we have been unable to prove (or
disprove) that this is an upper bound. It seems reasonable to hypothesize that 2 is an
upper bound because a band graph G is, in a certain sense, the worst possible graph
for path coloring and the best possible graph for cyclic coloring. Specifically, the first
and the last inequalities become equalities in (4.2) below for all band graphs sufficiently
large. (It is easy to verify the first equality, and Coleman and Mor6 [1984] proved the
latter.)

Finally, since every cyclic coloring of G is a coloring of G, and every coloring of
G2 is a path coloring of G, we can stretch both ends of (4.1) to get

(4.2) X(G) <_- Xo(G) _-< x(G) _-< x(G:)
Note that a partition that induces a direct method that ignores symmetry is equivalent
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to a coloring of G2 and has at least X(G2) groups (Coleman and Mor6 [1983]); a
partition that induces a direct method that uses symmetry is equivalent to a path
coloring of G and has at least x(G) groups; a partition that induces a substitution
method is equivalent to a cyclic coloring and has at least Xo(G) groups. One final
comment on (4.2): each inequality can be made strict by choosing appropriate graphs.

5. Algorithms. The NP-completeness result of the previous section indicates that
an efficient heuristic, or approximation scheme, is required. In particular, since it is
not crucial that the absolute fewest groups be found (though it is desirable), we are
willing to settle for an efficient procedure that produces near optimal results in practise.
Indeed, such procedures have been suggested by Powell and Toint 1979] and Coleman
and Mor6 [1984]. Furthermore, Coleman and Mor6 report extensive experimental
results. In this section we will interpret such procedures in the light of the new
characterization described in this paper. In addition, we will discuss an important
computational concern" Given a substitutable partition, is it possible to recover the
matrix unknowns (i.e. solve for the edges) in an amount of space proportional to the
number of matrix unknowns (i.e. the number of edges)?

We wish to obtain a cyclic coloring of G(A) using few colors. Since efficient
heuristic approaches to the ordinary graph coloring problem (i.e. no cyclic restriction)
are available, a natural approach is to transform our problem to a general graph
coloring problem. In particular, consider adding edges to the given graph G- (V, E)
to obtain a completed graph G- (V, E) such that a coloring of G is a cyclic coloring
of G. Consider the following

ALGORITHM add_edge
let r: V-{1,. ., n} be an invertible map, initialize E to be the set E
fori-n,...,2do

if vj, Vk are neighbours of r-l(i) in G and r(vj), r(Vk)<i then

endif
endo

end add_edge

To see that add_edge does the job, consider any cycle O in G. Let vi be the vertex
of largest value r on O and let vj, Vk denote the neighbours of Vk on Oo Clearly
(vj, Vk) E and hence O will need at least 3 colors when G is colored.

It is clear that the initial ordering r will affect the resulting graph G and
consequently the number of colors used. For example, if G is the wheel graph on 9
vertices shown in Fig. 7, and if the center vertex is ordered last, then G is a complete
graph and requires 9 colors. On the other hand, if the center vertex is ordered first,
and the outer vertices are ordered sequentially, then G is constructed from G by
adding an edge between v2 and v9; G requires just 4 colors in this case.

A successful heuristic labelling rule, suggested by Powell and Toint, is the follow-
ing. Assume that the vertices r-l(n), r-l(n k) have been found. Choose as the
vertex to be ordered n-k-l, the vertex of smallest degree in G-
{r-l(n), r-l(n k)}. This algorithm is known as the smallest last ordering (slo)

FIG. 7
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and has a number of interesting properties. For further information consult Coleman
and Mor6 [1984] and Matula and Beck [1983].

The algorithms of Coleman and Mor6 [1984] and Powell and Toint [1979] both
implicitly perform add_edge/slo followed by a G-coloring step. Here they differ: the
latter authors apply colors in a greedy fashion by considering the nodes in the given
order (i.e. 7/’-1(1), 7r-l(n)), Coleman and Mor6 apply a greedy algorithm over
several different (cleverly chosen!) orderings. It has been proven that the coloring
problem restricted to the class of graphs derived from the add_edge/slo completion
process is NP-complete. However, an important question remains" Does an optimal
coloring of such a completed graph always solve the cyclic coloring problem? If the
answer is yes then one may conclude that it is not necessary to consider algorithms
outside this framework. The answer is no.

To see that the cyclic coloring problem may not be solved by an optimal coloring
of a completion produced by add_edge, consider Fig. 8.

FIG. 8

The assignment shown is a valid cyclic 3-coloring; however, since every vertex is
of degree 3 it follows that a coloring of a graph completed by algorithm add_edge will
use at least 4 colors regardless of the ordering, r, of the nodes.

This example suggests that it may be worthwhile investigating heuristic algorithms
for the partition/substitution problem, based on the cyclic coloring characterization
perhaps, but not of the add_edge variety. At this point we do not know whether there
is a practical gain to be made; the answer lies with further experimentation.

One final observation before discussing the solution process: A slight modification
of the algorithm add_edge yields a procedure for the path coloring problem (symmetric
direct method). In particular, change the conditional to read

"if vj, Vk are neighbours of zr-(i) in G and zr(v) < then"

and it follows that a color assignment of G is a path coloring of G. (To our knowledge
this heuristic has not been suggested or experimented with previously.) If the condi-
tional is further changed to read

"if vj, Vk are neighbours of I) in G then"

it follows that a coloring of is a coloring of G- (and hence is also a path coloring
of G).

An important computational concern is this" Given that b" V {1,..., p} is a
cyclic coloring, is it possible to compute the actual matrix elements in space proportional
to IEI? It turns out that we can answer this question in the affirmative without imposing
any additional structure on b. In particular we do not assume that b is necessarily
consistent with the algorithm add_edge/slo (Coleman, Garbow, and Mor6 [1985]
discuss, in detail, a FORTRAN 77 implementation of add_edge/slo, followed by a
graph coloring step. Their substitution process operates in space O(IEI); however it
relies heavily on the regular matrix structure produced by add_edge/ slo ).

We will assume that H is stored as a sparse matrix and hence the space required
is O([EI) where it is assumed that IEI--> n. We will not discuss time complexity here
since it is very difficult to present a convincing argument without discussing detailed
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data structure and implementation requirements: we prefer to provide this analysis in
a subsequent paper describing a specific implementation along with numerical results.
Our purpose here is to support the claim that excessive space is not required. This
discussion can be given at a fairly abstract level.

The first job is to determine Hdj Vf(x + dj)- Vf(x) __a u and to save the significant
information (nonzeros), for j-1,..., p, where p is the number of colors used by b.
The vector d must be consistent with the color j: if S is the set of columns (nodes)
in the jth group (color) then d- isj hiei, where hi is the steplength associated with
column i. Assume that we have the vector uj on tap. If (u)i is a nonzero then this
quantity is stored as follows:

for each k such that Hik is a nonzero do
if b (I)k) j then Hik (Uj)i endif

endo

We note that it is not really necessary to replicate the information in H as we have
done here; however, not doing so requires a more complicated indexing scheme than
we wish to describe here. The key point here is that the vector pairs (d, u) are processed
sequentially and so only 2n space is required.

When the process is complete, H is fully assigned but the numbers do not
correspond to the actual Hessian quantities" we must now effect a substitution process.

For any pair of colors r, s, we can extract a bi-colored tree, Tr, from the
representation of G and store Tr, as a tree structure in space O(n). Algorithm solve_tree

can now be used: we need only be more specific about step solve (x, y). The idea is
simply to eilect (3.1) with the knowledge that the difference results u are stored in H
(as indicated above). In particular, solve (xi, y) should read

H - Hij--keN(i) Hik" hk

where N(i) is the index set of neighbours of vertex x in T,(x) (i.e. all neighbours
of xi in T, except y). The reason this works is that when H0 is solved, all other
elements in row (of columns in the same group as column j) have already been
resolved.

It follows that the space required to resolve all unknowns is o(Igl).

6. Concluding remarks. We have analyzed a class of methods for estimating sparse
Hessian matrices, namely, substitution methods. In particular we have shown that
there is an easy and elegant graph theoretic characterization of all substitution pro-
cedures based on a partition of columns of the symmetric matrix H. This characteriz-
ation has allowed for a rich understanding of the combinatorial nature of the problem:
we have analyzed the complexity of the partition problem, as well as suggested efficient
procedures to ettect the substitution process.

We have restricted our attention, in this paper, to substitution procedures based
on a partition of columns. Indeed this is more restrictive than need be: Powell and
Toint [1979], in their example (5.3), demonstrated that allowing the assignment of a
column to several groups can reduce the number of required gradient evaluations. This
example is particularly interesting because the solution procedure remains a "substitu-
tion process" requiring no matrix factorization. However, since the procedure allows
a column to belong to several groups, it is not a method based on a partition of columns
and does not belong in the class of substitution methods considered in this paper.



CYCLIC COLORING AND HESSIAN MATRICES 235

Indeed, a more general scheme than even this is possible provided matrix factorizations
are acceptable. Newsam and Ramsdell 1983 have explored this general "elimination"
option (Coleman [1984] summarizes this idea on page 49). While such methods may
occasionally yield a reduction in the number of gradient evaluations, it is not clear
that they provide a net benefit, in general, since they require the solution of n square
dense (but relatively small) systems of equations to recover the true information.

Two other works should be mentioned. Thapa [1984] has also suggested a
direct/partition method for estimating sparse Hessian matrices. Goldfarb and Toint
1984] have proposed specific (optimal) substitution procedures for specific common
"mesh structures": such procedures are, of course, efficient algorithms for obtaining
and using optimal cyclic colorings for particular regular structures.

We end with a comment on parallelism. There is a high degree of parallelism in
the Hessian estimation problem. Specifically, each estimation Hdj, j 1,..., p can be
done independently, and thus in parallel. Since this work is sometimes the dominant
expense in a numerical problem, exploiting this concurrency may be quite profitable.
Note that the number of processors would usually be quite modest, even for large
problems, since a cyclic coloring typically uses much fewer than n colors. Moreover,
the substitution process also allows for parallel computation: each bi-colored tree can
be processed entirely independently of the others.

Acknowledgment. We are grateful to Jorge Mor6 whose many suggestions have
improved this paper. Specifically, he deserves credit for the elegant 6-vertex graph in
5 that replaces our original graph of 25 vertices.
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DIFFERENCE METHODS FOR THE NUMERICAL SOLUTION OF TIME-
VARYING SINGULAR SYSTEMS OF DIFFERENI"IAL EQUATIONS*

KENNETH D. CLARK"

Abstract. In this note, we introduce a class of difference methods for the numerical solution of differential
equations of the form

A( t)x’ + B( t)x( t) =f(t)

where A, B, and f are assumed sufficiently smooth in in the interval I [0, T] and A(t) is identically
singular on L These methods are straightforward extensions of the well-known Gear’s backward difference
methods (BDF’s) and correspond to BDF’s whenever A is constant. It is shown that the modified methods
(MBDF’s) work whenever the system can be transformed to a constant coefficient problem by a change of
variable x Ly, and also whenever a related system can be transformed into a certain canonical form.

We also investigate the relationship between the convergence of BDF’s and the continuous regularization
of the system by its pencil perturbation. In particular, we show the existence of examples where the BDF’s
converge but the pencil perturbation is not a continuous regularization.

Key words, backwards difference formula, singular linear system, pencil perturbation

AMS(MOS) subject classifications. 34A08, 65L05

1. Introduction. The numerical solution of singular systems of differential
equations of the form

(1.1) A( t)x’( t) + B( t)x( t) =f(t)

(also commonly known as differential-algebraic equations (DAE’s), implicit ODE’s,
semistate equations, and descriptor systems) has been a topic of considerable interest
in recent years [13], [14], [32], [34]. Gear, in his original paper [21], introduced the
use of implicit, multistep methods or backward difference formulas (BDF) on systems
in semi-explicit form [3],

(1.2) x’(t) f(x, y, t), 0 g(x, y, t)

under the assumption that gy(X, y, t) is nonsingular. Equations of the form (1.1), (1.2)
occur in optimal control problems [3], [10], in electric circuit problems [10], [13],
[30], and in fluid dynamics [1], [26], [31]. More recently, circuit problems involving
operational amplifiers have been shown to lead to equations similar to (1.2) with
gy(X, y, t) singular [14]. These are the so-called higher index problems. Other examples
of applications of higher index problems may be found in [7], [13], [26].

While the analytic and numerical theory of (1.1) (see [2], [3], [5], [13], [14], [33],
[34]) has undergone substantial development, most of the research has concentrated
on the constant coefficient problems [13], [34], [35], and problems of the form (1.2)
under special assumptions (e.g., gy nonsingular, g independent of y, gx * fy nonsingular)
[3], [21], [27]-[29]. In fact, conditions for the existence and uniqueness of solutions
to (1.1) have not yet been established in the general case.
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f Departments of Computer Science and Mathematics, North Carolina State University, Raleigh, North
Carolina 27695-8206. The author is currently a Ph.D. candidate in Applied Mathematics at North Carolina
State University under the direction of S. L. Campbell.

236



DIFFERENCE METHODS FOR SOLVING DIFFERENTIAL EQUATIONS 237

In the linear, constant coefficient case, the implicit, fixed time-step, k-step methods
introduced by Gear have been shown to be convergent and stable, independent of the
stepsize, for k <7 [25], [14], [34]. These methods also work for several time-varying
linear and nonlinear problems (see [3], [8]), but as is well known, they do not possess
the properties of convergence and stability for the general problems (1.1) or (1.2).

In this paper, we introduce difference methods for numerically solving (1.1), and
show that they work on a reasonably large class of time-varying problems (including
many examples frequently appearing in the literature) for which the usual Gear’s
methods need not work. The methods we derive are a natural extension of Gear’s
methods and reduce to these methods when A is constant.

2. Notation and terminology. Following [8], we say that (1.1) is analytically solvable
on an interval I [0, T] if for sufficiently smooth f(t) solutions to (1.1) exist and are
uniquely determined by their values at any to L A vector x is a consistent initial value
for (1.1) if there exists a functional solution x(t) of (1.1) such that X(to) x. If there
is a scalar function d(t) such that (d(t)A(t)+ B(t))-1 exists on/, then the matrix pair
(or pencil) (A, B) is regular. Otherwise, the pencil is singular. For constant coefficient
problems (1.1), regularity of the pencil (A, B) is equivalent to analytic solvability,
whereas for time-varying problems this is not the case [3], [14]. When (A(t), B(t)) is
regular the local index of (1.1), ind (A(t), B(t)), is defined to be the index of (dA+
B)-IA. See [13] or [15] for more details on the index of a matrix. The index 0 problem
corresponds to A(t) nonsingular while (1.2) is index one if and only if gy is nonsingular.
We are concerned with higher index problems (ind (A, B)> 1) since these are the
problems on which the implicit BDF’s are known to sometimes fail.

The equation

(2.1) F(x’, x, e, t)--0, x(O) x

is a regularization (or regularizing perturbation) of (1.1) if Fx; is nonsingular for e > 0,
and F(x’, x, O, t) O, x(O) x is equivalent to (1.1). If for every initial condition x,
lim_,o x =x, where x is a solution of (2.1) such that x(0)= x, and x is a solution
of (1.1), the regularization will be called continuous 11 ]. If the convergence is uniform
(distributional, pointwise), the regularization will be called u-continuous (d-, p-
continuous).

The concept of regularization is a generalization of the familiar singular perturba-
tion for the constrained system (1.2)"

f(x y,t,e),
(2.2)

x
ey’ (x, y, t, e)

where fl=o=f and l=o g.
A matrix C is semistable if and only if (i) ind (C) -< 1, and (ii) A or(C) and 0

implies Re {}<0. For vectors x, y define (x,y)t=(xT, yT) T, where (.)T denotes the
transpose.

3. Derivation of the methods. The modified difference formulas (MBDF) we pres-
ent can be derived from a difference operator point of view, following the direction
of [34], or more simply by imbedding (1.1) into a system of the form

z’(t) [a’(t) B(t)]x(t) +f(t),
(3.1)

O=z(t)-A(t)x(t)
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or equivalently Jaw’+ Q(t)w g where w(t) (z(t), x(t)) t, g(t) (f(t), 0) t, and

(3.2) p=(In ) Q(t)=(o B-A’)0 I, -A

(Note that solvability of (3.1) and (3.2) is slightly different since g is no longer arbitrary.)
We then apply the Gear’s formulas to (3.1) to obtain the modified methods. For
example, the implicit 1-step method (Euler’s) applied to (3.1) leads to the modified
method

(3.3) [Ak+l/h(Bk+,--Ak+l)]Xk+l=AkXk/hfk+l

Of course, (3.3) is a valid method only if sA+(B-A’) is invertible for some s.
But this is equivalent to the regularity of (P, Q), as is easily shown by examination of
the Schur complement of sP/Q. In [13], an example is given which establishes the
independence of the regularity of (A, B) and (P, Q). However,

PROPOSITION 3.1. The system (1.1) is analytically solvable if and only if (3.1) is

analytically solvable.
Proof. Suppose (3.1) is analytically solvable. Without loss of generality assume

to=0. If w=(z(O),x(O))t=(z,x) is a consistent initial value for (3.1) then z-A(O)x. Let w(t)=(z(t),x(t)) be the unique solution of (3.1) such that w(0)= w.
Differentiating z--Ax and subtracting from equation one in (3.1) shows that x(t) is
a solution of (1.1) such that x(0)- x. This solution is unique since if x(t) is another
such solution of (1.1), then w(t)=(Ax, x) is a second solution of (3.1) satisfying
w(0) w. This contradicts the solvability of (3.1). Hence, (1.1) is analytically solvable.

Now suppose (1.1) is analytically solvable, x(t) is a solution, and x(0) x. Clearly
w(t) (A( t)x( t), x(t)) solves (3.1) and w(0) (A(O)x, x) t. Suppose there exist w(t)
(z(t), x(t)) solving (3.1) with initial value w. If x(t) x(t), then (1.1) is not solvable.
But x(t)= x(t) implies z Ax Ax z(t), thus implying solvability of (3.1). QED.

Since A(t) is singular the system (3.1) is higher index. In [22], [33], the global
index of a system (1.1) is defined in terms of its reduction to certain canonical forms.
An algorithm is given in [33] for determining the global index of (1.1), and for A(t),
B(t) analytic the algorithm terminates in m steps if and only if the global index is m.
Using this algorithm we can easily prove

PROPOSITION 3.2. If the global index (1.1) is m, then global index (3.1) is rh + 1.

Proof. Differentiate the second equation in (3.1) to obtain the system

0
(3.4) (In -A’

completing the first step. Now perform elementary row operations on (3.4) to obtain

where o] is the result of zeroing a maximum number of rows in A, and permuting
the zero rows to the bottom. Differentiation of B2x-f2 completes the second step of
the algorithm on (3.1) and the first step on (1.1). Since global index (1.1) is m, this
procedure terminates in m-1 more steps with a nonsingular coefficient leading
ez’, x’) t. QED.

To obtain the general form of the modified methods, we apply the Gear’s multistep
formulas to system (3.1). From [34, p. 24], the k-step implicit method with constant
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stepsize h is

k

(3.6) [P + hboQ,]w, a, Pw,_, + hbog,
i=1

where bo [yk
_

+ k
=a (1/i)] anda=(-1) bo={(1/j)()}and()denotesthebinomial

coefficient "j lower i". This immediately leads to the modified k-step formula

k

(3.7) [A, + hbo(B, A’,)]x, 2 aA,_x,_ + hbof,.
i=1

Note that when A is constant, (3.7) is the usual k-step implicit method, so in this sense
the modified methods are a natural extension ofthese methods. Also, ifA is nonsingular,
then (3.1) is index one so that the methods work in this case as well.

Example 1. Consider the system Ax’+ Bx =f where

vt 0 l+v

This example has been referred to often in the literature (see [3], [13], [22]). If g is
ditterentiable, the exact solution to this system is

Xl(t) g( t) + vtg’( t), x( t) -g’( t).

If v -1 we may apply an implicit Euler’s scheme to get the system

x,,=g,-vt,,x,,, x2,,,=(v/v+l)xz,,,_-[(g,,-g,,_)/h(l+v)]

which exhibits stability problems if v <-1/2. However, applying the modified one-step
method yields the system of equations

Xl, g,, vt,,x2,,,, x,,, -(g,, g,,_)/ h

which, ignoring roundott errors in numerically differentiating g, converges to the exact
solution and is stable independent of v.

Note that for this problem, the change ofvariable x Ly with L= ( ]’) transforms
the original system into a constant coefficient nilpotent, index two problem Ny’+ y =f
with N ( ).

Many examples used in the literature to illustrate the poor behavior of Gear’s
methods on the general time-varying problem are obtained from constant coefficient
problems by time-varying coordinate changes. Thus it seems reasonable to determine,
if possible, a class of methods which can be used on these problems.

We say (1.1) is transformable to constant coefficients if there exists a nonsingular,
ditterentiable L(t) such that the substitution x Ly transforms (1.1) to a constant
coefficient solvable system. Such transformable systems have been characterized in
[13, p. 140] by the following theorem.

THEOREM 3.3. The system (1.1) is transformable to constant coefficients ifand only
if (i) sA + B-A’ is invertible on Ifor some s, and (ii) A(sA + B-A’)-1 is constant on
I. If(i), (ii) hold, we may take L- (sA + B- A’)-1 to obtain the system Cy’ + (I sC)y f
where C AL. Furthermore, for each v such that vA + B- A’ is invertible, the quantities
Co A(vA+ B-A’)-1, Cv Co, and C (I-vCo) are independent oft (here, (.)o denotes
the Drazin inverse [15]).

Often, premultiplication by a smooth matrix function G(t) may transform a system
which is not transformable to constant coefficients into a system which can be transfor-
med to constant coefficients (see example 6.2.3 [13, p. 142]).
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Let soA+ B-A’ be invertible on I for So C. Then there is a neighborhood of
{0}xI in CxI where R(s,t)=[(So-s)A(t)+B(t)-A’(t)]-1 is an analytic matrix-
valued function of s. But then

R(s, t)-[(So-S)A(t)+ B(t)-A’(t)]-1

(3.8) [(I- sA(soA 4- B- A’)-l)(SoA+ B- A’)]-1

(soA + B A’)-l[I sC] -1

where C is independent of by Theorem 3.3. If C is nilpotent, then R(s, t) is analytic
in s for every (s, t) C x I, and in particular for s So. Hence, without loss of generality
we may choose So-0. We have just proved

PROPOSITION 3.4. Suppose (1.1) is transformable to a constant coefficient problem
with C nilpotent. Then B( t) A’( t) is nonsingular on I. More generally, if soA + B A’
is invertiblefor some So, and A(soA+ B A’)-1 is nilpotent, then B(t) A’( t) is invertible.

The converse to Proposition 3.4 is not true.
Example 2. Consider the nilpotent index two system Nx’4- x =f where

[cosh (t)sinh (t) cosh2 (t)
N( t) 2

-sinh2 (t) -cosh (t) sinh (t)]"
Then I- N’ is invertible on an interval about 0 and

(i_N,)_l=_1/2(l+2cosh(2t) 2 sinh (2t)
-2 sinh (2t) 1 -2 cosh (2t)]"

However, the (1.1) entry of N(I-N’)-1 is (-2/3) cosh (t) sinh (t) so that this problem
is not transformable to constant coefficients.

Alternatively, if B(t) A’(t) is invertible on I and (1.1) is transformable to constant
coefficients, then we may choose So- 0 and hence the change of variable x Ly, with
L(t) (B(t) A’(t)) -1, transforms (1.1) into the constant coefficient problem Cy’+ y
f Here, C may not be nilpotent, but irrespective of this possibility we have

THEOREM 3.5. Suppose (1.1) is transformable to constant coefficients and B(t)-
A’( t) is invertible on I. Then the methods (3.7) converge to a solution of (1.1).

Before proving Theorem 3.5 we establish the following lemma, adopting the
notation Ln L(tn)= (B(t)-A’(tn))-, t, nh.

LEMMA 3.6. If {y,}v is a solution to the difference equation

k

(3.9) C hboI)y, a,Cy,_, + hbof,
i=1

(assume y,, is exact for n=0,..., k-l), and {X,}oN is a solution of (3.7) such that
x, Lny, for n 0,. , k- 1, then xn L,y, for n 0,. ., N.

Proofi Note that A ALL-= CL-. Thus (3.7) is equivalent to

k

(3.10) [A,,L,, + hboI]L-x,, , a, CL-l,x,,_, + hbofn
i=1

or

(3.11) [C + hboI]L-x, a,CL-,x,_,+ hbof,.
i=1

Define u,, L-lx,,. Then un y,, for n 0, , k- 1 and u,, satisfies (3.9) so that u,, y,,
for each n 0,..., N. The proposition follows immediately. QED.
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Proof of Theorem 3.5. Since C is constant the methods (3.9) are convergent and
stable independent of constant h for k < 7. Also, since the transformation x Ly does
not depend on h, the values {xn} must also converge. QED.

The choice So 0 merely simplifies the notation in lemma 3.6 and in fact the same
relationship between (3.7) and the ditterences

k

(3.12) C + hbo(I- SoC)]yn aiCyn-, + hbofn
i=1

holds for any So for which soA + B- A’ is invertible. We state without proof
THEOREM 3.7. If (1.1) is transformable to constant coefficients, then the methods

(3.7) converge to a solution of (1.1).
It is notable that many of the properties of Gear’s methods for constant coefficient

problems also hold for (3.7) for systems transformable to constant coefficients. For
example, if rn is the nilpotency of the constant coefficient problem and k is the order
of the method, then after (m-1)k+ 1 steps, (3.12) tracks a solution corresponding to
a consistent initial value [34, p. 24]; hence so do methods (3.7). Also, if sA+ B-A’
is invertible for some So, then it is invertible for all but a finite number of values So.
Thus there is some freedom in the selection of a well-condition transformation. When
B- A’ is invertible, the choice So 0 is probably the best one.

The applicability of MBDF is not restricted to problems transformable to constant
coefficients [9]. In [8], a canonical form, the standard canonicalform ofsize r (SCF- r),
is introduced, and it is shown that implicit BDF’s work on systems which can be safely
transformed into SCF- r; i.e., by constant coordinate changes x Qy, or by premultipli-
cation by smooth, nonsingular P(t) (only the proof for implicit Euler’s is given). Since
MBDF on (1.1) is equivalent to BDF on (3.1), it suffices that (3.1) be safely transform-
able to SCF- r. It is easy to show this implies that the system ALz’+ (! soAL) z ql

be safely transformable to SCF-r (L is the same as in Theorem 3.3).
However, there are examples where BDF’s work and MBDF’s cannot be used.
Example 3. Consider the system Nx’+ x =f where N ( ). Premultiply this

system by G(t)= (it o) to obtain the system

(3.13) ( 1)x’+(It )x=f.
Since BDF’s work on constant coefficient problems, they also work on (3.13) (premulti-
plication by smooth invertible G(t) preserves this property). But

(h 1)A+h(B-A’)=
ht

is singular for every t, h; hence MBDF’s are not applicable.

4. Numerical results. All computations were performed in APL in double precision
(E 16) arithmetic on an IBM 370. The MBDF’s and BDF’s were compared on several
examples, including examples nontransformable to constant coefficients, nonsingular,
and index one problems. Some results of our numerical tests for the first order methods
are tabulated below, and in order to make the presentation as compact as possible,
all examples are integrated from =0 to t- 1 and three significant digits (rounded)
of the 11 norm of the error (max/[e/I is given for each method at 1. "*****" indicates
overflow.
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Example 4. ([9]) A(t), B(t) as in example 2, f(t) P(t)(6t2- t, 3)T, where

P(t)=(cosh(t) -sinh(t))-sinh (t) cosh (t)

the exact solution is x(t)=(t cosh (t)-t sinh (t), cosh (t)-t sinh (t)), Xo--(0, 0) 7".

h MBDF BDF

.05 3.98 E-01 3.27 E28

.01 4.07 E-02 ******

As has already been indicated, this is an index two problem which is not transform-
able to constant coefficients. However, the slow growth of the error suggests that the
applicability of MBDF may not be limited to transformable problems. In fact, this
behavior of the error is expected due to the exponential nature of the solution.

Example 5.

-1) B(t)=I, x(t)=(exp{t},l+t2), Xo=(1 1) ,A(t)
-2t

4t2 2t

f(t) ([1-2t] exp {t}-2t- 1,4t2 exp {t}+St2+2t+ 1) r.
This local index two example is interesting for several reasons. First note that for any
s, det (sN/ I-N’)=-3. Hence I-sC is invertible for every s C, implying C is
nilpotent. Taking s--0, it is easy to show that N(I-N’)-1= -N. Thus the system is
not transformable to constant coefficients and in effect, using MBDF on the system is
equivalent to using BDF on another nilpotent index two time-varying problem so that
poor numerical behavior is expected.

h MBDF BDF

.05 5.44 E06 2.31 E07

This example shows that MBDF is not a general method for index two problems.
In the nonsingular and index one examples run, while both methods converged,

the BDF methods were more accurate. This experience, combined with the additional
cost of computing A’(t), suggests that the MBDF methods offer an alternative approach
to numerically solving (1.1) only for the higher index problems.

5. Comments on the practical implementation of MBDF. In practice, the symbolic
differentiation of a matrix is a difficult and time-consuming process, especially if the
matrix is large and its entries are complicated functions. The utility of MBDF as a
general time-varying ODE solver (singular or nonsingular), if any, probably involves
its implementation in conjunction with numerical difference schemes for A’(t). By
doing so, a new class of "hybrid" methods can be derived. A first order difference on
A(t) with the k-step MBDF leads to the mixed time-step scheme

k

(5.1) [(1 bo)An + boA,_1 + hboBn]xn E aiAn-,xn-, + hbofn.
i=1

Since bo (0, 1], (5.1) is BDF with An replaced by a convex combination of An and
An_, and with An replaced by An-i in the summation. In the case k 1 (i.e., bo 1)
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the method is

(5.2) JAn-1 + hB.]xn An-1 Xn-1 dr" hfn

which is almost an explicit Euler’s. The more general hybrid method is obtained by
using a j-step difference on A(t), yielding

(5.3) (1-boao)An- bo apmn-p +hboB, x= Y. aiAn-ix,_i+hbof,.
p=l i=1

Note that (5.1) suggests we might consider bo as a free parameter in (0, 1] and
use this value to control local errors. The ensuing method would be neither variable-step
nor variable-order, although for some singular problems (e.g., index one, and some
index two problems) it might be possible to integrate bo into a variable-step variable-
order scheme without creating instability. As of this time, we have not studied the
feasibility of this type of strategy, nor have we pursued the use of methods (5.3). It is
likely that in order to obtain a specified global accuracy we must require j => k in (5.3).

There are, on the other hand, instances where MBDF may have advantages over
alternative methods. In [4], [6] a class of methods known as ith order, jth block ((i,j))
methods, is derived from series expansions. These methods are shown to work in all
cases where (1.1) is known to be analytically solvable, and they do not suffer from
ill-conditioning problems for small step sizes, as do BDF’s. However, the (i, j) methods
require the solution of an (nj)x (nj) singular linear system of equations at each time
step (where j increases as the index of the problem increases), whereas MBDF only
requires solving an n x n system at each step. Also, the coefficient matrix in the (i,j)
methods involves j- 1 derivatives of A and j- 1 derivatives of B, where MBDF utilizes
only A’(t). The involvement of A’ is not surprising since from [5], for some higher
index problems, the solutions of (1.1) may depend directly on derivatives of the
coefficient matrices. Finally, the (i,j) methods cannot indicate distributional behavior
arising from inconsistent initial values, whereas MBDF is able to do so for problems
transformable to constant coefficients.

Given (1.1), the two types of transformations one can perform on this system are
coordinate changes and premultiplication by Q(t). From the point ofview ofpreserving
numerical behavior, MBDF’s share a triangular relationship with BDF’s and the (i,j)
methods. Under smooth coordinate changes and premultiplication by a nonsingtdar
matrix, the (i, j) methods will work on the transformed system. From example 3, we
have seen that premultiplication by a time-varying matrix can cause MBDF’s to fail,
but smooth coordinate changes preserve convergence and stability. For BDF’s, the
situation is reversed.

6. Pencil perturbations. An alternative approach to studying (1.1), (1.2) is through
singular perturbations or regularizations. Here, the given system is perturbed to a
nonsingular system by the introduction of parasitics. The solutions of the perturbed
system are then analyzed as the perturbation parameters approach 0. Or, systems
exhibiting fast dynamics or parasitic behavior are approximated by the corresponding
reduced order model, i.e., the system obtained by setting the parasitic parameters to 0.
Often, this reduced order model is a singular system (1.1) or (1.2).

For the most part, the numerical and perturbation theories for (1.1) have evolved
independently. When A, B are constant, Cobb [ 18] has shown that the pencil perturba-
tion for (1.1) (assuming regularity of the pencil (A, B))

(6.1) (A + eB)x’ + Bx =f(t)
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is a continuous regularization of (1.1). For the SCF-r mentioned in 3, it is proved
in [8] that the pencil perturbation is a continuous regularization. Index one problems
fall into this category.

There are problems for which the behavior of BDF’s is known but for which no
pencil perturbation-type results have been obtained. See, for example, Brenan’s thesis
on index 2 and 3 systems in the form (1.2) [3], or the work of R. M/irz in [27]-[29]
on nonlinear index 1 systems in fully-implicit form F(x’, x, t)- O.

It has been observed by L6tstedt and Petzold [26] that the problems attendant to
the implementation of BDF’s on singular systems are mainly due to ill-conditioning
of the matrix A / hboB as h - 0+. Thus it seemed reasonable that the conditioning of
A+ hboB and A+ eB as h, e-0+ were intimately related. In fact, at one point the
author believed that the convergence of BDF’s was either a necessary or sufficient (or
perhaps both) condition for the pencil perturbation to be a continuous regularization.
However, as we show momentarily, there are problems for which BDF’s are convergent
and yet the pencil perturbation is not a continuous regularization.

The pencil perturbation for (3.1) is

I e(B-A’)(z’ (B-AA’)) z(x t ( oto
Suppose (1.1) is transformable to constant coefficients. Then, from 3, BDF’s

converge for (3.1). Suppose the transformation x( t) L( t)y( t), where L()=
(soA+ B-A’)-, yields the constant coecient system

(6.3) Cy’+(I-soC)y-f

where C AL, and assume f(t)-= 0 on I. By elementary row operations we may reduce
(6.2) to the equivalent system

(6.4)
x’

+
-R/ e I/ e x

where R =[A+ e(B-A’)]-I=[(A/e)+ B-A’]-I/e. Hence, AR C/e independent
of by assumption.

From [13], the exact solution of (6.3) is

(6.5) y(t) exp {-C(I- soC)t}CCq
where q is an arbitrary vector. Hence, the exact solution of (3.1) is

(6.6a) x(t)=L(t)y(t)=(soA+B-A’)-1 exp{-C(I-soC)t}CCq,

z(t) A(t)x(t)- C exp {-C(I soC)t}CCq
(6.6b)

=exp {-C(I- soC)t}C2C1)q
since C commutes with C. In general z(t) is not zero.

Note that z in (6.4) is independent of x. The equation for z is

or, using properties of C,

(6.7)

which has the solution

(6.8)

z+(B-A )Rz =0

z’ ((-t/) + c/)}

z(t) exp {(--I/)+(C/ez)]t}z.
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Campbell shows in 12] that under certain hypotheses, matrix exponentials of the
type in (6.8) have limits as e - 0/. For our purposes, consider the following modified
version of Theorem 1 in that paper, adopting the notation IX; Y]=
(I-YY)X(I-yOy) for n x n matrices X, Y.

THEOREM 6.1. If ind (C)= 1 and C is semistable, then z converges pointwise to

Zo(t) 0 for t>0.
Proof. From 12], under the assumption C is semistable, ind (C) 1, z converges

pointwise if and only if [-I; C] is semistable. But [-I; C]
(I- C9C)(-I)(I- C9C) -(I- CC), since CC (and hence (I- CC)) is a
projector, so that [-I; C] is index 1 with spectrum {0, -1}. Hence [-I; C] is semistable
and z has a pointwise limit for > 0. The limit of the exponential is calculated by
using (7), (8) from [12] to yield

exp {([[0; C]; [-I; C]]-[[C; C]; [-I; C]])t}(I-[-I; C][-I; C])(I-CC)
(6.9) (I-{(I- CC)(-I)(I CC)}[-I; C])(I- CC)

(I-(I- CC)(I CC)}(I CC)
since [0; Y] 0 for any Y. But for a projector 19, p2pO= p implies ppO= pop p.
Hence (6.9) is

{I-(I-CC)}(I-CC) CC(I-CC)=O. Q.E.D.

Example 6. Let

A(t)
0 0 1

The system Ax + Bx 0 is transformable to the constant coefficient system Cy’+ y 0
where C (- ), by letting L(t) (B a’)-1 (- -’1) (here So 0). The solution is
y(t) exp {-Ct}CCq exp {t}( )q. Thus z(t) exp {t}(- o)q.

Note that C in example 6 is semistable and z(t) 0 unless q (0, a) . Thus BDF’s
converge for the (3.1) version of example 6, but the solutions to (6.2) for this example

o is O(e) as e - 0/. Hence, the convergencedo not converge to the correct limits, unless z
of BDF’s is, in general, not a sufficient condition for (6.1) to be a continuous regulariz-
ation of (1.1).

Acknowledgments. The author would like to thank Stephen L. Campbell for many
helpful suggestions, and the referees for pointing out some errors in numerical examples.
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A PACKING PROBLEM YOU CAN ALMOST SOLVE
BY SITFING ON YOUR SUITCASE*

DORIT S. HOCHBAUM" AND DAVID B. SHMOYS

Abstract. In this paper, we present a novel approach for approximating solutions to the bin-packing
and machine scheduling problems. In obtaining our results, we exploit a certain dual relationship that exists
between these two problems.

We introduce the notion of a dual approximation algorithm, where for the bin-packing problem, the
aim is to find approximate packings where at most the optimal number of bins are used, but the bins are
allowed to be filled beyond their capacity. For this approach, the objective is to minimize the tardiness of
the machine that finishes last. For bin-packing instances where the size of each piece is at least (1/3-e)
times the capacity of the bin, we give an approximation algorithm A that is guaranteed to produce a
solution where no bin contains more than (1 + 3 e/2) times the bin capacity. Thus we have a family of dual
approximation algorithms, dependent on the problem instance, where the "closer" the instance is to belonging
to a class that can be solved in polynomial-time, the better performance is guaranteed.

Using this result, we construct an approximation algorithm for the minimum makespan scheduling
problem, that always finds a schedule where all jobs are completed by 1/4 times the best completion time.

1. Introduction. In this paper we introduce a novel approach for approximating
solutions to the bin-packing and machine scheduling problems. In obtaining our results,
we exploit a certain dual relationship that exists between these two problems. As the
title of this paper suggests, in our approach we "squish" judiciously selected items so
that the deformed items can be packed efficiently. Once packed, they are restored to
their original sizes, but too latemthe suitcase is closed.

More formally, in a bin-packing problem we are given a collection of items of
prescribed sizes to be packed into the minimum number of bins of some fixed capacity.
A problem closely related, in a sense to be elaborated on later, is the problem of
minimizing the makespan of an m-machine scheduling problem. Here we are given a
collection of n jobs of prescribed processing times to be scheduled on m identical
machines so that all machines finish processing by the earliest possible time. Notice
that in the context of scheduling, the bin-packing problem can be viewed as finding
the minimum number of machines needed to process all jobs within a certain deadline.
For the remainder of this paper we shall always refer to the bin-packing problem in
this context. The minimum makespan problem shall be denoted P//frnax [GLLR].

Traditionally, an approximation algorithm for the bin-packing problem produces
a solution that is feasible, i.e., no bin is packed beyond its capacity, but the number
of bins might well exceed the optimal number of bins. In contrast to this, our approach
produces solutions that never use more than the optimal number of bins at the cost
of packing some bins slightly beyond their capacity. We measure the performance of
such an approximate bin-packing algorithm by the fractional excess capacity used. We
believe that this approach can and should be adapted to other combinatorial optimiz-
ation problems. For an arbitrary combinatorial optimization problem, the approach
involves finding solutions that could only be better than the optimum, while sacrificing

* Received by the editors June 11, 1984, and in revised form February 8, 1985. This title is paraphrased
after a title of Martin Gardner’s column [Ga] discussing a two-dimensional packing problem.
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author was supported in part by the National Science Foundation by a graduate fellowship and under grants
MCS-8311422 and DCR-83-02385, and in part by DARPA order 4031, monitored by Naval Electronic System
Command under contract N00039-C-0235.
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a certain degree of infeasibility. The quality of such solutions is evaluated by the degree
of infeasibility possible. To further illustrate this approach, consider the traveling
salesperson problem. In this case we would seek a tour that visits as many cities as
possible, while its cost is no more than the cost of the optimalmand feasible--tour.
We will refer to such algorithms as dual approximation algorithms. The term dual is
used to highlight the analogous situation in mathematical programming where feasibil-
ity vs. superoptimality corresponds to primal feasibility vs. dual feasibility.

We introduce a family of strongly NP-complete bin-packing problems (P} and
algorithms (A, parameterized by a continuous variable e > 0; the performance guaran-
tee of algorithm A for problem P depends monotonically on e. More specifically, P
denotes the bin-packing problem restricted to instances where the processing require-
ments are all at least (-e)d where d denotes the given deadline; the algorithm A
produces a schedule where all jobs are completed within (1 +3e/2)d. Notice that a
novel feature of this approach is that the performance guarantee can be viewed as
dependent on the particular processing requirements of the instance.

This result can be distinguished from previous results, that are all of the
following flavor. Graham, for instance, showed that the so-called LPT heuristic for the
minimum makespan scheduling problem on m machines has a performance guarantee of
-1/3m [Grl]. Thus, this can be viewed as a family of problems (P,} with a family
of algorithms (A,,} with performance guarantee depending on the discrete parameter
m. Our continuous parameterization is also somewhat more natural, as it is common
to think of the number of machines as fixed and the instances as varying in processing
requirements.

Finally, we will show how this family of dual approximation algorithms {A) for
the bin-packing problem can be transformed into a traditional approximation algorithm
for the machine scheduling problem. This algorithm will always schedule the jobs so
that all processing is completed within of the optimal completion time. The best
algorithm, in terms of worst case performance, known for this problem is called
MULTIFIT, and is due to Coffman, Garey, and Johnson [CGJ]; Friesen [FS] has
shown that this algorithm always produces a schedule where all jobs are finished within
of the optimum. Although our algorithm has an inferior bound, the proof of the

guarantee does not rely on an extremely intricate use of weighting functions, as does
the proof by Friesen.

We also tested empirically the performance of our machine scheduling algorithm
as compared to that of LPT and MULTIFIT.

2. A well-solvable class of bin-packing problems. In this section we show that there
is a polynomial-time algorithm for the class of bin-packing instances Io, where we
restrict the processing times pi >- d/3. If we make this restriction somewhat stronger,
and require that Pi > d/3, then it is a routine exercise to show that, since at most two
jobs can be processed by a machine before the deadline, the problem can be reduced
to a matching problem [PS, p. 245]. This result can be obtained by using a more direct
approach which in fact, can handle more general instances. A natural approach to
solving this problem is as follows: schedule as many machines as possible with 3 jobs,
and then pair up the remaining jobs in an optimal manner. This method does not
work; this can be seen by considering the set of processing requirements, {, , , , ,
with a deadline of 1. This method does work, however, if we first schedule optimally
the jobs with pj _-> d/2. The intuition behind this, is that these are the most problematic
of the jobs, since any pair of the others can be scheduled together. See Fig. 1.
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procedure pack.onethird (I)
begin

{Stage 1: pack all items bigger than d/2}
until all jobs are shorter than d/2 do

begin
let be any job with Pi >= d/2
let j be the largest job that can be scheduled with by time d
if no such j exists then pack by itself

else pack and j together
end

{Stage 2." pack jobs of size d/3}
while there are three jobs i, j, k of size d/3

pack i, j, k together
{Stage 3: pack remaining jobs in pairs}
for all unpacked jobs pair them up and pack 2 per bin

end

FIG.

It is an easy exercise to show the following result, and this is left to the reader.
THEOREM 1. For any instance in Io, the algorithm pack.onethird gives an optimal

bin-packing schedule.

3. Restricted classes of hard bin-packing problems. In the previous section we
showed that the bin-packing problem could be solved in polynomial time for instances
where each processing time p >= d! 3. In this section we show that it is very unlikely that
this result can be extended any further, by proving that the bin-packing problem
restricted to the class of instances, I, where each processing time p -> (1/2 e) d, is strongly
NP-complete for any fixed e, 0 < e < ].

THEOREM 2. The bin-packing problem, even restricted to instances in I is strongly
NP-complete, for any fixed e, 0 < e < .

Proof. To prove the result, we reduce from the 3-partition problem. This problem
can be stated as follows:

3-PARTITION.
INSTANCE. A finite set A of 3m elements, a bound B and a "size" s(a) for

each a A, such that each s(a) satisfies B/4 < s(a) < B/2andsuchthataA s(a) mB.
QUESTION. Can A be partitioned into m disjoint sets $1, $2,’’ ", S,, such that

for 1 <- <= m, as, s(a) B?

It is important to note that the constraints on the item sizes imply that in a feasible
3-partition each Si must contain exactly 3 elements of A.

The bin-packing instance that we construct will have 3m jobs, corresponding to
the 3 rn elements of A. Let p(a denote the processing requirement ofthejob correspond-
ing to element a 6 A, and set

1
p(a) =-- e + 3e

and set the deadline d 1. It is important to note that for all a . A, p(a)->_ -e.
We show that the bin-packing instance constructed has a feasible schedule with

rn machines if and only if there is a 3-partition of the original instance. First we prove
that any 3-partition immediately yields a schedule for m machines. Suppose that
$1, $2," ", S, is the 3-partition. This implies that for each i, ’.as, s(a)= B. But then

(1 s(a)) 3e +3e.p(a)= Y -e+ .3e =l-3e+ Y s(a)=l-3e (B)=I.
aSi aSi B aSi
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This implies that the set of jobs corresponding to Si can be scheduled on one machine
within the deadline, and thus we have a feasible schedule for m machines in total.

It remains to be shown that if there is a feasible schedule for the jobs on rn
machines, then there is a feasible 3-partition. Observe that

3e 3e
p(a)=m-3me+-- , s(a)=m-3me+--mB=m.

aeA B aeA B

By the pigeonhole principle, since there are m machines each scheduled for at most
one unit of time, we see that each machine must be scheduled to process jobs for
exactly one unit of time. For machine i, let the set of jobs scheduled to be processed
by this machine be Si. We have shown that Y.as, p(a)= 1. Notice that

3e
E s(a),l=as,E P(a)= l-3e+-s

and as a result,

E s(a)= B.
aS

Since the 3-partition problem is strongly NP-complete, this proves that the bin-
packing problem restricted to instances in I is strongly NP-complete, for any fixed e,
0<e<.

4. A family of approximation algorithms for restricted classes of bin-packing
Ictus. In the previous section we showed that the bin-packing problem, restricted to
instances in I, e > 0 remains NP-complete (where for e =0 it is polynomial). As a
result, it is natural to consider approximation algorithms for these problems. The
traditional approach to approximation algorithms for bin-packing, or for any com-
binatorial optimization problem, is to find an algorithm that finds a feasible solution
for the problem, with cost as close to the optimum as possible. For the bin-packing
problem, this means finding a schedule for the jobs so that each job is completed by
the deadline, but the number of machines may be greater than is necessary. An equally
valid approach, which we believe to be new, is to find a schedule that uses at most
the minimum number of machines, OPTsp(I), but relaxes the requirement that all
jobs finish by the deadline. The performance of the algorithm is measured by the
amount of time beyond the deadline that some machine must run.

In this section we present a family of approximation algorithms, {AI0 < e <},
such that A, when run on an instance I from I, produces a schedule that uses no
more than the minimum number of machines, OPTnp(I). Furthermore, every job is
finished by (1 + 3e/2)d, where d is the deadline specified by the instance.

Let the instance I I have n jobs, indexed 1,..., n, where the processing
requirement of job is p, and let the deadline be d. We first show that some of the
jobs can still be packed optimally.

LEMMA 1. Foran instance ofthe bin-packingproblem in I, 0 < <, let be ajob with
processing time p >= d/2. Let j be the longest job such that Pi + Pj <- d. Then there exists
an optimal schedule that has andj scheduled together as the onlyjobs processed by some
machine.

Proof. This claim is proved using a standard "interchange" argument. Let and
j be two jobs as specified in the hypothesis of the lemma. Suppose that there does not
exist an optimal schedule where and j are processed by the same machine. Consider
any optimal schedule, and in particular, consider the schedule of the machine, Ms
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that processes job i. Since all jobs have a processing requirement greater than d/4,
machine M must be scheduled to process both and at most one other job. If M
only processes i, then clearly j can be added to Mt’s schedule, which is a contradiction.
So we can assume that M also processes job k. If we interchange j and k so that j is
processed by machine M and k is processed by the machine that j had previously
been scheduled on, we get a feasible schedule, since Pk <----Pj (because j is the longest
job that couldbe scheduledwith i), and so Pi + pj <- Pk +P <= d. This contradicts the original
assumption.

Therefore, we can preprocess our instance of the bin-packing problem to
schedule all jobs with processing requirement at least d/2. Now we restrict our attention
to instances where all of the processing times pi fall in the interval (d/4, d/2). It is
obvious that any two jobs can be feasibly scheduled together, and at most three jobs
can be scheduled together.

We define two sets of jobs which are parameterized by a variable

Largest (6) {j
Middle () {j

We first state some very simple facts.
FACT 1. If there is an optimal schedule where one machine is scheduled with three

jobs, then there exists an optimal schedule where the job with the minimum processing
time is scheduled on some machine with two other jobs.

FACT 2. Let job min be the job with minimum processing time and suppose that

Pmin (- e)d. If min is scheduled with jobs andj, where p >- p then Largest (e) and
j Middle (e).

Proof. Since Pmin ( e) d, the sum p, + pj <= (+ e) d, and by the pigeonhole prin-
ciple, p is at most (+ e)d/2=(1/2+ e/2)d. Furthermore, since p>-(-e)d, it follows
that p, =< d 2(- e)d (+ 2e)d. [3

FACT 3. If a bin-packing instance I can be obtained from an instance I, by simply
decreasing some of the processing requirements, OPTsp( <- OPTsp(I).

Consider the algorithm in Fig. 2.
Notice that the procedure does not necessarily provide a feasible schedule, in lhat

some machines may be scheduled beyond the deadline. However, it is easy to see that
no machine is scheduled with more than (1/2-e)d+(1/2+2e)d+(1/2+e/2)d=(l+e)d,
where e is defined so that the shortest processing time is (1/2-e)d. We now prove that,
in fact, the number of machines used by the procedure, which we shall denote pack(I),
is at most OPTsp(I).

LEMMA 2. pack(I) <- OPTsp(I).
Proof. By Lemma 1, we know that the first while loop ofthe procedure is scheduling

optimally, so we need only consider the remainder of the algorithm, where all of the
job sizes are in the interval (d/4, d/2).

The proof is by induction on the number of jobs remaining, n. If n-<_ 2 the proof
is trivial, since the algorithm clearly uses only one machine, which is the optimal
schedule, if any jobs remain at all.

Now assume that the claim holds for all instances where the number of jobs is
less than n. Consider two basic cases; either there is an optimal schedule where a
machine gets three jobs, or there isn’t. In the latter case it is clear that the procedure
pack. e can use no more machines than the optimal schedule. (Perhaps some machine
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procedure pack. 3/2e (!)
begin
J:={1,2,...,n}
until all jobs are shorter than d/2 do

begin
let be any job with Pi >= d/2
let j be the longest job that can be scheduled with by time d
{if none exists, let j O}
schedule and j together on one machine
J:=J-{i,j}

end
{all jobs have processing times in the interval (d/4, d/2)}
repeat

begin
let min be the shortest job in J
if Pmin > d/3 then failure

else
begin

define e -> 0 so that Pmin (1/2-- E)d
if there do not exist 2 jobs other than min, one in each of

Largest (e) and Middle (e)
then failure
else

begin
let be the job in Largest (e) (#min) with the largest processing time
let j be the job in Middle (.e) (min, i) with the largest processing time
schedule min, i, and j together
J := J- {min, i,j}

end
end

end
until failure
{all of the jobs remaining must be processed 2 per machine}
pack the remaining jobs 2 per machine in some arbitrary way (with
perhaps one machine with only one job)

end

FIG. 2

is scheduled with 3 jobs by our algorithm, but that can only reduce the number of
machines used.) Therefore, assume that there is an optimal schedule P with some
machine scheduled with three jobs. Furthermore, by Fact 1, we can assume that the
shortest job, Pmin (-- e)d, e _>- 0, is scheduled on a machine with 2 other jobs, k and
I. Assume, without loss of generality, that Pk >= Pt.

By Fact 2, k Largest (e) and 1 Middle (e), and therefore, the algorithm does
not detect failure in the first iteration of the repeat loop. Suppose that the algorithm
schedules min, and j on one machine where Pi >--Pj. By the choice of and j, we
know that Pi >-- Pk and pj _-> pt. Let J1 J- {min, i, j} and J2 J- {min, k, l}. It is straight-
forward to see that the instance 11 corresponding to J1 can be obtained from the
instance 12 corresponding to J_ by decreasing some of the processing requirements,
and thus OPTBp(I1) <= OPTBp(I2). Consider the bin-packing instance 11; by the induc-
tive hypothesis, pack(I1)<- OPTnp(I1). It is also easy to see that pack(I)- pack(I1)+ 1
and OPTBp(I)-- OPTBp(I2)+ 1. Combining the inequalities and equalities, we get that
pack(I) <-_ OPTnp (I).

As a result of Lemma 2, and the observation about the total time that any machine
can be scheduled for using pack. e, we have shown the following theorem.
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THEOREM 3. The procedure pack. e delivers a schedule for any instance I I,
0 <-_ e < 1, that uses no more than the minimum number of machines needed to complete
the jobs within d, and this schedule ensures that all jobs are completed within (1 +e)d.

The procedure pack. e can be viewed in a slightly different way. The procedure
given above can be used to produce a modified instance of the bin-packing problem.
For any job that is packed during the repeat loop,.let/i d/3. Otherwise, let/i p.
The processing times/ define a perturbed instance I. Note that the schedule produced
by pack. e is feasible for . Furthermore, it is not hard to see that this schedule is in
fact optimal for I (which is an instance that "almost" lies in Io.) Thus, procedure
pack. e might be presented as follows"

procedure pack. e (I)
begin
form instance from I
pack I optimally
interpret the schedule for I as a schedule for I

end

This corresponds precisely to our suitcase analogy.

5. An approximation algorithm for minimizing the makespan. The study ofperform-
ance guarantees for approximation algorithms originated with Graham [Gr], [Grl] and
this initial work analyzed two algorithms for P//Cmax. Both of these algorithms are
list scheduling algorithms (LS), where the jobs are first arranged in some order in a
list, and then scheduled by assigning the next job on the list whenever a machine is
idle. Graham showed that if no restriction is placed on the list, then the completion
time of the list scheduling algorithm is at most (2-1/m)OPTMM(I) where OPT4M(I)
denotes the completion time of the optimal schedule, given a set of jobs I. Graham
also showed that if the next job to be scheduled is always the one with the largest
processing time, the so-called LPT rule, then the schedule produced has a completion
time of at most OPTI(I).

The following fact, which is used in proving the above results, will be important
for our purposes.

LEMMA 3. For any list scheduling algorithm, ifj is the last job to be completed in
the schedule produced, then this completion time T is at most (1/m)=p+
((m-1)/m)pj.

Proof. Since j was scheduled at time T-pj, all processors were scheduled up to
that point, and thus

pi=p+ _, p,>-p+m(T-p).
i=1 ij

By solving for T, we get the desired result.
It is useful to observe that we do not need that the schedule was produced by a

list scheduling algorithm, only that no machine is idle earlier than the starting time of
the job that finishes last. It is easy to see that mOPT(I) >- i=l P, and T, as defined
above, is at least OPTI(I). Using these simple observations, we get the following
two corollaries.

COROLLARY 1.

p <--_ OPTM(I) <-_-- pj + max p.
m j=l m j=l j=l,-..,n

COROLLARY 2. If p =maxp, then any schedule produced by a list scheduling
algorithm finished within OPTMt(I) + ((m 1 )/m)p.
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Thus, if all of the job times are small, these algorithms do very well. Recall that the
approximation algorithms presented in the previous section perform well if all of the
job times are big. This suggests the two-phase approach given in Fig. 3. In this procedure,
we use binary search to identify the smallest deadline d, such that all of the jobs of
length greater than d/4 can be scheduled using pack. e on =< rn machines. Since we
might not need the precise value of the minimum, we settle for some k iterations of
binary search.

procedure schedule (I, k)

LB:=max{ pj, jax.pj}
upper := LB + max,= 1,...,. P
lower := LB
for iter := to k do

begin
upper / lower

d :-
2

call pack- e(J)
if no more than m machines used then

begin
upper :-- d

end
else lower :- d

end

do := upper
{for the best value do recompute the schedule}
J := {j[p > do/4}
call pack. e (J)
complete partial schedule using list scheduling

FIG. 3

We next prove some easy facts about this algorithm.
FACT 4. Throughout the execution of the algorithm OPTMI(I)>= lower.
Proof. By Corollary 1, the initial value of lower is a valid lower bound on the

optimum. Suppose that lower is updated during the algorithm to some value d. Then
the procedure pack. e was unable to pack the set of jobs on m machines (within the
relaxed deadline), and by Lemma 2, it follows that no schedule exists for the jobs in
J that completes all of the jobs by time d. Since J is a subset of the complete set of
jobs to be scheduled, it follows that OPTM(I) >- d. [q

FACT 5. If every job is completed in less than do in the schedule produced by the
algorithm, then the finish time exceeds the optimal finish time by less than (+
2-+’)OPT(I).

Proof. Note that after iteration of the for loop, the difference between upper and
lower is at most 2-LB. The relationship of the relevant parameters is depicted in Fig.
4. By this observation and Fact 4, the difference between the scheduled completion
time and the optimal completion time is <=2-LB +do By observing that do -<

(1 + 2-)lower <- (1 + 2-)OPTMM(I), we get the claimed result.

<= do{completiOnupperd
time

exact result of binary search
<= 2-kLB lower

FIG. 4
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FACT 6. If the last job to finish is completed at some time T >-5do/4, then the error
is at most ((m- 1)/m)do/4<-((m 1)/4m+E--:)OPT(I).

Proof. By the arguments given in the previous section, we know that the subset
of jobs J is scheduled within 5d0/4. Therefore, the job j that finishes last must be in
{1,- ., n}-J, and no machine can be idle before the time that j is started. We know
then that Lemma 3 is applicable, and the error is at most ((m-1)/m)pj <-

((m-1)/m)do/4. The final inequality is obtained by substituting do -<

(1 +2-k)OPTtM(I). [3

By combining Facts 5 and 6, we get the following result.
THEOREM 4. The schedule produced by algorithm schedule is completed strictly within

(+ 2-k+I)OPTMM(I).
Thus we have shown that the algorithm schedule, given enough iterations, produces

a schedule that exceeds the optimal schedule by at most OPT(I). Furthermore, if
the jobs are sorted by their processing times, each iteration of binary search can be
completed in linear time, thus resulting in O(kn + n log n) running time for procedure
schedule.

In spite of the close relationship between the bin-packing and minimum makespan
problems, the state of knowledge for these two problems is very different. For the
bin-packing problem there exists a polynomial-time algorithm to find a feasible packing
that uses at most (1.+ e)OPTBp(I)+ O(e -2) machines, for every fixed e > 0, where the
running time is polynomial in (1/e) [KK]. For P//Cmax, no polynomial-time approxima-
tion algorithm is known that achieves a better guarantee than OPTMM(I). As a result,
we believe that it is important to continue studying the relationship between these two
problems, in the hope of achieving better guarantees for the minimum makespan
problem.

6. Some computational experience. The algorithms presented in this paper are
extremely easy to implement. Approximation algorithms usually perform significantly
better than the performance guarantees indicate, and these algorithms are no exceptions
to the rule. In the tables below we compare the performance of our algorithm for
P//fma to the LPT and MULTIFIT algorithms.

For the first experiment, we considered instances where the processing times of
the jobs were uniformly distributed in the interval [0, 1]. We ran 50 trials for each
problem size. Since the optimal value of each instance was practically unobtainable,
we measured the performance of each algorithm by computing the ratio

cost of heuristic solution

lower bound for optimal solution

where the lower bound was obtained by computing

max{(j p) naax p}.
This ratio is, of course, an upper bound on the performance of the algorithm. Table
1 demonstrates the dependence of the actual performance on the ratio n/m.

In Table 2 we see that there is little dependence on n if n/m remains constant.
It is also interesting to consider other distributions of processing times. For

example, we approximated a normal distribution by considering processing times that
were the average of ten uniformly distributed values; see Table 3.
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TABLE

10-machine problems with uniform [0, 1] processing times

n LPT MULTIFIT e
20 1.083 1.079 1.081
30 1.061 1.017 1.051
40 1.030 1.009 1.027
50 1.022 1.005 1.020
100 1.005 1.001 1.005
200 1.001 1.000 1.001

TABLE 2

Uniform processing times with nm 3

n m LTP MULTIFIT 23-e

30 10 1.061 1.017 1.051
60 20 1.069 1.010 1.049
120 40 1.078 1.006 1.059

TABLE 3

10-machine problems with quasi-normal [0, processing times

n LTP MULTIFIT e
20 1.041 1.041 1.041
30 1.021 1.059 1.072
40 1.016 1.049 1.045
50 1.013 1.035 1.030
100 1.006 1.014 1.008
200 1.003 1.006 1.003

Finally (see Table 4) we consider instances where the lower bound used in
computing the approximate performance of the algorithms is the optimal value as well.
We do this by choosing a random schedule such that each machine is scheduled for
exactly one unit of time. This is done by first randomly selecting the number of jobs
nj to be scheduled for machine j, between 2 and range + 1, where range is an input to

TABLE 4

10-machine problems with known optimal schedule

range LTP MULTIFIT e
2 1.042 1.012 1.034
3 1.028 1.008 1.024
4 1.023 1.006 1.022
5 1.014 1.004 1.012

10 1.007 1.001 1.006
20 1.002 1.000 1.002
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the procedure. The processing times are then generated by randomly dividing the unit
of time for machine j into nj parts. Note that the number of jobs for an instance is
not fixed, but the expected number is ((range+3)/2)m.

Acknowledgments. We are grateful to Richard Karp, who made several useful
suggestions about a preliminary version of these results, and to the anonymous referee,
whose comments helped to tighten the bound for this algorithm.
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SIMPLIFIED RELIABILITIES FOR CONSECUTIVE-k-OUT-OF-n SYSTEMS*

F. K. HWANGf

Abstract. Reliabilities for consecutive-k-out-of-n systems are typically given in the form of recursive
equations. Some attempts have been made to use combinatorics to obtain closed-form solutions, but the
solutions contain k- summations. In this paper we obtain closed form solutions with one summation over
n/k terms. For k 2 we are able to eliminate all summations. We apply our result to compute the reliability
of a k-loop computer network.

Key words, consecutive-k-out-of-n, reliability

AMS(MOS) subject classifications. 60C05, 90B25, 62N05

1. Introduction. A consecutive-k-out-of-n F system is usually defined as a system
of n components in sequence where the system fails if and only if k consecutive
components fail. The definition has been extended to cover a system of n components
in cycle. We will refer to one as a consecutive-k line and the other as a consecutive-k cycle.

We consider the case that component has probability Pi ofworking and probability
qi 1-Pi of failing and the states of the components are independent. The special
case pi =p is of practical importance and has received the most attention. We will
refer to the p =p case as the Bernoulli model.

For given Pl, ",P,, the reliability of a k-consecutive line or cycle is the probability
that the system works, i.e., that there do not exist k consecutive failed components.
Computing reliabilities for such systems and setting bounds for them have recently
aroused a great deal of interest [1], [2], [3], [5], [8], [9], [12]. Most of the computing
algorithms proposed are recursive in n. The fastest algorithm for the consecutive-k
line requires O(n) time [8], [12], and the fastest algorithm for the consecutiveok cycle
requires O(nk2) time O(nk) time for the Bernoulli model) [8]. Although those recursive
algorithms are computationally efficient, they have the usual disadvantage associated
with a recursive algorithm of being a black box grinding out only numbers. The
dependence of the reliability on the system parameters is hidden in the equations.

For the Bernoulli model reliabilities can be computed by using a combinatorial
approach which is more explicit in nature. Let Nt(j, n, k)(Nc(j, n, k)) denote the
number of ways of having working consecutive-k lines (cycles) conditional on j failed
components. Since each such line (cycle) is associated with the probability qJp"-J, we
have the reliability (x is either L or C)

R,(p, k, n)= qJp"-Nx(j, n, k).
J

(Since we are dealing with a physical problem here, it is natural to define the binomial
coefficient (Yz)= 0 for negative y. With this definition sometimes we can avoid writing
a messy expression of the upper range of a sum.) Several combinatorial arguments
have been given to compute Nt.(j, n, k) without much success. In general NL(j, n, k)
has been given in a closed form involving (k-2) summations. In this paper we show
that NL(j, n, k) can be given in a closed form involving only one summation over n/k
terms. We then use this result to give R(p, k, n) and Rc(p, k, n) in closed forms also
with one summation over n/k terms. For k=2 we are able to reduce R(p, 2, n) and

* Received by the editors November 8, 1984, and in revised form May 21, 1985.

" AT&T Bell Laboratories, Murray Hill, New Jersey 07974.
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Rc(p, 2, n) to closed forms without any summations. Finally we apply our results to
compute the reliability of a k-loop network.

2. Some combinatorial results. Chiang and Niu [3] showed that

NL(j, n, 2)=(n-j+l).J

by considering the number of ways of placing at least one working component between
every two failed components. Derman, Lieberman and Ross [5] pointed out that this
approach does not seem to generalize beyond k=2. Instead, they considered the
number of ways of placing at most k- 1 failed components between every two working
components and obtained the recursive equation

NL(j’n’k)= (n-j+l)N(j-(k-1)i’n-ki’k-1),o frk-->3"

(Our N function is different from their N function which has the parameter r n -j + 1
instead of n.) By substituting the solution of N(j, n, 2) into the recursive equation for
N(j, n, 3), we have

i>-o j-2i

One can keep on substituting to obtain a closed-form solution of N(j, n, k) involving
k- 2 summations. Bolinger 1] gave the recursive equations

(n) forj<k,N(j, n, k)=
J

NL(j,j, k)= 1 forj=>k,

k-1

Nt(j,n,k)= Y Nt(j-i,n-l-i,k) for n>j>-k
i=0

by considering the position of the first working component. He tabulated numerical
values for NL(j, n, 3) for j--<9 and n-<10.

We now show that the recursive equations of Bolinger can be solved in closed
form with one summation over n! k terms.

THEOREM 1.

i=>o n--j !

Proof. We prove this by substituting the solution into Bolinger’s recursive
equations.

NL(j-I, n-l-l, k)

2 2 (-1)’ n n-l-l-k

=o _->o n- 1 -j

---o t=o n- 1 -j

i>=O x=n-k-ki n- 1-
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i-_>o n-j / n-j

(by using combinatorial identity (1.51) in Gould [6])

COROLLARY.

Proof.

n n -j n ki]

,-o n-j /
NL(j, n, k).

NL(j, n, 1)= 0 except NL(O, n, 1)= 1.

1 for j=0,

l(:11)i_->o n -j J 0 for j > 0,

by using the combinatorial identity (3.49) in Gould [6].
Theorem 1 can be directly argued. Interpret n-j+ 1 as the number of spaces

between the n-j working components (including the two ends) into which the failed
components are to be placed. Suppose that of these spaces contain k or more failed
components. We can count the number of such combinations by eliminating ik failed
components and counting the number of ways of selecting n-j working components
from a total of now n- ki components. An inclusion-exclusion argument then yields
Theorem 1.

Since N(j, n, k) as given in Theorem 1 must also solve the recursive equations
of Derman, Lieberman and Ross, we have the following result.

THEOREM 2.

(-1)’(n-j+l)(n-ki)= >o(n-j+l) 1)’(n-j-l+l)(n-kl-
i->_o n-j/ i>_-o n-j-

>o(_1), (n-j+l)(n-j-l+l)(n-kl-i)
1o n -j

In particular, for k 3 we have
COROLLARY.

i>-o n -j i=o j-2i

These combinatorial identities seem to be new as they are not listed in Gould.

3. The reliability.
THEOREM 3.

RL(p’k’n)= Y" (--1)ip’-lqk’[( q(n-ki)]i for k>=l.
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Proof. From Theorem 1 we have

j_->o i_->o n-j /- (1)’ (n-ki), ( )5". qJp"-J(n-j+l) n-(k+l)i+l
,>=o i![n-(k+ l)i+ 1]!j__>o j-ki

(-1)’ (n- ki)! qkip,-1
,=>o i![n-(k+l)i+l]!

l>=O qlp"-k+l)’+l-l(n--ki+l--l)( n-(k+l)i+l)l
5’. (--1)’ (n-ki)! qkp,-1
,o i![n-(k+ 1)i+ 1]!
n-(k+l)i+l ( )qlp"-(k+l)’+l-l(n--ki+ 1--/)

n-(k+ 1)i+ 1

/=o

(_1)
(n-ki)! qkipi-i[tl--kiq- 1-{n-(k+ 1)i+ 1}q]

>=o i![n-(k+l)i+ 1]!

(_l),p,_lqk,[(n--ki+l) (n-ki)]
i>=o

-q

Derman, Lieberman and Ross proved that
k-1

Rc(p,k,n)=p2 (l+l)qlgL(p,k,n-l-2).
1=0

So we can also obtain Rc(p, k, n) from Theorem 3. We now show that Rc(p, k, n)
can also be reduced to a sum of n/k terms. First a combinatorial lemma.

LEMMA 1.

Proof. Lemma 1 is trivially true for n 0. We prove the general case by induction
on n. Fork=O

For k n

=l-p ql=q,.
l=O

For l <=k<=n-1

f(n)-f(n-1)= (-pqk)[( 1 --P l (n-2-ki-l)i- 1
q

_p ql
i>=o l=o

=--pqkq"-l-k=--pq"-I by induction
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Hence
f(n)=f(n-1)-pq’-=q,- pq,-I q, by induction.

The fact that f(n) is independent of k is rather surprising. Lemma 1 is also a very
rich combinatorial identity so that some of its special cases seem to be new. For
example, with k 1 we have

COROLLARY.

THEOREM 4.

Proof.
k-1

Re(p, k, n)=p- Y. (l+ 1)qR,(p, k, n-l-2)
/=0

p (/+l)q’2 (-1)p’-’q’ n-l-l-k n-l-2-k

i=i iO

=p 2 (-pq)’ 2 (/+l)q
n-l-ki-I n-2-ki-l

ieO 1=0
-q

=P (-pqk)[ (n-l-ki-l)t=o
q -k(n-k-l-ki)q

,co
q +k,o (-pqk)’+’

n k(ii+1)-1
by Lemma 1.

We now show that Rt.(p, 2, n) and Rc(p, 2, n) can be given without any summation.
THEOREM 5.

(2q/p+ 1 +x/1 +4q/p)n+2+(-1)n+(2q/p)"+2

RL(p, 2, n)=p 2n+l)/2(2q/p+ 1 +x/1 +4q/p)"+)/E(4q/p+ 1 +41 +4q/p)’

(1 +/1 +4q/p)" +(1 -/1 +4q/p)"
Rc(p, 2, n)= np

2n

Proof.
rn/2l

RL(p, 2, n) ., qJp"-JN(j, n, 2)
j=O

(2q/p+ 1 +J1 +4q/p)"+2+(-1)"+l(2q/p)"+
=P"2("+/(2q/p+ 1 +/1 +4q/p)("+/(4q/p+ 1 +/1 +4q/p)

by using combinatorial identity (1.70) in Gould.
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The number of ways of selecting j objects, j => 1, from n objects arranged in a
cycle without two consecutive objects both being selected was given by David and
Barton [4] to be 1 for n 1 and to be

n (n-j) forn__>2"
n-j j

Therefore for n >_-2

Rc(p, 2, n) ., qp"- n n

rip"(1 + /1 + 4q/p)" + (1 -/1 + 4q/p)"
2

by using the combinatorial identity (1.64) in Gould.

4. An application to computer networks. Consider n stations denoted by the
residues modulo n. A k-loop network for n stations consists of k loops with links

+ sj, 0, 1, , n 1, j 1, , k. Clearly if the network is connected, we can
always assume Sl 1. k-loop networks have been widely studied [7], [10], [11], [13]
as topologies for computer networks.

Assume that each station can fail independently with probability q but links always
work. A common measure for reliability is to call the system failed if there exist two
working stations A and B such that every path from A to B must go through a station
which has failed. We now use the result of 3 to compute the reliability of a k-loop
network with si i.

LEMMA 2. The network fails if and only if it contains at least two working stations
and k consecutive failing stations.

Proof. By our definition of network failure, clearly a network can fail only if at
least two stations are working. In the rest of the proof we assume the existence of two
working stations.

Suppose that there exist k consecutive failed stations i, 4-1, , / k- 1. Let j
be the first working station in the sequence 1, 2, . Let k j be another working
station. Note that j and k must exist by our assumption of the existence of two working
stations. Since every path of j must go through one of the k stations, j / 1, j / 2,. ,
j / k- 1, all failing, j cannot reach k.

Next suppose that there do not exist k consecutive failed stations. Then a working
station can always reach the first working station in the sequence + 1, + 2, , / k
1 and by our assumption, at least one of them is working. But the fact that every
working station can reach its next working station implies that all working stations
can reach each other. The lemma is proved.

Therefore the reliability of the network is simply the reliability of a consecutive-k
cycle plus the probability that at most one station works. We have

THEOREM 6. The reliability of a k-loop network with s and n stations is

fork>-l.
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ON THE SPECTRAL RADIUS OF COMPLEMENTARY
ACYCLIC MATRICES OF ZEROS AND ONES*

RICHARD A. BRUALDIt AND ERNIE S. SOLHEIDt

Abstract. For an n x n complementary acyclic matrix A of O’s and l’s we show that the spectral radius
p(A) of A satisfies p(A)>= n-2 and determine those matrices A for which equality holds. When A is an
n x n irreducible, complementary tree matrix, we also obtain that p(A) <= p,, where p, is the largest root of
the polynomial A n 2)A n 3)A 1.

Key words, spectral radius, complementary acyclic matrix, tree

1. Introduction. Let A =[aij] be an m x n (0, 1)-matrix, that is, a matrix all of
whose entries are O’s and l’s. We associate with A a bipartite graph Go(A) whose edges
correspond to the O’s of A. The graph Go(A) has m+n vertices, Xl,’’’,Xm (row
vertices) and yl,..., Yn (column vertices), where there is an edge between xi and yj if
and only if ai 0 (1 <= i-< m, 1 <-j-< n). The matrix A is called complementary acyclic
[3] if the graph Go(A) has no cycles. When Go(A) is connected, that is, Go(A) is a
tree, we say that A is a complementary tree matrix. Thus the complementary acyclic
matrix A has at most m + n 1 O’s with equality if and only if it is a complementary
tree matrix.

Now let B b] be an n x n nonnegative matrix. Below we summarize those parts
of the Perron-Frobenius theory [1], [6] that we require. The spectral radius p(B) of B
is the maximum absolute value of an eigenvalue of B. The matrix B is called reducible
if there exists a permutation matrix P such that

ptAp=
A21 A2

where AI and A2 are square, nonvacuous matrices; B is irreducible when it is not
reducible. If C co] is another n x n nonnegative matrix, we write B -< C when b <_- c
for all and j. Then the following hold:
(1.1) p(B) is an eigenvalue of B and has an associated nonnegative eigenvector u

(when B is irreducible, u is positive).

(1.2) Let the row sums of B be rl,’", rn. Then

min{rl,..., r}<_-p(B)-<max{rl,..., r}.

When B is irreducible and not all row sums are equal, both of the inequalities
are strict.

(1.3) Let z be a positive vector. If Bz >-rz (respectively, Bz <- rz), then p(B)>-r
(respectively, p(B)<-_ r) with equality for irreducible B if and only if Bz rz.

(1.4) Let B<_-C. Then p(B)<-p(C) with strict inequality when C is irreducible and
B#C.

(1.5) If B’ is a proper principal submatrix of the irreducible matrix B, then p(B’)<
p(B).

* Received by the editors January 2, 1985, and in revised form, June 17, 1985. This research was partially
supported by the National Science Foundation under grant DMS-8320189.

" Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706.
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Let Lt, be the set of all n x n (0, 1)-matrices, and let 9
_

lln. We can formulate
the following general

Problem. Determine

min {p(A)" A 9} and fi max {p(A)" A 9}.

It is of interest to find sets for which f7 or fi can be determined. For if A 9, then

= p(A)-fi, and these bounds may improve on the bound in (1.2) or other known
bounds for the spectral radius. In [2] and [5] the problem of determining fi was
considered when 9 is the set of n x n (0, 1)-matrices with a specified number of l’s,
and when 9 is the set of symmetric n x n (0, 1)-matrices with zero trace and a specified
number of l’s. In this note we solve the above problem when 9 is the set of n x n
complementary acyclic (0, 1)-matrices and when 9 is the set of (irreducible) n x n
complementary tree matrices.

Our work can be viewed in two ways: (1) as a contribution to the spectral theory
of graphs [4], which is often useful in proving theorems about graphs, and (2) as a
contribution to the highly developed theory of nonnegative matrices and spectral radius
1], [6], which has been applied in many diverse fields such as economics, probability,
and demography.

2. A lower bound. We begin with the following lemma which is a special case of
a method of B. Schwarz [7].

LEMMA 2.1. Let A=[aij] be an n x n irreducible (0, 1)-matrix and let z=
(Zl," , zn) be a positive eigenvector corresponding to the spectral radius p ofA. Suppose
that for some there exists j and k with j < k such that aij 0 and ak 1. Let B be the
matrix obtained from A by interchanging the entries ai and aik.

(i) If Zl <=’’" <- Zn, then p(B) <= p(A).
(ii) If Zl >=" >= zn, then p(B) >- p(A).
Proof. In case (i) we have Bz<= Az pz while in case (ii) we have Bz >= Az Oz.

The result now follows from (1.3).
We remark that the conclusions of Lemma 2.1 hold when B is obtained from A

by several interchanges of entries as long as in each interchange the 0 precedes the 1.
THEOREM 2.2. Let n >-- 3 and let A be an n x n complementary acyclic (0, 1)-matrix.

Then

(2.1) p(A)_-> n-2.

For A irreducible, equality holds if and only if there exists a permutation matrix P such
that PAP has the form

J A2
whereA is a square nonvacuous matrix with exactly one 0 in each column, A2 is a square
nonvacuous matrix with exactly one 0 in each row, T is a complementary tree matrix,
and J is a matrix of all l’s.

For A reducible, equality holds if and only if there is a permutation matrix P such
that P’AP has one of the forms

(2.3) u

where C is an n- 1)x n- 1) matrix with exactly one 0 in each row and u has at most
one O, or the transpose of this form;
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(2.4) a complementary acyclic matrix of the form

where J is an (n 2) x (n 2) matrix of l’s, or the transpose of this form.
Proof. Let A =[aij] be an n x n complementary acyclic matrix with minimum

spectral radius p p(A). We first suppose that A is irreducible. Suppose A were not
a complementary tree matrix. Then there exists a complementary tree matrix A’ with
A’<-A and A A’. By (1.4) p(A’)<p(A) which is a contradiction. Hence A is a
complementary tree matrix. Let z (z,. ., zn) be a positive eigenvector of A for p.
After simultaneous row and column permutations of A, we may assume that z -<_. _-<

z,. Since Go(A) is a tree, for each 1,..., n there is a unique path yi from row
vertex x to column vertex y,. Let the first edge of the path y be the edge {x, yj,}
joining xi and yg, (i 1,. , n). Let B be the matrix obtained from A by interchanging
for each 1, , n the entries a0, and a,. It follows from Lemma 2.1 that p(B) <= p(A)
and hence p(B)= p(A). The graph Go(B) is obtained from the tree Go(A) by deleting
for each i= 1,..., n the edge {x, yg,} and inserting the edge e {xi, y,}. For each
k= 1,..., n-1 let the first edge on the path in Go(A) from Yk to y, be the edge
fk {Yk, Xk}. Then fk is not the first edge of any of the paths yl," ", yn of Go(A), and
hence for each k 1,. , n- 1 fk is an edge of Go(B). Since Go(B) has exactly 2n- 1
edges, it now follows that el, , e,,f,. ,f,_ are precisely the edges of Go(B) and
hence Go(B) is a tree. Thus B is a complementary tree matrix of the form

0 0

where B has exactly one 0 in each column and B2 is an (n- 1)x (n- 1) matrix. Then
p(l) P(/2). Since BE has at least n-2 l’s in each column, it follows from (1.2) that
p(B2)_-> n -2. Hence p(A) p(B) p(B2)-> n-2, and (2.1) holds for A irreducible.

Now suppose equality holds in (2.1). Then p(A)- p(B2)--n-2. First assume BE

is irreducible. By (1.2) BE has exactly one 0 in each column. Hence the last row of B1
contains no O’s and the last row of A contains exactly one 0. Let z’ be obtained from
z by deleting its last coordinate. Since Bz<-_Az=(n-2)z, it follows that

(2.5) B2z’<-(n-2)z

with equality if and only if z, zn for 1, , n 1. Since p(B2) n -2, (1.3) implies
that we have equality in (2.5). Hence zj,=z, for i=l,..., n-1. Let A’ be the
complementary tree matrix obtained from A by interchanging an. and a,,. Then A’ is
irreducible and A’z<=Az=(n-2)z. Using (1.3), we conclude that zn z, also. There-
fore Bz Az (n 2) z. Let k + 1 be the minimum of {j,. ., j, }. From the monotonic-
ity of z we now conclude that Zk+ Z,. Let A be partitioned as

A= W [QIIQ2]
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where U is kx k and Q1 is n x k. Suppose {xi, yp} is an edge of one of the paths
3’1,’", yn. Then it follows that yp yj, and hence that p =ji-> k + 1. Therefore each
of yl," ", yn is a path of Go(Q2). Since Go(A) is a tree, each column of Q. has a 0,
and it follows that Go(Q) is connected and hence a tree. Thus Q2 has 2n-k-1 O’s
and since A has 2n- 1 O’s, Q1 has k O’s. Since each column of Q must also have a
0, each column of Q1 has exactly one 0. Since the last row of A contains only one 0,
in the j, >_-k + 1 column, the last row of W contains no O’s. Since Zk+ Zn, we
may repeat the preceding argument on the matrix obtained from A by permuting row
n and any of rows k + 1, , n 1. The matrix corresponding to B2 remains irreducible,
and we conclude that W has no O’s and each of the rows of Z contains exactly one
0. Since each column of Q1 has exactly one 0, we now conclude that each column of
U contains exactly one 0. It now follows that V has exactly n- 1 O’s. Since Go(V) is
an acyclic graph with n vertices and n- 1 edges, Go(V) is a tree and hence V is a
complementary tree matrix. Thus A has the form (2.2).

Now assume B2 is reducible. Since B2 is complementary acyclic, B2 has a row or
column all of whose off-diagonal entries are 0. Since B is complementary acyclic and
has only 0’s in its last column, we conclude that there is an integer p with 0_<- p _-< n 2
such that

P

matrix obtained from A by interchanging the entries aj,

p

with p + 1" P

P

Since A is irreducible, row p + 1 of B must have been obtained from row p + 1 of A
by interchanging the entries in columns p+ 1 and n (i.e. Jv/l =P+ 1). Let B be the

and a, for each i= 1,..., n
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By Lemma 2.1, p(B)= n-2. Let n->4. Since column p+ 1 of B must contain at least
one 1, B is readily seen to be irreducible. Let C be the matrix obtained from B by
replacing the 1 in the (p+ 1, n) position with a 0. Then using (1.4) we obtain

n-2=p(C)<p(B)=n-2.

This contradiction shows that for n >-4, B2 cannot be reducible. The same conclusion
is easily reached when n 3. Hence when A is irreducible and p(A) n- 2, (2.2) holds.

Now suppose that A is an n x n irreducible matrix satisfying (2.2) where A1 is a
k x k matrix with 1 =< k -< n- 1. Then A is a complementary tree matrix and by (2.1),
p(A) -> n-2. Let z (Zl," ", z,)’ be a positive eigenvector corresponding to p p(A).
Partition z as (z’, z") where z’ has length k. Then Az pz implies

Jz’ 3- A2z" pz",

so that
(pI,_k--A2)z" =C

where c is a constant vector. By (1.5), p(A2)< p and hence pln-k- A2 is an invertible
matrix. Therefore

z" (pin_k A2)-lc,=l ( In_k +l A2-1-1- A+ .)c.p p p

Since c is a constant vector and since A2 has exactly one 0 in each row, we conclude
that z" is a constant vector. The form (2.2) implies that Go[f2] is a tree. Hence for
each i= 1,..., n, the unique path yi of Go(A) from xi to yn is a path of Go[,]. As
before let the first edge of the path y be the edge {x,yj,} (i= 1,..., n). Then
k+l-<_ji_-<n for i-1,..., n. We again let B be the matrix obtained from A by
interchanging for each i- 1,. ., n the entries aj, and an. Then B is a complementary
tree matrix. Moreover, since z" is a constant vector, p is an eigenvalue of B and hence
p(B) >-p. Since by (2.2) A has exactly one 0 in its last row,

B2
0

where p(B)= p(B2). Since B is a complementary tree matrix, B2 has exactly one 0 in
each column and hence P(/2)= n--2. Thus

n -2= p(B2) p(B) >-_ p(A) >= n -2,

and we conclude that p(A)= n-2. This completes the proof of the theorem when A
is irreducible.

We now give the proof when A .is reducible. In this case there exists a permutation
matrix P such that P’AP or PtAtP has the form

(2.6)
u

0

C

Since A is complementary acyclic, C has at most one 0 in each row and hence its row
sums are at least n-2. From (1.2) we obtain that p(A) p( C) >= n-2, and (2.1) holds.
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We now consider when equality holds in (2.1) for A reducible. First suppose that
p(A) n- 2. Then there exists a permutation matrix P such that PtAP or PtAtP has
the form (2.6) where p(C)= p(A)= n-2. Since A is complementary acyclic, C has
at most one 0 in each row. Assume C is irreducible. Then it follows from (1.2) that
C has exactly one 0 in each row. Since we have now accounted for 2n-2 O’s, u can
have at most one 0. Hence (2.3) is satisfied. Now assume C is reducible. Then after
simultaneous row and column permutations, (2.6) becomes

0 0

(2.7) u

D

Since A is complementary acyclic, D contains no O’s and (2.7) is of the form (2.4).
Thus when p(A)= n-2, A satisfies (2.3) or (2.4) after simultaneous row and column
permutations. The converse follows easily, and the proof of the theorem is now
complete.

3. An upper bound. For n >= 3 there exists an n x n irreducible complementary
acyclic (0, 1)-matrix satisfying (2.2). Hence the lower bound (2.1) in Theorem 2.2
cannot be improved under the additional assumption of irreducibility. This is in contrast
to the situation encountered for the upper bound for the spectral radius of complemen-
tary tree matrices.

First note that for n x n complementary acyclic matrices the maximum spectral
radius is clearly n.

THEOREM 3.1. Let A be an n x n complementary tree matrix. Then p(A)<-_ n-1
with equality ifand only ifthere exists a permutation matrix Psuch that PtAPhas theform

(3.1)

Proof. Since A is a complementary tree matrix, A has at least one 0 in each row
and hence by (1.2), p(A)<-n-1. Now suppose p(A)= n-1. If A were irreducible,
then by (1.2) again, A has exactly one 0 in each row, and hence n 1 and (3.1) holds.
Hence we may assume A is reducible. Since A is a complementary tree matrix, the
rows and columns of A or A can be simultaneously permuted to give

(3.2) A’

where A’ is an (n- 1) x (n- 1) complementary acyclic matrix with p(A’) p(A) n- 1.
Using (1.2) once more, we conclude that A’ is a matrix of all l’s and hence (3.2) equals
(3.1). Since the matrix (3.1) has spectral radius (n- 1), the theorem follows.

Let p, be the maximum spectral radius of an n x n irreducible, complementary
tree matrix. It follows from Theorem 3.1 that p, < n- 1 for n-> 3. We now determine
an irreducible, complementary tree matrix whose spectral radius is p,.
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THEOREM 3.2 For n >-3, Pn p(An) where An is the n x n matrix

0 0 1 1 1
1 1 1 0

1 1 1 0

0 0 0

which has characteristic polynomial A n-3(A n 2)A 2 (n 3)A 1 ). Therefore p,, is
the largest root of Aa-(n-2)AE-(n-3)A-1.

Proof. Let A [aij] be an irreducible, complementary tree matrix with p(A)
Let z- (zl,’’’, zn) be a positive vector such that Az-pnz. After simultaneous row
and column permutations, we may assume that zl >_-... >_-zn. Let (xi, yj,} be the first
edge of the unique path % from row vertex xi to column vertex yn in the tree G0(A),

1,..., n. Let B be obtained from A by interchanging the entries ai, and an for
each i- 1,. ., n except for i= k which is determined as follows. If there is a such
that row contains all O’s except for a 1 in the last column, then there is exactly one
such row and we set k equal to t. Otherwise, since A is irreducible, there exists at least
one with 1-<_ t_-< n- 1 such that % has length at least 2, and we choose k to be any
such t. It follows as in the proof of Theorem 2.2 that B is a complementary tree matrix.
Moreover the last column of B contains exactly one 1. Since a complementary acyclic
matrix is reducible only when it has a row or column all of whose nondiagonal entries
are 0, it follows from the choice of k that B is irreducible. Since Bz-> Az pnz, (1.3)
implies that la(B) >- pn and hence p(B)= Pn. Replacing A in the above argument by
B, we obtain an irreducible, complementary tree matrix C with p(C)= p, such that
C has both a row and a column with exactly one 1. After simultaneous row and column
permutations we may assume C has the form

p (pyS q).

In addition to the O’s displayed, q the matrix (3.4) has exactly two more O’s lying in
row 1 and column q. We note that the case p 1 may occur, in which case q- n.

Up to simultaneous row and column permutations, (3.4) gives rise to 5 cases:
(i) p-l,q=n,
(ii) p- 2, q 1,
(iii) p 2, q 3,
(iv) p=n,q=l,
(v) p=n,q=2.

Each of these cases has a number of subcases. We have verified that the maximum
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spectral radius occurs when p n and q- 2 (case (v)), and that the matrix C has the
form (3.3). We give an indication of our verification by comparing the spectral radius
of (3.3) with that of the matrix

1 0 1 1

0 1 1 1

1 1 1 1

1 1 1 1

1 0 0 0

which arises in case (iv) for n _->4. The characteristic polynomials of C and D are,
respectively, A n--3t( and A n-3d (A) where

c(A)= Aa-(n-E)AE-(n-3)A- 1

and

d(A) Aa-(n -1)AE+(2n-5).
Let f(A)= c(A)- d(A) AE-(n-3)A (2n-4). The polynomial f(A) has a root

(n-3)+x/nE+2n-7
’.n

2

between n-2 and n-l, and it follows that c(A)d(A) for n-2<_-A<_-An. Also,
c(An)=/nE+2n-7-nO. Hence the spectral radii of C and D lie in the interval
between (n- 2) and An. It now follows that the spectral radius of C is greater than
the spectral radius of D. The remainder of the verification is carried out using similar
arguments.
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USING THE QR FACTORIZATION AND GROUP INVERSION
TO COMPUTE, DIFFERENTIATE, AND ESTIMATE THE

SENSITIVITY OF STATIONARY PROBABILITIES
FOR MARKOV CHAINS*

GENE H. GOLUBf AND CARL D. MEYER, JR.:

Abstract. For an n-state finite, homogeneous, ergodic Markov chain, with transition matrix P and
stationary distribution r we assume that the entries of P are ditterentiable functions of a parameter and
we obtain an expression for dxt/dt. This expression is given in terms of the group inverse of I-P and is
used in a sensitivity analysis of xt. Finally, it is demonstrated how a QR factorization can be used to
simultaneously compute the stationary distribution of an ergodic chain along with estimates which gauge
the sensitivity of the stationary distribution to perturbations in the transition probabilities.

Key words, finite Markov chain, stationary distribution, group inversion, sensitivity analysis, QR factoriz-
ation, condition number, derivatives of stationary probabilities
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1. Introduction. For an n-state finite, homogeneous, ergodic Markov chain with
transition matrix P=[Pij], the stationary distribution is the unique row vector t

satisfying

e or, 7ri 1.

Letting Ann and enl denote the matrices A I-P and e 1, 1, , 1 it, the stationary
distribution xt can be characterized as the unique solution to the linear system of
equations defined by

xtA=0 and xte=l.

(See Kemeny and Snell 11] for an elementary exposition of finite ergodic chains.)
The theory of finite Markov chains has long been a fundamental tool in the analysis

of social and biological phenomena. More recently the ideas embodied in Markov
chain models along with the analysis of a stationary distribution have proven to be
useful in applications which do not fall directly into the traditional Markov chain
setting. Some of these applications include the analysis of queuing networks (Kaufman
[7]), the analysis of compartmental ecological models (Funderli and Mankin [5]),
and least squares adjustment of geodedic networks (Brandt 1 ]). Recently, the behavior
of the numerical solution of systems of nonlinear reaction-diffusion equations has been
analyzed by making use of the stationary distribution of a finite Markov chain in
conjunction with the concept of group matrix inversion (Galeone [5]).

An ergodic chain manifests itself in the transition matrix P which must be row
stochastic and irreducible. Of central importance is the sensitivity of the stationary
distribution xt to perturbations in the transition probabilities in P. The sensitivity of
r is most easily gauged by considering the transition probabilities in P to be differenti-
able functions. One approach, adopted by Conlisk [3], Schweitzer 11 ], and Funderli
and Heath [4] is to examine partial derivatives O/Opij. Our strategy is to consider the
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transition probabilities Po(t) as diiterentiable functions of a single parameter and to
study the stationary distribution (t) as a function of t. We present a new and very
simple formulation for the derivative, d(t)/dt, of the stationary distribution directly
in terms of the derivatives dpij(t)/dt and entries from (t) and a matrix A(t), called
the group inverse of A(t) I- P(t). After the derivative d(t)/dt has been obtained,
we demonstrate its applicability by using it to deduce the relative sensitivity of a
discrete Markov chain. This is followed by a first order perturbation analysis. Finally,
it is demonstrated how a QR factorization can be used to simultaneously compute
along with estimates which gauge the sensitivity of to perturbations in P.

2. Backgrauad material. In this paper, we take advantage of results which are
phrased in terms of the group inverse A of A=I-P. Below is a short summary
concerning the matrix A. Proofs and additional background material on A may be
found in Campbell and Meyer [2] and Meyer [9], [10].

Background material concerning A.
(2.1) Each finite Markov chain has the property that A I-P belongs to some

multiplicative matrix group. (P is the transition matrix.) Let ( denote the maximal
subgroup containing A. The inverse of A with respect to ( is denoted by A and the
identity element in ( is denoted by E.

(2.2) For all finite Markov chains, the limiting matrix is the difference of the
two identities I and E in the sense that

I + P+ p2 +... + pk-P lim I- E I- AA.

Of course, if the chain has a limiting matrix in the strong sense, then

P= lira pk= I--E.
kooo

(2.3) If the chain is ergodic (i.e., P is irreducible), then

P I-E I-AA* et

where e is a column of l’s.

(2.4) The group inverse A* of A can be characterized as the unique matrix
satisfying the three equations AAA A, AAA A, and AA AA.

3. Differentiation of the stationary distribution. Throughout this section, we assume
that A(t)= I-P(t) where P(t) is a matrix which is row stochastic and irreducible for
each in some interval (a, b). Furthermore, we will assume that each entry pij(t) of
P(t) is differentiable at each in (a, b). It is important to note at the outset that, in
general, the null vectors of a ditterentiable matrix need not be dillerentiable. However,
for our special situation, normalizing a null vector ofA(t) so as to produce the stationary
distribution vector t(t) always results in a differentiable vector.

THEOREM 3.1. If A(t) I- P(t) where P(t) is row stochastic, irreducible, and

differentiable on (a, b), then each component of the unique stationary distribution (t)
of P(t) satisfying t( t) t( t)P( t), t(t) 1,u t(t)> 0, is differentiable on (a, b).

Proof. If D(t) denotes the ith principal minor of A(t) obtained by deleting the
ith row and ith column of A(t), then for each in (a, b), D(t)>0 and t(t) is given
by

1
(3.1) t(t)= D(t----j [Dl(t), D2(t),’"., D,(t)].
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This formula for (t) is a simple consequence of the fact that (adj A)A A(adj A) 0
and {e} is a basis for N(A). Because the entries of A(t) are diiterentiable, each Di(t)
must be ditterential and hence each component of o(t) must be ditterentiable at each
in (a, b).

In the sequel, we will omit writing the argument (e.g., instead of writing xt(t),
simply write xt) and we sometimes will also use the dot notation (’) to indicate
differentiation with respect to (e.g., write ,/r instead of dt( t)/ dr).

THEOREM 3.2. If P P(t) is row stochastic, irreducible, and differentiable for in
(a, b), then the derivative of the stationary distribution associated with P is given by

(3.2) "/t A
where A denotes the group inverse of A I- P as described in the previous section.

Proof. Use the elementary product rule for differentiation on xrA 0 to produce
A+A=0 or

(3.3)

In general, if Bx-c where cR(B) and dim N(B)-1, then x must be given by
x-Bc+n for some n N(B). Apply this (using transposes) to (3.3) in order to obtain

(3.4) ,/; ’A +c for some c.

To determine a, differentiate re 1 to obtain ,/re 0 and apply this together with the
fact that e N(A)= N(A) to (3.4). Thus

0 ,/re xtAe+ axte=

and therefore

t ’nA D

By multiplying (3.2) on the right by the ith unit column ei, we may extract the
expression for the derivative of the ith stationary probability =.

COROLLARY. The derivative of the ith stationary probability is given by,

(3.5)

where A is the ith column of A.
One of the most pleasing aspects of Theorem 3.2 and its corollary is the sheer

simplicity. The simple structure of (3.2) and (3.5) make it absolutely clear how the
stationary distribution changes as the transition probabilities change. It shows that A
acts as a "magnification factor". If, at a particular point to, the derivatives of the
transition probabilities are all relatively small and the ith column of A contains only
relatively small entries, then the ith stationary probability xti must have a relatively
small derivative. Because the entries of A*=A(t) are continuous functions of
(Corollary 3.1 in Meyer [10]), it follows that at to, xti cannot be extremely sensitive to
small perturbations in the transition probabilities whenever the ith column of A*(to)
has no entries of relatively large magnitude. On the other hand, if the ith column of
A*(to) contains some entries of large magnitude, then small perturbations in P(to) can
be greatly magnified so as to make xt very sensitive near to.

More precisely, translate the discussion to the origin and write

t,(t) -,(0) "iri(O)t + O( 2)

and
t’(0) P(t) P(0) + O(t2).



276 GENE H. GOLUB AND CARL D. MEYER, JR.

Theorem 3.2 now produces the following perturbation formula.

(3.6) r,(t)- ,(0)= (0)[P(t) P(0)]A(0) + O(t2).
It is transparent from (3.6) that the entries of A(0) are the fundamental quantities
which govern the sensitivity of the stationary probabilities. Assuming that is small
enough so that higher order terms may be neglected, apply H61der’s inequality to (3.6)
and obtain the inequality

(3.7) I,(t) ,(0)1 <_- I1(0) I1 II[P(t) P(0)]A (0)

where (1/p)+(1/q)= 1. For all of the H/51der norms it is the case that II(t)ll_-< 1.
Thus for every HSlder vector norm I1" and compatible matrix norm I1" I1 , it follows
from (3.7) that

(3.8) I,(t)-i(0)l <= IIP(t)-P(O)limllA(O)llq.

The observations made throughout this section motivate the following definition.
DEFINITION. For an ergodic Markov chain with transition matrix P and stationary

distribution , the condition number for the ith stationary probability i is defined to
be the number

Condq (’rr,)= IIAII
where is any HSlder vector norm and A is the ith column of the group inverse
of A I-P. For a matrix norm I1" I1 , the number

fond,, () A*

is defined to be the condition number for ,r. This number will also be referred to as
the condition of the underlying Markov chain.

4. Linear perturbations. A special case of the preceding analysis which is of
particular interest is that in which the perturbations are linear functions. That is, for
a fixed row stochastic irreducible matrix Po, let F be a constant matrix such that

P(t) Po+ tF

is row stochastic and irreducible on (a, b). As before, let A(t) I- P(t) and Ao A(0)
I-Pp. By making use of our earlier results, we can obtain a very simple and explicit
formula for .k, the derivative of the stationary distribution associated with P(t).

THEOREM 4.1. If P(t) Po + tF is row stochastic and irreducible on [0, fl), then the
derivative of the stationary distribution ( t) associated with P(t) is given by

(4.1) "/r(t) (t)FA[I- tFA]-1 for in [0,/3)

where A* is the group inverse of Ao I- Pp.
Proof. Using Theorem 3.2, we obtain

(4.2) "/r(t) (t)F(I-ao- tF)* (t)F(Ao- tF)*.

Let ,to (0). From Meyer [10, Thm. 3.1], the matrix (I-tFA:) is always nonsingular
and the term (Ao-tF)* can be expanded as follows.

(4.3) (Ao- tF)* A + tAFA(I- tFA)- -P(I- tFA)-A(I tFA:)-1

where P e is as described in (2.3). Since

e P(t)e Poe+ tFe e+ tFe
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must hold for all in [0,/3), it follows that Fe =0 and hence

FP Feo 0.

Use this when substituting (4.3) into (4.2) to obtain

(4.4) ,k(t) (t)FA[I+ tFA(I- tFA)-I].

By making use of the identity

I (I tFA:)-I tFA(I tFA)-1,

(4.4) reduces to

t(t) xr(t)FAff (I tFA)-,
which is the desired conclusion.

There are at least two interesting features to this theorem. The first is to notice
that at 0, the behavior of ,k(t) is governed strictly by F, A, and 0(0).

COROLLARY. For P(t) Po+ tF, the derivative "k(t) of the stationary distribution
evaluated at 0 is given by

(4.5) ,(o) (O)FA2.

The derivative "ki( t) of the ith stationary probability at =0 is

(4.6) "ki(0) (0)F[A],

where [A]i is the ith column of A. For any H61der vector norm and compatible matrix

Florin,

(4.7) I,(0)1 IIF[A],II IIFII II[A],II.

Another important point to be made concerning Theorem 4.1 and its corollary is
the fact that neither nor F is required to be "small". The formula for ,/r in (4.1) as
well as those in (4.5)-(4.7) are global in the sense that they hold for all and F for
which P(t)= Po+ tF represents an irreducible transition matrix. However, if either
or F is small enough in magnitude to insure that tFA < 1 then for compatible vector
and matrix norms such that IlIll--< 1

(I- tFA)-: (trA)k

k=O

so that taking norms in (4.1) produces the following corollary.
COROLLARY. If tFA < 1, then

(4.8) *
Furthermore, if tllrll IIAg < 1, then

(4.9) II’/rll <

IIFAgll
1-tllFMIl"

IIFII IlAoll IIAg[I IIFII (Ao)
[[Aoll IIAoll

IIFll IIFI[
(Ao)1-t]}Aoil IlAoll IIAII 1-tllAoll

The expression (4.9) is a continuous counterpart of the discrete formula given by
Meyer in 10].
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The results of 3 and 4 make it clear that for a finite homogeneous ergodic
Markov chain, the sensitivity of the stationary probabilities are directly governed by
the entries of the A matrix. There appears to be ample evidence to support the use
of A as the fundamental quantity in gauging the "condition of a finite Markov chain"
and it seems apparent that any perturbation or sensitivity analysis of a finite Markov
chain should revolve around the matrix A.

5. Utilizing a QR factorization. The utility of orthogonal triangularization is well
documented in the vast literature on matrix computations. The purpose of this section
is to demonstrate how one can use a QR factorization of A I-P to not only compute
the stationary distribution o, but to also gain some insight into the relative sensitivity
which is expected to exhibit.

For every n x n irreducible row stochastic matrix P, it is well known that A I- P
must have Rank (A) n- 1. Moreover, any subset of n- 1 columns from A is linearly
independent. There is "essentially" a unique QR factorization of A. The R-factor is
uniquely determined by A and the Q-factor is unique up to the algebraic sign of the
last column.

THEOREM 5.1. If A,n is as described in the previous sections and if A QR is a
QR factorization of A, then R must have the form

L

where U is a nonsingular upper triangular n- 1)x n- 1) matrix and e is the column

of l’s. The stationary distribution can be recovered from the last column, q, of Q as

qT
(5.2) = .= qf

Proof. To prove that R has the form (5.1), we need to show r,n 0. Let e be the
column of all l’s and use the fact that 0 Ae= QRe to obtain

Re=O.

This together with the fact that R is upper triangular guarantees that r, --0. The fact
that U is nonsingular now follows by noting that

Rank (U) Rank (R) Rank (QR) Rank (A) n- 1.

To see that the stationary probabilities can be obtained from the last column of Q,
recall that A I-P where P is a nonnegative irreducible matrix with spectral radius
1. One consequence of the Perron-Frobenius theorem is that if xTA 0, then xr> 0
or xT" < 0. Moreover, the system

(5.3) xTA=O, x>0, IIxll,= 1

possesses a unique solution for x. Since the last row of R QrA is zero, it is clear that

0=qTA

where q is the last column of Q and hence q’> 0 or qr < 0. Thus

qr
/ j’-I
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satisfies (5.3). Since the stationary distribution also satisfies (5.3), it must be the case that

j=l qJ

If the last column of the Q-factor produces the stationary distribution , of what
relevance, if any, is the information in the R-factor? We now address this question
and demonstrate how to use the R-factor to gauge the inherent sensitivity which can
exhibit to small perturbations in P.

Recall from the previous sections that the sensitivity ofthe ith stationary probability
i is directly governed by the magnitude of the entries in the ith column of A*. The
goal is to estimate IIAII= using only the information in the R-factor.

Unfortunately, group inversion is somewhat different than other familiar inversion
processes in that (QR)* RQ. Moreover, there is no known way to directly unravel
the term (QR) in terms of Q and R. However, the special structure of the matrix
A I-P does provide a special factorization for A which is quite useful.

THEOREM 5.2. Let A I- P be as described in the previous sections and let A QR
be a QR-factorization for A in which

R=
-e

is described in Theorem 5.1. If is the stationary distribution for P, then A is given by

Qr(l e,.n)A* (I- e,n’)
0

where e is a column of l’s.
Proof. If A- denotes the matrix

A-=
0

then it is straightforward to verify that

(5.4) AA-A A.

From (2.3) it follows that

(l-e) AA*:.

Using the relationships in (2.4) together with (5.4) produces

A* A*AA* A*:(AA-A)A* (AA*:)A-(AA*)

(l-e) Qr(l-e). 1

The factorization of Theorem 5.2 easily produces an upper bound for A I1= which
depends solely on the R-factor.

THEOREM 5.3. Let A I- P where P is an n x n) irreducible stochastic matrix and
let A QR be a QR-factorization for A. If U is the (n 1) x n 1) leading principal
submatrix of R, then
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Proof. Take norms on the factorization of Theorem 5.2 to obtain

IIAII=-< II-ellllU-ll=.
It is known that for all square matrices B with real entries

[IBII2 <--IIBII%- Trace (B’rB).
Thus

However,

so that

and

Ill- ext [12 _< Trace [I ext xtTeT+ xtTeXext] n 2 + n I111 .
IlI- erll =< 2n 2 2(n 1)

A 1[= 2(n 1)I[U-1

Therefore, the condition number ofthe (n 1) (n 1) leading principal submatrix
U of R may be taken as an estimate (or as a measure in itself) of the condition of the
underlying chain. Since U is upper triangular with positive diagonals, estimating
Cond2 (U) is not overly difficult (e.g., LINPACK methods can be used).

6. Conclusions. For an ergodic chain with transition matrix P, a QR factorization
of the matrix A I- P yields complete information in the sense that both the stationary
distribution as well as a measure of the sensitivity of xt to perturbations in P may
be deduced.

1. xr is obtained by normalizing the last column of Q.
2. The sensitivity of the chain may be gauged by Cond(U) where U is the n- 1)

n 1) leading principal submatrix of R.
In general, it is well known that an upper triangular matrix may be ill-conditioned

without possessing relatively small diagonal elements. However, for the special situation
of an irreducible Markov chain, we have not been able to produce an example of an
ergodic chain so that the factorization A QR yields an R in which IIu-1ll is large but
U has no small diagonals. In all of our computational experience, the sensitive chains
always seem to force a diagonal entry of U to be relatively small. The more sensitive
the chain, the smaller some diagonal of U becomes, so it seems. There is clearly need
for further study.
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EXPANDERS AND DIFFUSERS*

MARSHALL W. BUCKt

Abstract. Expander graphs are ingredients for making concentrating, switching, and sorting networks,
and are closely related to sparse, doubly-stochastic matrices called diffusers. The best explicit examples of
diffusers are defined by means of the action of elements of the matrix group SL(2, Z) on certain finite
mathematical objects. Some corresponding, explicit expanders were introduced by Margulis. However,
Gabber and Galil were the first to obtain good estimates for the expanders and produce from them a family
of directed acyclic superconcentrators having density 271.8. In this paper we review various techniques for
making expanders from diffusers. We also demonstrate asymptotic upper bounds on the strength of
algebraically defined classes of degree k diffusers. Each upper bound is given as the norm of a diffusion
operator on an infinite discrete group, and bounds for several examples are calculated. Numerical evidence
is supplied in support of our conjecture that these bounds can be achieved by certain algebraically defined
examples. The conjecture, if true, would lead to superconcentrators of density less than 58.

Key words, concentrator, directed graph, doubly-stochastic matrix, eigenvalue, expander, group,
network, random walk, superconcentrator
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1. Introduction.
DEFINITION. A finite, bipartite graph F of degree k with n input and n output

vertices is called an (n, k, d) expander if for every input subset S of F, the set of output
points connected to S, denoted F(S), has size bounded below by the inequality:

The quantity d is called the expansion coefficient.
Expanders are defined in Margulis [ 16] and in Gabber-Galil 11] where explicit

constructions are given for arbitrarily large expanders of fixed degree k, all having a
common expansion coefficient. For applications, it is important that k is small and
that d is as large as possible. The best expanders presently known are not explicitly
constructed but are shown to exist on the basis of counting arguments proving that
’rnost" graphs of a given degree are good" expanders 17]. We restrict ourselves in
this paper to explicit constructions generalizing the work of Margulis, Gabber and Galil.

Expander graphs are used to construct bounded concentrator graphs.
DEFINITION. For 0 < 1, an (n, O, k, ) bounded concentrator is a bipartite graph

F with n inputs, On outputs, at most kn edges, such that every input subset X with

IXI--< n maps to an output set F(X) at least as large.
Any (n, 0, k, c) bounded concentrator is actually a concentrator in the following

sense: for any input subset X with IXI _<-cn there will be a set of IXI disjoint edges
connecting X to an equal number of outputs. Gabber and Galil use an (m, k, d)
expander to make an (n, 0, k’, ) bounded concentrator, where n m(p+ 1)/p, 0
p/(p+ 1), k’ (k+ 1)p/(p+ 1), and c =1/2. Their construction is described in 8. These
bounded concentrator graphs are used to build superconcentrator networks.

DEFINITION. An (n, k) superconcentrator is a directed acyclic graph with n inputs
and n outputs, having at most kn edges, such that for any choice of r inputs and r
outputs there is a collection of r disjoint paths starting in the input set and ending in

* Received by the editors September 18, 1984, and in revised form April 19, 1985.
t Institute for Defense Analyses, Princeton, New Jersey 08540.
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the output set. A family of superconcentrators of density k is a set of (n, k+ o(1))
superconcentrators for 1 n o.

Pippenger [18] gives a recursive construction of superconcentrators in terms of
bounded concentrators, which is generalized by Gabber and Galil as follows. Connect
input directly to output for 1 n, using n edges. Given an input subset and an
equinumerous output subset, use these direct lines, if possible, to connect inputs to
outputs by paths of length 1. After that there remain fewer than n/2 unmatched inputs
to be connected to a set of unmatched outputs. Use an (n, 0, k, 1/2) bounded concentrator
to concentrate the unmatched inputs into a new "input space" of size On. Similarly
concentrate the unmatched outputs into an "output space" of size On. Then use a size
On superconcentrator to match the unmatched. Start the recursive definition by using,
say, a complete n2 edge graph as superconcentrator when n is small. The result of this
construction is summarized in Gabber-Galil’s Lemma 8: "If we can construct for all
n an (n, 0/1, k, 1/2) bounded concentrator, where 0/1 0 + en, 0 0 1, en o(1), and
k 1, then we can construct a family of linear superconcentrators of density (2k +
1)/(1 0)."

Bounded concentrators are also used by Bassalygo and Pinsker [8] to make
nonblocking switching networks using O(N log N) connections to handle N inputs,
and more recently, by Ajtai, Koml6s and Szemer6di [1], [2] to construct sorting
networks using O(N log N) comparators to sort N inputs.

To a directed graph F of out-degree k (at most k directed arcs leaving each vertex)
containing n vertices, associate the bipartite graph having input and output sets which
are copies of F and having an edge from input x to output y if and only if there is a
directed edge in F from x to y. Then F is said to be an (n, k, d) expander if the
associated bipartite graph is.

DEFINITION. An (n, k, A) diffuser is a doubly-stochastic n by n matrix M, having
at most k nonzero entries in each row and in each column, and satisfying

for every n-vector x (Xl, , x) with i--1 xi 0. If the matrix M is symmetric, then
it is called a symmetric diffuser. The smallest value of A for which M is an (n, k, A)
diffuser is called the diffusion coefficient of M. The minimum value for k is called the
degree of M.

For the matrix M there is a first-order Markov process on n states, such that
whenever x=(xl,’.’, x) is a probability distribution on the states at time t, the
distribution at time / 1 will be given by Mx. Since M is stochastic, the vector Mx
will have the same sum as x itself. Consequently, the space of vectors of sum 0 is an
invariant subspace for M. Furthermore, M is doubly-stochastic, so it leaves constant
vectors fixed: i.e., M1 1. Let the linear operator Mo denote the restriction of the
operator M to the space of vectors with sum 0, furnished with the Euclidean norm.
The diffusion coefficient of M is just the operator norm of Mo, written Moll, and tells
us how fast an initial probability distribution converges in L2 norm to the stationary,
uniform distribution.

Given an (n, k, A) diituser M, we can define the skeleton of M to be the expander
of order n, out-degree k, and in-degree k, containing directed arcs for precisely those
transitions to which M assigns positive probability; i.e., there is an arc connecting
to j if and only if mj 0. From the diitusion coefficient of M we can obtain lower
bounds on the expansion coefficient of its skeleton graph. Following is the basic result
of this type, showing that expanders are obtained from diffusers. It is similar to a result
of Tanner 19].
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PROPOSITION 2.1. The skeleton graph of an (n, k, A) diffuser is an (n, k, 1- A 2)
expander.

In some cases it is possible to show that the expansion coefficient d is somewhat
larger than that predicted by the above proposition.

PROPOSITION 2.3. Suppose that all the entries ofan n, k, A diffuserM are multiples
of 1/k. Then the skeleton graph ofM is an (n, k, d) expander for

d =min
k-l’ k-1

(l--A2)

Our best expanders are obtained by using the above propositions. However,
Gabber and Galil obtain expansion results from "symmetrized" diffusers. Suppose
that try, , irk are k permutations of the set F. Let tro denote the identity permutation.
Define the unitary operator U on the space of L2 functions by

U,f(z) =f(cr-’(z)).
Define the real symmetric averaging operator M by its effect on functions on the set F:

k 1

i=1 i---1

The matrix of M is an (n, 2k, A) diffuser, where A IIMoll. Meanwhile, define the
directed graph F with out-degree k + 1 by connecting each point x to the k + 1 points
Cro(X), ", rk(x). Then Proposition 2.4 states that the directed graph F has expansion
coefficient at least d 1- A.

The extended skeleton of a diffuser is obtained from the skeleton graph by adding
loops at each vertex, possibly increasing the out-degree and in-degree. Alon and Milman
[6] prove an isoperimetric inequality for graphs, and use it to obtain expansion results
for the extended skeletons of symmetric diffusers. Their result appears here as Proposi-
tion 2.5.

In this paper we consider expander-diffuser families arising from the action of
selected elements of the matrix group G= SL(2, Z) on various natural objects, like
the two families of finite groups PSL(2, Z/nZ) and (Z/nZ) (Z/nZ), and the family
of finite sets P(Fp) (the 1-dimensional projective spaces over finite fields with prime
numbers of elements). Natural actions on the infinite lattice Z x Z and on the 2-torus
T2= (R/Z) (R/Z) will also play a role in the proofs of diffusiveness in the finite cases.

The only examples of this type for which explicit diffusion coefficients have been
obtained are those acting on the discrete torus (Z! nZ) x (Z/nZ). The results are based
on the method of Gabber and Galil [11], which produces "expanders" on the con-
tinuous torus T2 from corresponding (Fourier dual) diffusers on the infinite discrete
group Z Z. Their method then goes from T2 to (Z/nZ) (Z/nZ), keeping d the
same but increasing k; each ofthe transition possibilities is replaced by several variants,
by composing with different translations ofthe discrete torus. These results are summar-
ized in 7.

We exhibit other families of diffusers by choosing sets of generators in SL(2, Z),
letting them act on the finite spaces P(Fp). We conjecture that the diffusion coefficients
of these finite diffusers are determined approximately by the norm of the "covering"
diffusion on the appropriate infinite subgroup of SL(2, Z), and we present numerical
evidence in 9 supporting the conjecture. The diffusers will be best, for a given number
of generators, if the generators freely generate the subgroup. For even degree k we
need k/2 free generators, but for k 2m + 1 we need m + 1 generators, one of order
2. Assuming the truth of the conjecture in the case k =4, there will be explicit
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superconcentrators using only 78 edges per input. Thus we would approach the density
36 achieved by Bassalygo’s inexplicit superconcentrators [7]. An optimal family of
degree 7 diffusers, having diffusion coefficient at most 2x//7, by the conjecture, would
produce superconcentrators of density 57.1587. (Here we would use the Alon-Milman
inequality embodied in Proposition 2.5.)

For concreteness, we show how to make diffusers with k 4 from two elements
that freely generate a subgroup of G. Define the elements A, B by

B=
1

The elements a A2 and fl- B2 freely generate the subgroup of G defined by

a 1 mod 4

(a b) b-=0mod2
c d

such that
c 0 mod 2

d -= 1 mod 4

If G acts on a set S, we can define a diffuser corresponding to the first-order Markov
process on the state space S, making the transitions s a. s, s - a- s, s -/3. s, and
s fl-.s equally probable. Picking the G-set to be pI(Fp), where each matrix acts
as a linear fractional transformation z - (az / b)/ (cz / d), we obtain the four permuta-
tions"

1 1
z + 2, z 2, z-+2, Z- m2

The conjecture says that the above diffuser is, for most primes p, a (p, 4, x//2)
diffuser, where x/’/2 is the norm of the following diffusion operator based on the
subgroup of G. In the free subgroup on two generators a and/3, we connect by arcs
those pairs of group elements which are left multiples via one of the elements in
{a,/3, a -,/3-}. We obtain thereby an infinite graph which is a tree of degree 4. In
this tree consider the random walk having probability 1/4 of stepping in each of these
four directions. Associate to the random walk the corresponding diffusion operator M
acting on all L2 functions on the group. The operator norm of M turns out to be x//2.
(In general, as shown by Kesten 13], the symmetric diffusion operator on an infinite
tree of uniform degree k has operator norm IIM[I- 2x/k-1/k.) Only six of the primes
less than 700 lead to diffusers with diffusion coefficient greater than x//2.

Just how good an algebraically defined family of diffusers can be is determined
by the norm of the covering diffusion operator on the infinite group, and that in turn
is influenced by the group structure. In particular, for the class of amenable groups
(see 4) the diffusion norm is always 1, so these groups produce asymptotically poor
diffuser families. An example of an amenable group is the "ax + b"-group H consisting
of all transformations of the form x ax + b where a and b are rational numbers.
Complementing this result for diffusers are the results of Klawe 15] which show that
H cannot be used as the basis of a good infinite family of expanders.

We show in 6 that the operator norm of the covering diffusion operator on the
infinite group gives an asymptotic lower bound on diffusion coefficients for an algebrai-
cally defined family of finite, symmetric diffusers. Let M be a symmetric, finitely
generated, right invariant diffusion operator on G. If G acts on a finite set F, then M
transfers to a diffuser Mr on F having diffusion coefficient hr. Proposition 6.1 states
that there is a sequence of real numbers b, b:, converging to 0, such that for every
finite G-set F we have At>= [IMI[-/rl.
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In 5 we calculate IIMII for various algebraically defined, infinite, symmetric
diffusers. (These are the covering diffusers.) We do this by first determining the return
generating function

R(z)= E r,z",
n-----0

where r, is the probability of the random walk being at the origin at time n, having
started there at time 0. Then we use Proposition 3.1, which states that IIMII is the
reciprocal of the radius of convergence of R(z).

Among infinite diffusers of a fixed degree k, the homogeneous, isotropic tree
diffusers give the smallest diffusion coefficient:

PROPOSITION 5.2. If M is an infinite, doubly-stochastic, degree k diffuser, then
IIMIl>=2x/k-1/k.

The two families of expanders in Gabber-Galil 11], having k 5 and k 7, each
come from infinite diffusers on SL(2, Z) having degree 3. In 7 we explain how these
diffusers turn into degree 5 and 7 diffusers on (Z/nZ)x (Z/nZ). Examp!e 3 of 5
shows that the first family of diffusers has diffusion coefficient (1+x/Sx/+13)/
60.988482, poor for making expanders. Example 1 of 5 shows that the second
family of diffusers has diffusion coefficient at most 2x//3, leading, by means of a form
of Proposition 2.3, to an expansion coefficient of at least 1/6 for the Gabber-Galil
family of degree 7 expanders. Meanwhile, Gabber and Galil’s worse estimate for the
expansion coefficient, d= 1-x//20.1340, can be obtained from Proposition 2.4
applied to the {a,/3, ct -1,/3 -1} diffuser, which has diffusion norm x//2. Our better
estimate of d for their k- 7 expanders permits us to construct superconcentrators of
density 222, an improvement over the density 262 announced by Chung [9].

Using the {a,/3, a -1,/3 -} diffuser directly, we obtain Proposition 7.3, which
provides a family of (n2, 12, 1/3) expanders on (Z/nZ) x (Z/nZ). Instead of the four
transitions {a,/3, a -1, --1) which give on (Z/nZ) x (Z/nZ)

(x,y)(x+/-2y, y),

(x,y)(x,y+2x),

the proven expander has 12 transitions defined by

(x, y) (x + (2y + a), y),

(x, y) (x, y + (2x + a))

where a 0, 1, 2. The purpose of the perturbations by 0, 1, and 2 is to be able to reduce
the expansion property of (Z/nZ) (Z/nZ) to that for the continuous torus T2 of
which it can be considered a part. These "more symmetric" expanders lead to supercon-
centrators of density 190. Alon and Milman [5] have used nearly identical expanders
of degree 13 to make superconcentrators of density 157.4.

In 9 we provide numerical evidence, for primes less than 700, supporting our
conjecture for diffusers acting on the finite projective lines P(Fp).

2. Diffusers are expanders. Let the diffuser M be the transpose of the transition
matrix for a Markov process on a finite set F. Recall that the skeleton of M is the
directed graph which has an edge connecting two points whenever there is a nonzero
probability of transition from one point to the other. We can also use M to denote
the diffusion operator on functions on F. Define the operator Mo obtained by restricting
M to those functions on F having sum 0. Then the L2 operator norm IIMoll is the
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diffusion coefficient of M. For an (n, k, h) diffuser we henceforth assume that h is as
small as possible: h [[Mo[[. We have the following result, allowing us to prove
expansion properties for skeleton graphs of diffusers.

PROPOSITION 2.1. The skeleton graph of an (n, k, A) diffuser is an (n, k, 1- h 2)
expander.

Proofi Let F be the skeleton graph of the diffuser M. Suppose we denote the
uniform measure on F by It, normalized so that It(F)- 1. Let E be a subset of F and
let [F n. Then It (E) [E[/n, so we must prove that It (F(E)) _-> (1 + d (1 It (E)))it (E).
Denoting the complement of E by E c, we note that It(E c) 1- It(E) so that we must
show that It (F(E)) ->_ 1 + dit (E))It (E). Define the function f by

j’it(E)-’ for x E,
f(x)

0 forx EL

Taking the L2 norm with respect to the measure It, we have ]]fe l]2 1/x/it(E). The
function fr(e) has the least norm of all functions of integral 1 having nonzero support
contained in F(E). The function M(f,) is supported in the set F(E), so we have

However

so we have

Thus we have

(F(E))-’ IIf)ll IIM(f)ll -
IIM(1 +(f 1))11 a-- 1 + [IM(f 1)112 1 + X211f 111 -.

(E)

It (F(E))-1< 1 + h
It(E)

(it(E) 4- A2itIt(E)
(E))It(E)-

-< (1 -(1 A)it (E))it (E)-’.

(r(E)) >_- ( -(1 A2)it (EC))-lit (E)
>--(1

Thus F has expansion coefficient at least d 1- h2. Q.E.D.
In case that F is infinite we have the more elementary result

(r(E)) _-> IlMll-att(E),
where It is now the counting measure.

Note that we have also proved the following slightly stronger result, which is
similar to the connection between eigenvalues and expansion appearing in Tanner 19].

PROPOSITION 2.2. The skeleton graph F of an n, k, A) diffuser M is an expander
having the following expansion property:

tt (r(E))->_ ( -(1

where It is the uniform probability measure on F.
In some cases it is possible to show that the expansion coefficient d is somewhat

larger than that predicted by the above Propositions.
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PROPOSITION 2.3. Suppose that all the entries ofan n, k, A diffuserM are multiples
of 1/k. Then the skeleton graph ofM is an (n, k, d) expander for

{ 1 k (1-A)}.d=min
k-l’k-1

Proof. Looking at the proof of Proposition 2.1, we see that the only inequality
subject to improvement is the one asserting that the norm of fr(E) must not be greater
than the norm of the function M(f.):

(F(E))-1- Ilfr(ll=_-< IIM(T)II.
But M(f) is constrained to take values which are multiples of 1/ktx(E). We may
assume that tt(E)rS0 and g(F(E))/g(E)<=k/(k-1); otherwise, because (1+
1/(k-1))>=l+(1/(k-1))tx(EC), the expansion rate would be at least 1/(k-l) and
there would be nothing left for us to prove. Then the most uniform function supported
on F(E) subject to the value constraint would take only the two values (k 1)/k/x (E)
and 1/g(E), taking the first value on a subset of measure k(tx(F(E))-tt(E)) and the
second value on a set of measure klx(E)-(k- 1)tt(F(E)). Thus, one can compute the
norm of this "most uniform" function and compare it to that of M(f,):

M(fE II2 >-_ tz(E)-2{ (2-)t.t( E) (1-)/z(F(E }.
Combining with the inequality

IIM(T)II_-< 1 + A
/x(E)
g()

from before (in the proof of Proposition 2.1), we obtain

2k-1 k-1
Ix( E)2 + X 21x( EC)l.t(E)>-tx(E)

k k

We then rewrite this to get a lower bound on/x(F(E)):

g(r(E))>= k-i k tx(E)-tx(E)-Atx(E)Ix(EC)

and

/x(F(E)) > 2k- 1 k k
(/z(E) + AE/z(EC)) ->_ 1 + (1 aE)/z(EC). Q.E.D.

/z(E) k-1 k-1 k-1

Results from symmetric expanders can be used to deduce expansion coefficients
for unsymmetric ones. This is done in Gabber-Galil [ 11 ]. Suppose that trl, , trk are
k permutations of the set F. Let % denote the identity permutation. Define the unitary
operator U on the space of L2 functions by

U,f(z) =f(tr-l(z)).

Define the real symmetric averaging operator M by its effect on functions on the set F:

Mf ., Uo.,f+ 2
i=1 i=1

Meanwhile, define the directed graph F with out-degree k + 1 by connecting each point
x to the k + 1 points %(x),. ., try(x).
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PROPOSITION 2.4 (Gabber-Galil). The directed graph F has expansion coefficient
at least d- 1-IIMoll-

Proof. For each subset E of F, define the function gE by

(E1 onE,
gE

-/.(E) on E.
Then we have []gEIIZ=la,(E)la,(E’:). If A and B are subsets, let A-B denote AfflB.
We then have

Thus

Thus,

IIg U(g,) =/.t(E@ tr(E)) 2/.t (tr(E)- E).

1
g Uo.,g

i=l t-t(’i(E)-E)--- i__,

k

kllgll- E (g, U,g)
i=1

kt.t(E)tz(E) k(g, MgE).

1 k

il= tz(tr,(E)- E)= tz(E)(E) -(g, MgE) >- (1

Therefore for one of the we must have:

SO

(tr,(E)- E)>= (1 -IIMoll)tt(E)tt(E),

/t(6,=o try(E))>-I(E)+tz(tr,(E)-E)>-I(E)+(1-IIMoll)tt(E)tz(E)
_-> (1 + (1 -IIMolI)(E))(E). Q.E.D.

AnOther path from diffusers to expanders is taken by Alon and Milman [6]. Their
isoperimetric inequality for graphs can be stated in our language as follows.

PROPOSITION 2.5 (Alon-Milman). Let F be the skeleton graph of an (n, k, A)
symmetric diffuser, and let I denote the uniform probability measure on F. Then for every
subset E we have

where

(r(E)- E) >- s//3 + 4(1 -/z(E))la,(E)-

4/(E) + (1 -A)-I- 1

Alon and Milman make a degree k / 1 expander from a degree k diffuser by
forming the extended skeleton graph. They use the above inequality to estimate the
expansiveness of the resulting expander.

3. Norms of diffusion operators on infinite graphs. Suppose we have a transitive,
symmetric random walk, on an infinite graph F, having diffusion operator M acting
on L2([’). Pick one point Xo to be the origin. Then the L2 operator norm of M, written
M I], is equal to the reciprocal of the radius of convergence of the return generating
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function

R(z)= E rz,
n=O

where r, is the probability of the random walk being at the origin at time n, having
started there at time 0. In other words we have

PROPOSITION 3.1. MII 1-]-,_.o /,.
Proof. First note that r, (8, M"8), where 8 is the function concentrated at the

origin, taking the value 1 there. By the Cauchy-Schwarz inequality r =< I]M]]". Hence
we have one of the directions that we need: I]M[[ => 1-],_.oo fiTS,. We will be finished if
we can exhibit a subsequence of converging to M[[. In fact we propose to show
that the subsequence determined by n 2, 4, 8, 16, ..., 2k, works. Let f be any
L2 function of norm 1. Notice that M is Hermitian and

Hence we have

Mfll=-- (Mf, Mf)= {M2f, f) <= IIM2fll.

Mfll <- IIM?ill ’/ <= IIMfll ’/ <=’".

(We should mention that the above inequality implies easily that IIMII IIMI[= and
therefore IIM"II- IIMII for all n.) Letting f= 8, we see that the sequence (r2k)/2k is
monotone increasing and bounded from above by ]]MII, so it converges to a limit

2We must show that/x _-> IIMII. Since IIM=ll-- for all n, w hav IIM=II-<_ t’ for
all k.

Since the diffusion is transitive, we can show that the radius of convergence of
the return generating function is independent of the choice of origin. Transitivity
implies that for each point x there will be some time K at which the random walk
starting at the origin will have nonzero probability of arriving at x; i.e., we will have
(x, MrS)=/3 > 0. Later we will need the inequality:

CLAIM. IIM:dixII =< -IlIM-,SII.
Proof of claim. We know that x <-_fl-M:& Since M has only nonnegative

transitions, we can apply any power of M to each side of the inequality. In particular
we have MEktSx fl 1ME Mr$, and thereby have the norm inequality

M:’i,< _< ,S-’ M M=,S __</-’ M:’,S __< i -1
il, 2k.

The claim is established.
Suppose thatf is any function of norm 1 supported on a finite subset X

__
F. Then

we wish to show that ]]Mf] <-1. Since any L2 function can be approximated by one
of finite support and we know that IIMI] <_-1, the bound on M will hold and the
proposition will be proved. Recall that

Mfll i< MYII,/__< IIMfll’/ <_....

Choose/3 > 0 small enough so that for every x in X there will be some K such that
(8, MK)-->fl. But f=Y.x c(x),, so

IIM/II--< (IIM/II)--< xZ Ic(x)l IIMa,

for all k. Thus IIMfll <- and IIMII <--. Q.E.D.

--< tl-’Y Ic(x) g
xX
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In fact we always have the slightly stronger result"
PROPOSITION 3.2. IIMII--lim,,_,oo r2, lim,,_,oo IIM" II ’/".
Proof. In the preceding proof we showed that IIM"II /" monotonically increases

>_M for n=2k. Notice that for every A < IIMII we will have a K(A) suchto the limit
2kthat IIMEk6ll_ for all k>_-log2K(A). For any n>K(A) choose a k such that

2k-1 <-- n 2k. Then

IIM  II IIM2 - II-111M2%II IIMII-2 IIM2%II IIMII

MII
As IIMII so does   /IIMIIo eogo o

For the random walks to be introduced in 5 another important generating function
is thefirst-return generatingfunction Q(), which is the power series whose z" coecient,
for n > 0, is the probability that the random walk wanders back to the origin for the
first time at time n. The generating functions R and O are related by

1
o

We know that O()1 < 1 inside the unit circle, so the radius of convergence of R is at
least 1. Of course, we already knew this because IIMII must always be less than or
equal to 1.

4. Expanders and diffusers built from group actions. Let G be a group acting
transitively on a set F, and let th be a probability function on G with support written
supp (4) {g G[ 4(g) > 0}. Then b defines a doubly-stochastic Markov process on
G (or on F) by allowing transitions h--> gh (or y-> gy) with probability b(g). The
corresponding right invariant diffusion operator, Mo, acting on L2(G) (and the
diffusion Mr on L2(F)) are the left convolution operators with respect to th"

M(f)(y)= b(g)f(g-y)
geG

or

Mof ok(g) Tgf

where Tg is the left translation operator defined by Tgf(y) =_f(g-ly). The Tg are unitary
operators (in particular they have norm 1), so the operators Me and Mr have norm
at most 1 because they are averages of Tg operators. If b(g)= b(g-1) for all g, then
Me and Mr will have symmetric matrices and correspond to symmetric diffusers.
Furthermore, when Isupp (b)l k the matrices will have degree k, so the skeleton
graphs will have out-degree and in-degree k.

Pick a point Xo F to be called the origin. Let K be the isotropy subgroup in G
for the point Xo, so that F is isomorphic to the coset space G/K. We would like a
condition on K for the diffusions on G and F to have the same norm (i.e., I[M[I

A group K is said to be amenable if there is a right and left invariant mean on
the vector space of bounded functions on K; namely, there exists a right and left
invariant functional h L(K)* with the properties II ll 1 and h(1)= 1. A group is
right amenable (or left amenable) if there is a right (or left) invariant mean. Basic
facts about amenability can be found in Hewitt-Ross [12], pp. 230-245. In particular
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we list the following:
1. Abelian groups are amenable.
2. Finite groups are amenable.
3. A group is right amenable if and only if it is left amenable.
4. Every right (or left) amenable group is amenable.
5. A group is amenable if and only if every finitely generated subgroup of it is

amenable.
6. If N is a normal subgroup of a group G, then G is amenable if and only if

both N and GN are amenable.
The following theorem is an improvement, due to Day 10], of a result of Kesten

14], which connects the concept of amenability to the norm of right invariant diffusion
operators on a group.

THEOREM. IfK is an amenable group and dp is any probability function on K, then
I[MP)ll 1, where Mp) is the operator of left convolution by dp acting on LP(K) for
1 <-p <-_ oo. Conversely, if there is some probability function tb on a group K, with h(g)=
b(g-1) and supp () generating K, such that for some p with 1 < p < do we have
MP)ll 1, then K must be amenable.

PROPOSITION 4.1. IfK is amenable and a subgroup of G, if F G/K, and if b is
a symmetric probabilityfunction on G giving rise to the symmetric diffusion operators Me
and Mr on G and I" respectively, then IIMII IIMll. I-Ioweer, if K i not amenable,
and supp (b) generates the group G (so that, in particular, Me is transitive) then
M < Mr <- 1.

Proof. See Kesten [13]. (His proof is claimed only for the case in which K is a
normal subgroup, but it generalizes easily.) We prove only the first assertion here. First
note that MI] -< [IMrl[ is always true for symmetric oh. In fact M6 collapses to Ma,
so IIMll,_<_-limekiln, and by Proposition 3.2 we have IIMll -< IIMII. Now w need
to show that Mell >-- Mll.

Let Ir be multiplication by the characteristic function of K. Notice that

and

where N2n is a symmetric, right invariant diffusion on K. Since K is amenable, we
have IIll-1. Hence we have

Thus, for all n

so

M --> l- M*II/" MII. Q.E.D.

A couple of easy applications of Proposition 4.1 are:
1. Let G SL(2, Z) and K {/, -I}, the center of G. Then GK PSL(2, Z) and

the norm of a right invariant diffusion on G is the same as the norm of the induced
diffusion on GK.

2. Let G be the same, but let K be the Abelian subgroup consisting of matrices
which have the form of I with an arbitrary integer in the upper right corner. We can
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conclude that dittusions on SL(2, Z) carry over, without reduction ofnorm, to diffusions
on the set Z x Z-(0, 0), given the natural action of G on it.

5. Some infinite diffusers and how well they work. Here we study random walks
on infinite trees and on finitely generated subgroups of PSL(2, Z). The case of infinite,
homogeneous, degree k trees, with equal transition probabilities in all directions, is"
discussed as an example in [13] with the result that the operator norm is given by

We can rederive that result here, making use of the first-return generating function.
Define T(z) to be the generating function giving the probability of first reaching the
origin a after a number of steps from a starting point adjacent to a, say b. Then we
have Q(z) zT(z). Notice that we can think of the value of T(z), for 0 -<_ z -< 1, as the
probability of ever reaching a, starting at b, given that we follow the random walk but
also have the probability 1-z of dying on each step. Starting at a point c, instead, at
distance m from a, the generating function is obtained by raising T to the power m.
From the point b there are k- 1 ways to go to a point twice removed from a, and only
one way to go directly to a. Thus T must satisfy the identity:

Solving for T, we obtain

z (k-1)ZT2(z).T(z) +----
T(z)

k +x/kE-4(k-1)z2

2(k- 1)z
Since T(z) _-< 1 for 0 <- z <_- 1 we must take only the minus sign above, for the other root
will always be at least 1 when k _-> 2. The numerator in the above expression has a zero
of order 2 at the origin, considered as a function of a complex variable, so the radius
of convergence of T is the distance to the branch point of the square root function.
The branch point z0 occurs at the zero of the discriminant, namely: Zo-k/(2/k-1).
Thus, by Proposition 3.1, IIMII--24k-1/k.

The tree diffusion with even degree k 2j is equivalent to that on a free group
with j generators, where each generator and its inverse is used with probability 1/2j.
If k- 2j + 1, consider the group with j + 1 generators, one of which has order 2. Of
course, every finitely generated group is a factor group of a free group so, by Proposition
4.1, the diffusion coefficients will be no better than those for the free group.

Among all symmetric diffusions of degree k, the isotropic diffusion on the
homogeneous, degree k tree has the smallest L2 norm.

PROPOSITION 5.1. If M is an infinite, symmetric, degree k diffuser, then IIMI] _->

2x/k-1/k.
Proof Without loss of generality, assume that M is transitive. Cover M by a

diffusion N based on the infinite, homogeneous, degree k tree Tk. This means that
there is a surjective mapping 7r" Tk F and the corresponding push-forward mapping

7r. sending functions on Tk with finite support to functions on F, such that we have
r,N Mr,.

A sticky vertex is one that has nonzero probability of transition to itself. We can
construct N so it has no sticky vertices and allows transitions only to adjacent vertices
in Tk. For each vertex in Tk that maps to a sticky vertex in F, there is an adjacent
vertex that has the same image, and the sticky transition in F lifts to a symmetric
transition between the pair of vertices in Tk.
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We can apply Proposition 3.1 to show that IIMll IINII. Thus, it suffices to prove
our Proposition for the case in which M is based on Tk and has no sticky vertices.

We propose to show that [[MII -> 2x/k- 1/k by constructing a sequence of functions
f, f2, f3," such that

li--- Mf,, > 24k 1

Choose any vertex in T to be the root of the tree, and let d(x) denote the distance
of a vertex x from the root. Define f. by

f,(x)={(k--1)-d(x)/2, d(x)<-n,
O, d(x)>n.

One computes easily that

nk
Ill= = 1 + k--l"

Let V denote the set of vertices at distance from the root. Let M denote the isotropic
diffusion, which assigns probability 1/k to every transition. (We have already shown
that [[ll 2x/k- 1/k.) Then

Y Mf.(x)= Y Mf,,(x)
Vi Vi

and Mf,, is constant on V, so

Z IMf.(x)l=>= Z If.(x)l=.
Vi

Summing over i, we obtain IlMf,, >= IIf= II. But, an easy computation shows that

1 4n-2
IIf"ll= k-1 k

and

lim
f,I1______ 4(k 1) Q.E.D.

.o IIf.II = k2

PROPOSITION 5.2. If M is an infinite, doubly-stochastic, degree k diffuser, then
IlM]]>=2dk-1/k.

Proof. Suppose M has the skeleton graph F, which is an infinite, directed graph
having out-degree and in-degree k. As described in the Introduction, let F2 be the
bipartite, undirected graph having input and output sets isomorphic to F. We can build
a symmetric diffuser M2 based on F by using M and its transpose M’. Then M2 will
have the (infinite) "matrix"

It is easy to see that IIM=II--IIMII--IIM’II- But ME is an infinite, symmetric, degree k
diffuser, so by Proposition 5.1 its norm satisfies the required inequality. Q.E.D.

The group SL(2, Z) consists of all unimodular square matrices of size 2 with
integer coefficients; i.e.,

c d
such that a, b, c, deZand ad-bc=l
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The group PSL(2, Z) is defined to be SL(2, Z) divided by its center, which contains
only the two matrices I and -I. Thus we can think of an element of PSL(2, Z) as a
pair of unimodular matrices which are negatives of each other. The identity element
e is the pair of matrices {/,-I}. PSL(2, Z) has the structure of a group with two
generators and two relations:

{c, dlc2= d3= e}.

The graph of the group consists of triangles, with looping provided by the group
element d, connected at the corners by the involution (or "reflection") c. The element
c is represented by the matrix

(0
and the element d is represented by the matrix

-1 1

Note that C2= -I and D =-I. The matrices A and B defined earlier are just D-1C
and-DC respectively.

Example 1. Define the two elements of PSL(2, Z) by rl c and r2 dcd, generating
a subgroup with the following structure:

{r, r21 r2 e}.

The graph of the subgroup is just the infinite, degree 3 tree, so the diffusion M that
performs one of the three operations rl, rE, r with equal probability will have norm
(as an operator acting on L2) equal to 2x//3. Notice that tic e =tro, rEC dcdc bE,
-1 -1

r2 c-d-lcd c= a2, so the diffusion (no longer symmetric) defined by the three
transitions {I, A2, BE} will have the same norm. But it is precisely these transitions that
are used as the basis of Gabber-Galil’s k 7 expanders. Thus, a generalization of our
Proposition 2.3, used with k 3, and combined with the analysis in 7, shows that
their example has expansion coefficient at least d 1/6, thereby improving their
estimate of 1-x//2, which results from the use of Proposition 2.4 and Exarnple 2,
following.

bEExample 2. Define the four transitions by a2, and their inverses. These freely
generate the subgroup I2 defined by

a 1 mod 2

i2= (a S) suchthatb--0mod!c c 0 mod
d--- lmod

The graph ofthe group is the infinite, homogeneous, degree 4 tree. We have M x//2.
Example 3. Define three transitions by rl c, r2 d, and r3 r1. The set { rl, r2, r3}

will have the same expansiveness as its multiple by c: {tic, r2c, r3c} {e, a, b}. Thus
we will be determining the expansiveness of Gabber-Galil’s k 5 example. Proposition
4.1 implies that MII >-- 24/3,

The graph of the group consists of triangles, navigated by the order 3 element d,
linked together by edges that flip when c is applied.
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The first-return generating function is

2z z
Q(z)=’ T(z)+- E(z)

where T(z), for values of z between 0 and 1, can be thought of as the probability of
ever getting from one to another of two vertices on the same triangle, when there is
only a probability z of surviving each step, and where E(z) is the probability of ever
crossing a given edge, starting at one of its ends. Starting from a vertex, the probability
of every crossing its bridge, E(z), is just the probability of crossing immediately, z/3,
plus the probability of crossing it after going to another point in the triangle, namely
(2z/3) T(z)E(z). Thus,

z 2z
E(z)=-+--T(z)E(z).

3 3

Similarly, we get

z z z
T(z)=+ T(z)E(z)+- T(z).

We now change variables to z/3 for simplicity. Solving both equations for E, we get

(1-t)T-t
1-2tT tT

Clearing denominators, we get

2t(1-t)T2-(1-t+ t2)T+ t=0

leading to

1-- t+ t2--x/
4t(1- t)

and

1-2tT

1-t--t2-x/-
2t

where D is the discriminant

Then,

D= (l-t+ t2)2-8t2(1-t)= ta+6t3-5t2-2t+ 1.

1- t+ t2-v/- 1-t-t2-v/-
Q 2tT+ tE +

2(1- t) 2

The smallest root of D is

2

1 + x/8,/+ 13

and is the closest branch point for x/-; thus, we have

1 1 +/8v/+ 13

IIMII-3t0 6
0.988482.
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Example 4. Define the four transitions by {a, b, a -1, b-l}. If we multiply all four
by c on the right, we obtain the elements {d -1, d, cdc, cd-lc}. Thus we consider the
group generated by Zl d and ’2 cdc. It can be shown that the subgroup they generate
is abstractly just

{z, =1 z 3 e).

This subgroup of PSL(2, Z) is that consisting of all elements that can be written as
words in c, d using only an even number of c’s. The graph consists of triangles touching
each other at all of their vertices. As usual define the first-return generating function
Q(z) zT(z), where T(z) for values of z between 0 and 1 can be thought of as the
probability of ever getting from one to the other of two adjacent points, when there
is a probability z of surviving each step. If two points are at distance m apart in the
graph, then the probability of ever making it to one, starting at the other, is just Tm(z).
From one point there is z/4 chance of success by going directly to the destination,
there are two ways to go to points at distance 2 (from which the probability is T2(z)
for getting to the destination), and there is one way to go to another adjacent point.
Thus we must have the identity

giving

with solution

T(z) =z+ -z T(z)+z T-(z)
4 4 2

2zT2(z) + (z 4) T(z) + z 0

4- z-/(4- z)2- 8z2

T(z)
4z

The radius of convergence turns out to be given by the smallest root of the discriminant.
The smallest root of the quadratic equation 7z2+ 8z- 16 0 is 4/(2+ l). Thus we
discover that IIMII (2+ 1)/4.

There is a way to arrive at the value of M by relying upon the result for Example
1. At each point in the graph there are two ways to go away from the origin, one way
to go towards it, and one way to stay at the same distance from it. The mixture I +M,
where M is the operator of Example 1, has the same return statistics to the origin.
Hence,

IIMII- I+ =+ 4

6. Asymptotic lower bounds for diffusion eoeeients. We have been considering
infinite families of finite diffusers constructed from actions of finitely generated infinite
groups. Suppose that S is a finite set of generators for a finitely generated group G,
and that S is closed under inversion. Consider the symmetric random walk on G in
which we left multiply by elements of S chosen according to a probability distribution

on S, invariant under inversion. The effect of the random walk on the vector space
of all L2 functions on G is determined by the diffusion operator M, which is invariant
under right translation by group elements. Suppose that F is a finite set on which G
acts. Then the random walk on G transfers to a random walk on F, producing an
operator Mr on L2(F), and an operator Mr,o on the space of functions with sum 0. In
this section we use the counting measure on F, to be consistent with our use of the
counting measure on the infinite group G.
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We wish to show that the norm IIM,oll is bounded from below by IIMII in the
limit as the number of elements in F goes to . More precisely,

PROr’OSITON 6.1. Given a symmetric, finitely generated, right invariant, diffusion
operator M on G, there exists a sequence of real numbers b, b2," ", converging to O,
such that for every finite G-set F we have

Proof. Let S be the generating set for M. For x F, define Dk(X) to be the set of
all points in F reachable from x by means of at most k left multiplies by elements in
the set S. As a crude estimate we will always have [Dk(X)l<= mk/l/(m--1) if S has m
elements. Thus as IFI goes to , so does the diameter of F. Choose a function f such
that every F has diameter at least 2f(Irl)/ 1, and such that f(n)--> as n--> .

Suppose that x and y are at distance 2k+ 1; then the sets Dk(X) and Dk(y) are
disjoint. Define the function r/= 6x-6y, obviously a function on F having sum 0.
Because Mrk(x) is supported on Dk(X), and Mkr(y) is supported on Dk(y), we have

Mn = M =/ Mr =.
Now notice that M ->- Mke and Mr ->- Mke implies

211Mr,oil= IIMr,oll=llnll =>-- = -Mr,on >--2llMaell
so we have

But we know that the right-hand side of the above equation converges to IIMII as
k--> , by Proposition 3.2. Define a-IIMII-IIM%II 1/, so that lim,_.o a, =0. Then
we can choose b, ay(,). Q.E.D.

Example. Consider the "ax + b"-group H consisting of all transformations of the
form x--> ax + b where a and b are rational numbers. Let M be a finitely generated,
symmetric, right invariant diffusion operator based on H. Let N be the normal subgroup
of H consisting of all transformations of the form x --> x + b. Then N is isomorphic to
the additive group of the rationals, and the quotient group H/N is isomorphic to the
multiplicative group of the rationals. Both of these are Abelian groups and therefore
are amenable. Hence H is amenable, and we must have IIMII- 1. Thus finite diffusers
built from M will degrade as the graphs grow larger. The corresponding assertion
about the degradation of the expansion coefficient is the result proved by Klawe 15].

Alon [3] has shown that an undirected graph is a good expander if and only if a
related symmetric diffuser is good; hence, it should be possible to prove results of the
Klawe type for all amenable groups.

7. The construction of Gabber and Galil: going from the continuous torus to the
discrete torus. The group G SL(2, Z) acts on the plane R x R in the natural way, the
matrix ( db) sending the point (x, y) to the point (ax + by, cx + dy). This action restricts
to the lattice Z x Z in the plane, sending it onto itself. Since the 2-torus T- is just the
plane modulo the lattice of integer points, the action on the plane factors to an action
on the torus. Furthermore, the actions on the torus and on the lattice are related: the
Fourier series for an L2 function on the torus is an L2 function on the lattice, and this
Fourier transform intertwines the two representations of SL(2, Z). Denote by z the
automorphism of G that sends a matrix to its inverse transpose: -(3’)= (3,*) -1. Let/z
be Lebesgue measure on T2, normalized so that/z(T2) 1. Let Ff denote the Fourier
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transform of f; i.e.,

Ff(x) f exp (-2ri(x, y))f(y) dtz(y).
T

We then have"
PROPOSITION 7.1. FU, U,(,)F.
Proof. Calculating from the definitions:

F(Uf)(x) I exp (-2ri(x, y)) Uf(y) d(y)
T

I exp (-2ri(x, yz))Uf(yz)
T

I exp (-2-i(y*x, z))f(,/-lyz) d(z)

Ff(y*x)= U.-,Ff(x)= U(v)Ff(x). Q.E.D.

Note that z(a)= b-1 and z(b)= a -i, so many of the expanders in our examples
for SL(2, Z) are taken into themselves by z.

The above proposition implies that ]]Mr2,o]] is the same as the norm of the
corresponding diffusion operator on the lattice minus the origin: Z x Z-(0, 0). The
lattice breaks up into disjoint orbits, each characterized by the g.c.d, of the x and y
coordinates of its constituents. The isotropy subgroup Gp, where p- (1, 0), consists of
those matrices having first column (1, 0):

Since Gp is an Abelian group, it is amenable. We conclude from Proposition 4.1 that
the norm of the diffusion on the orbit G-set is the same as the norm of the diffusion
on the group G. Hence, we have

PROPOSITION 7.2. IIMT=,011 IIMII.
Gabber and Galil use this bound for the continuous torus to prove expansion

results for each discrete torus (Z/nZ)x (Z/nZ). The action on (Z/nZ)x (Z/nZ) is
that induced by the natural action on Z x Z. This is the same as that action induced
by imbedding (Z/nZ)x (Z/nZ) as the set of points in T2 having coordinates which
are both multiples of 1/n. Divide T2 up into n2 little squares, associating q=(r, s) in
(Z/nZ) x (Z/nZ) with the square

Sq(q)=Sq((r,s))={(x,y) T2lr<-nx<r+l,s<-_ny<s+l}.

If y is an element of G, then the image set y Sq ((r, s)) intersects nontrivially only a
few other squares. For example, if y A2= ( ), we have

A2 Sq ((r, s))_ Sq ((r+ 2s, s))t_J Sq ((r+ 2s+ 1, s))U Sq ((r+ 2s + 2, s)).

Define the degree 12 expander F having the following transitions on (Z/nZ)x
(Z/nZ)"

(x, y)- (x+/-(Zy+ a), y),

(x, y) (x, y + (2x + a))

where a 0, 1, 2. Then we have
PROPOSITION 7.3. The above graph is an (/I 2, 12, ])-expander.
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Proof. If X is a subset of (Z/nZ)x(Z/nZ), we must show that IF(X)[ ->

(1 +(1/3n)(n-IX[))[X[. Let Sq (Q) denote the subset of T2 made from little squares
corresponding to the points of Q; that is,

Sq(Q)= Sq(q).
qQ

Denote the four automorphisms A2, BE, A-E, B-2 of T2 by trl," ", tr4. Define the
spreading operation F for subsets of T2 by F(X)- 0 4i=1 tri(X). Then we have:

r(Sq (x))
_
Sq (r(x)).

But we know that F expands subsets of T2 with expansion rate 1/2, by a continuous
version of Proposition 2.3. Therefore,

IF(X)[ n:/z(Sq (F(X)))_-> n:/z(F(Sq (X)))

>- n2 1 +/x(Sq (X)c) /x(Sq (X)) 1 +n2 (n -IXI) IxI. Q.E.D.

More generally, if S is a set of elements of SL(2, Z) closed under inversion, it
defines an expansion operator on measurable subsets of T2 by Fs(X)= Us
Moreover, for each element o- there will be a finite subset L c_ Z x Z, which can be
considered as a set of translations of (Z/nZ) x (Z/nZ) for all n, so that independent
of n we will have

tr(Sq (q))_Sq (o-(q)+L)= [A Sq(tr(q)+t)
tL

where addition is performed in the additive group (Z/nZ)x(Z/nZ). Actually we
should include in L only those such that the set Sq (t) cr(Sq (0)) has nonzero
measure for all n.

PROPOSITION 7.4. For each n define the expander F on (Z/nZ)(Z/nZ) by
connecting each point p to all points in the subset Us or(p)+ Lo. Then the expansion
coefficient for F is at least as great as that of the spreading operator Fs acting on
measurable subsets of T.

Another route to the expansion property is to first show how to construct a diitusion
operator on (Z/nZ) x (Z/nZ) having diffusiveness at least as good as that on T2, then
apply one of the Propositions from 2. (We did not follow this route in Proposition
7.3 above, because Proposition 2.3 needs to make use of the small value of k.) If the
symmetric diffusion M on T: is defined by a subset S of G and a probability distribution
b on S, with the restriction that d(cr)= d(cr-), define the diifusion M, on (Z/nZ)x
(Z/nZ) for all n by the random walk that first applies cr with probability d(cr) then
translates by amount Z: with probability equal to ((t + Sq) cr(Sq)) where Sq
{(x, y) 10 -<- x < 1, 0 <_- y < 1} is the unit square in R:.

PROPOSITION 7.5. For all n we have IIM.oll-<-IIMII.
Proof. Normalize measures on T2 and (Z/nZ)x (Z/nZ) to have total mass 1.

Define the orthonormal projection map P from L2(T2) to L2((Z/nZ)x (Z/nZ)) by

P(f)(q)=- n2 f f(x) d/x(x).
Sq(q)

Define the isometric injection I the other way by I(f)(x) =-f(q) when x Sq(q). Then
M.,o PM.,oI implies

IIM,.oll--< IIPII" IIM.oll" IIIII- IIMII. Q.E.D.
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8. Bounded concentrators built from expanders and superconcentrator networks built
from bounded concentrators. See Gabber-Galil 11].

DEFINITION. For 0 < 1, an (n, O, k, t) bounded concentrator is a bipartite graph
F with n inputs, On outputs, at most kn edges, such that every input subset X with

IXI _-< cn maps to an output set F(X) at least as large.
Philip Hall’s Marriage Lemma implies that any (n, 0, k, c) bounded concentrator

is actually a concentrator in the following sense: for any input subset X with
there will be a set of IXI disjoint edges connecting X to an equal number of outputs.

Gabber and Galil use an (m, k, d) expander to make an (n= m(p/ 1)/p, O=
p/(p/ 1), k’, c 1/2) bounded concentrator, where k’= (k/ 1)p/(p/ 1). Their con-
struction proceeds as follows.

Construction. Assume that p divides m evenly. Break the input set into a big part
of size m and a little part of size m/p. Use an (m, k, d) expander to connect the big
part of the input set to the output set (which has size m). Divide the output set into
m/p clumps of size p, and connect each of the inputs in the small set to all of the
members of one of the output clumps, each input to a diiterent clump. The resulting
bipartite graph works, as long as d>-2pE/(p-1)(p2+ 1).

Proof. Let k be the number of inputs in a given subset, with k <- m(p/ 1)/2p. We
need to show that these connect to a total of at least k outputs. If at least kip of these
appear in the small set, then we are done, because p. k/p >-k. Otherwise, there will
be at least q k(p- 1)/p of these in the large input set. Since these feed the expander,
we will succeed if the expansion factor is at leastp(p 1); namely, if I / d(1 qm)
p/(p- 1). But

l+d 1- -l+d 1
k(p-1)

->_l+d 1-
pm 2p

and the last is large enough when d>=2p2/(p-1)(p2+l). Q.E.D.
Of course, the condition d => 2/(p- 1) will also suffice.
DEFINITION. An (n, k) superconcentrator is a directed acyclic graph with n inputs

and n outputs, having at most kn edges, such that for any choice of r inputs and r
outputs there is a collection of r disjoint paths starting in the input set and ending in
the output set.

Pippenger [18] gives a recursive construction of superconcentrators in terms of
bounded concentrators, which is generalized by Gabber and Galil as follows. Connect
input directly to output for 1 _-< <- n, using n edges. Given an input subset and an
equinumerous output subset, use these direct lines, if possible, to connect inputs to
outputs by paths of length 1. After that there remain fewer than n/2 unmatched inputs
to be connected to a set of unmatched outputs. Use an (n, 0, k, 1/2) bounded concentrator
to concentrate the unmatched inputs into a new "input space" of size On. Similarly
concentrate the unmatched outputs into an "output space" of size On. Then use a size
On superconcentrator to match the unmatched. Start the recursive definition by using,
say, a complete n2 edge graph as superconcentrator when n is small. The result of this
construction is summarized in Gabber-Galil’s Lemma 8:

LEMMA (from [11]). If we can construct for all n and (n, O,,k, 1/2) bounded
concentrator, where 0, 0 + e,,, 0_-< 0 < 1, en o(1), and k > 1, then we can construct a
family of linear superconcentrators of density (2k + 1)/(1 0).

A consequence of this is Gabber-Galil’s Theorem 3:
THEOREM from 11 ]). Assuming we can constructfor every n m2 an (n, k, 2/(p

1)) expander, then we can construct a family of linear superconcentrators of density
(2k+3)p+ 1.
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For example, we have already demonstrated a family of expanders with n m2,
k 12, and d =. Since 1/2=2/(7-1) we can choose p 7 in the above Theorem,
obtaining a family of superconcentrators of density (2.12/ 3) 7 / 1 190. By using
the inequality appearing here as Proposition 2.5, Alon and Milman in [5], [6], and
with Galil in [4], turned the degree 12 diffusers into degree 13 expanders and made
superconcentrators of density 157.35. We provide evidence in 9, Ex. 2 for the existence
of k 4 diffusers having d ]. If these were sufficiently numerous, we would be able
to build superconcentrators of density (2.4+3) 7 / 1 78.

Gabber-Galil’s k=7 example has d>- so we can choose p= 13 and build
superconcentrators with density (2.7 / 3) 13 / 1 222.

Alon suggested the use of the Alon-Milman isoperimetric inequality (Proposition
2.5), instead of Proposition 2.2, for making expanders with k _-> 5. Conjectural families
of optimal degree k-1 diffusers would have ]lMoll <-2/k-2/(k-1), and would be
used to make expanders of degree k. Looking back at the proof of the bounded
concentrator construction, we see that the active input subset in the "big" part must
expand by the ratio at least p(p- 1). Define P3 to be the smallest real number so that
the expansion predicted by Proposition 2.5 gives this ratio. If Gabber-Galil’s construc-
tion were to work for nonintegral values of p, we would achieve superconcentrators
of density k (2k+ 3)p3 / 1. The construction described in their Appendix 1 allows
the construction of bounded concentrators with effective p P2 and superconcentrator
density k2. We denote by Pl the best integer value and by kl the density of the
corresponding superconcentrator. In Table 1 we display the results for 5_< k -< 13.
(Outside of this range Proposition 2.2 leads to slightly better results.) Notice that k2
are the densities that we know how to achieve, given the existence of the required
expanders. For k 8 we would have superconcentrators of density 57.1587.

TABLE

k Pl kl P2 k2 P3 k3

5 6 79 5.3915 71.0890 5.0945 67.2280

6 4 61 3.8762 59.1430 3.8208 58.3125

7 4 69 3.4471 59.6004 3.2568 56.3657

8 3 58 2.9557 57.1587 2.9397 56.8534

9 3 64 2.7998 59.7963 2.7361 58.4585

10 3 70 2.6847 62.7491 2.5941 60.6636

11 3 76 2.5962 65.9041 2.4890 63.2258

12 3 82 2.5258 69.1953 2.4080 66.0164

13 3 88 2.4683 72.5817 2.3435 68.9609

9. Numerical results for diffusers.
Example 1. (k 3) For a prime p take the vertex set to be the projective line

PI(Fp). An inhomogeneous coordinate z takes on values 0, 1, 2, , p- 1, o. A matrix
in SL(2, Z) acts as a linear fractional transformation sending z to (az/ b)/(cz/ d).
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From the action of the elements C, DCD, D-CD- we obtain the three permutations
(expressed as functions of z)"

-z-1 (2-z)-1 2-z-(where, of course, 1/0- oo and 1/oo- 0). Giving each of these three transitions equal
probability, we define a Markov process M on pI(Fp). Computer experiments show
that Moll _-< 2x//3 0.9428090 for all primes less than 700 with the exception ofp 433,
479.

Example 2. (k-4) From the action of the elements A2, A-2, BE, B-2 on the
projective line pI(Fp) we obtain the four permutations

1 1
z + 2, z- 2,

a 1+2’ -1z -2

Give each of these four transitions equal probability. Computer experiments show that
IIMoll <_-x//2 0.8660254 for all primes less than 700 with the exception of p- 251,
331,461,479, 569, 617.

Example 3. (k- 3) From the action of the elements C, D, D-1 on the projective
line we obtain the three permutations

--Z
-1 (1 Z)-1, 1 ,-1

The norm of the master diitusion acting on the infinite group SL(2, Z) is (1+
x/8x/q- 13)/6 0.988482 by the work in 5. For primes less than 700 only p =433,479
fail to have IIMoll less than this bound.

Example 4. (k--4) From the action of the elements D, D-, CDC, CD-IC on
the line we obtain the four permutations

(l--z)-l,l-z-l,-1-z-1 --(lq-z) -1

Again numerical experiments show that for all of the 124 odd primes less than 700
except for p =433, 479 we have IIMoll _-< (2x/+ 1)/4 0.957107. These are notably the
same exceptions as for Examples 1 and 3. This example is equivalent to the one using
the transitions given by the four elements A, B, A-I, B-1.

Example 5. (k 6) The three elements A, A2B2, B generate a free subgroup of
SL(2, Z). The norm of the diffusion there is precisely x//3. For the diffusion acting
on the finite sets pI(Fp) computer experiments show that for the 124 odd primes less
than 700 we have IIMoll _-<x//3 0.745356 except for the following 18 primes" 41, 61,
103, 107, 173, 179, 251,337, 379, 421,461,479, 577, 593, 617, 641,661,677.

Example 6. (k 8) Whenever two elements a, 3 freely generate a subgroup, the
four elements a, a32, a3fl 3, afl* will freely generate a subgroup. Let a A2 and
fl B. The norm of the diffusion operator on the infinite group will be x/7/4. Acting
on the finite projective lines, however, I[Moll exceeds x/7/4 often" for 49 of the 124
odd primes less than 700, although the values may still converge to x//40.6614378
as the primes go to . For p 677 we obtained 0.668479.

Example 7. (k-4) Since random constructions are known to work well for
bounded concentrators and in fact work better (so far) than explicit constructions, we
suggest the following random method for making diffusers. Let Z/nZ be the vertex
set. Choose two n-cycles try, tr2 at random. Allow the four transitions

O’-I(z), O’I(Z), O’’I(z), O’2(Z

with equal probability. Of course one can choose O" to be z "- Z-I-1. For each of the
124 odd primes p less than 700 we generated a random diffuser on the points of Z/pZ
and found that the second largest eigenvalue modulus exceeded x//2 only 24 times.
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CHARACTERIZATION AND RECOGNITION OF PARTIAL 3-TREES*
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Abstract. Our interest in the class of k-trees and their partial graphs and subgraphs is motivated by
some practical questions about the reliability of communication networks in the presence of constrained
line- and site-failures, and about the complexity of queries in a data base system. We have found a set of
confluent graph reductions such that any graph can be reduced to the empty graph if and only if it is a
subgraph of a 3-tree. This set of reductions yields a polynomial time algorithm for deciding if a given graph
is a partial 3-tree and for finding one of its embeddings in a 3-tree when such an embedding exists. Our
result generalizes a previously known recognition algorithm for partial 2-trees (series-parallel graphs).

Key words, graph reductions, confluent reductions, k-trees
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1. Introduction. Our interest in the class of k-trees and their subgraphs is motivated
by some practical questions about the reliability of communication networks in the
presence of constrained linemand sitemfailures (Farley [5], Farley and Proskurowski
[7], Neufeld and Colbourn [10], Wald and Colbourn [14]) and about the complexity
of queries in a data base system (Arnborg [1]).

We will briefly describe the connection between the problem of finding the minimal
value of k for which a given graph is a partial k-tree and the complexity of queries.
Let us consider conjunctive data base queries, an important class of queries from which
answers to less restrictive classes of queries can be constructed. Such a query has the
form

/ Pi(xi,1, xi,2, xi,n,).
l<_ik

The variables occurring in the relation Pi constitute a subset of n variables
xl, x2,’’’, xn; the relation is a set of ni-tuples of values from a common domain (or
from several domains). The query asks if there is an assignment of values al,. , an
to the n variables so that the tuple (a,l, ai.2,’’ ", ai,n,) belongs to P, for each i. The
cost of a conjunctive query involving only two relations depends critically on the size
of the relations (the number of tuples satisfying them). For a more complex query,
minimization of sizes of intermediate relations by means of variable elimination is of
great import. This is achieved by answering a partial conjunctive query involving all
relations containing a given variable. After this join, the variable can be eliminated
from further consideration by simple projection. Joining the relations until only one
relation remains evaluates the conjunctive query. If this final relation is nonempty,
then the answer is "yes." The size of a k-ary relation may be as large as m k, where m
is the size of the domain. Thus, a relevant objective function for finding the best join
order is the maximum arity (the number of variables) of an intermediate relation.
Minimization of this objective function is equivalent to embedding a graph obtained
from the query syntax into a (k- 1)-tree, for the minimum k.

In the remainder of 1 we introduce some standard graph terminology and
reduction operations on graphs. In 2 we review some properties of k-trees and

* Received by the editors January 24, 1984, and in revised form November 15, 1984.
f Department of Numerical Analysis and Computing Science, The Royal Institute of Technology,

S-100 44 Stockholm 70, Sweden.
t On leave from Computer and Information Science Department, University of Oregon, Eugene, Oregon

97403.
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introduce the class of k-decomposable graphs, which is then shown identical to the
class of partial graphs of k-trees. In 3 we exhibit a set of reduction operations such
that a graph is reduced to the empty graph by the rules iff it is a partial 3-tree. The
rules are confluent (or, equivalently, have the Church-Rosser property), which means
that the reductions can be applied in any order.

We will consider simple, loopless, undirected combinatorial graphs. Two vertices
u and v of a graph G are called adjacent if there is an edge (u, v) of G; the edge
(u, v) is said to be incident with its end-vertices u and v. The set of all vertices adjacent
to a given vertex v is called the (open) neighborhood of v in G, F(v) or F(v) when
G is clear from context. The order of F(v) is called v’s degree, and its elements are
called v’s neighbors. For a given graph G with the vertex set V and the edge set E,
we define a subgraph induced by a subset U of vertices to be a graph with the vertex
set U and the edge set D of all edges of G with both end-vertices in U. A clique is a
completely connected subgraph. A partial graph of G is defined as a graph with the
vertex set V and edge set D, a subset of E. A subgraph of G is a partial graph of an
induced subgraph of G.

We will investigate classes of graphs which can be defined by the following
operators on graphs (see also Rose, Tarjan and Lueker [13])"

Star substitution, Sk(G, ))---H, where v is a vertex of G of degree k; the vertex
set of H is V-{v} and its edge set is E-{(u, v)luF(v)}t.J{(u, w)lu, wF(v)}. (A
star centered in v is "substituted" by a complete graph defined by its neighbors.) This
is the vertex elimination operation of Rose 11].

Isolated vertex removal, I G, v) H, where v is an isolated vertex (with no incident
edges); H has the same edge set as G and its vertex set is V-{v}.

Star removal, Rk(G,/9) H, where v is a vertex of G and the subgraph of G
induced by F(v) is a complete graph with k vertices; then H- Sk(G, v).

Star hook-up Hk(G, K)- H, where K is a clique induced by k vertices of G; H
has the vertex set Vt.J {w}, w V, and the edge set E t.J {(u, w)lu is a vertex of K}.

Extended operators, S and R, are defined as the unions of I and Si and Ri,
respectively, for all between 1 and k.

We define the corresponding relations Sk, Rk, Hk, S, and R to hold between
two graphs G and H itt there exists an element of G (a vertex or a clique) so that H
is the result of applying the corresponding operator to G and its element. Finally, we
define the class of k-trees, ffk, (cf. Beineke and Pippert [4] and Rose [11], [12]) as
the family of graphs for which the (reflexive) transitive closure of the relation Hk, Hk*,
holds with Kk, the complete graph with k vertices. A k-leaf is a vertex of degree k in
a k-tree (and in a 3-tree we similarly have 3-1eaves). It follows straightforwardly from
the definition that a k-tree has at least two k-leaves, and that k-leaves are nonadjacent
in a k-tree with more than k / 1 vertices. The class of partial k-trees, k, is defined
to consist of all subgraphs of k-trees (cf. Wald and Colbourn [14], for the case of k 2).

It might be interesting to view the reductions Sk as simplifying rewrite rules (this
viewpoint has been taken by Liu and Geldmacher [9] who considered the implications
of series-parallel reductions). In that context, we would be looking for a set of reduction
rules confluent under a congruence relation for which the class of partial k-trees is an
equivalence class. Here, the set of reduction rules is confluent if for any two graphs
resulting from reducing a given graph in different ways, there exists a reduct graph
reachable by reductions from either of the two graphs. Since every chain of reductions
of a finite graph is finite, this global confluence property is implied by local confluence,
where we require the existence of a common reduct for graphs differing only by one
application of different reduction rules (the so-called "diamond lemma," see for
instance Huet and Oppen [8]).
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2. General k-trees. The following two theorems are equivalent to the example
stated in Rose [ 11 implying that, for a k-tree G, there is a sequence of star removals
leading to a complete graph with k vertices, and that any star removal can start this
sequence.

THEOREM 2.1. G is a k-tree iff GR*kKk.
THEOREM 2.2. G is a k-tree iffeither G is Kk or every H such that GRkH is a k-tree.
The latter gives the basis for an obvious k-tree recognition algorithm (cf. Rose

11]): given a graph G, iteratively remove vertices of degree k with completely adjacent
neighbors until no further removal is possible; G is a k-tree if[ the remaining graph
is the Kk.

After a couple of technical lemmas, we will present a theorem stating that a graph
is a partial k-tree if and only if there is a sequence of reductions S, which leads to a
reduction to the empty graph (with no vertices).

LEMMA 2.3. For every complete subgraph S of vertices in a k-tree G < k), there
exists a complete subgraph K of k vertices in G of which S is an induced subgraph.

Proof. G can be reduced by a series of applications of operation Rk SO that in
the resulting k-tree H, no vertex of S is removed and at least one vertex v of S has
degree k. In H, the vertex v has a completely connected neighborhood K, or else there
would be no way of reducing H to a complete graph through a series of star removals,
Rk. K contains all vertices of S.

LEMMA 2.4. Any graph with not more than k vertices is a partial k-tree.
Proof. The complete graph Kk can be constructed by adding, if necessary, new

vertices and missing edges to the original graph.
THEOREM 2.5. G is a partial k-tree iff GS,*.
Proof. (-->, by induction on the order of a k-tree H containing G as a subgraph.)

The basis follows by Lemma 2.4 since any vertex v of such a graph G can be chosen
for a reduction S,(G, v) which, repeated, leads to the empty graph. Let us assume
that for any graph G which is a subgraph of a k-tree H with n or less vertices, GS,*.
Consider a graph G which is a subgraph of a k-tree H with n / 1 vertices. H has a
vertex v of degree k with completely connected neighbors (Rose 11]). If v is a vertex
of G, then G’-S’k(G, v) is a subgraph of H-{v}; otherwise G is a subgraph of
H-{v}-Rk(H, v). It follows from the inductive assumption that GS,*.

(-, by induction on the order of G.) By Lemma 2.4, we need to consider only
graphs with at least k vertices. Let us assume that all graphs with n or fewer vertices
which can be reduced to the empty graph by a series of S, reductions are partial
k-trees. Consider a graph G with n + vertices and such that GS,*. Let v be the
vertex of G which is removed in the first of these reductions. Thus, by the inductive
assumption, S:(G, v) is a subgraph of some k-tree H. By Lemma 2.3, the neighborhood
of v is contained in a k-complete subgraph ofK and H. Applying the hook-up operation
to H and K results in a k-tree containing as a subgraph a graph is isomorphic to G,
the new vertex w corresponding to v in G.

Partial k-trees can be embedded in k-trees without adding any new vertices"
THEOREM 2.6. Any partial k-tree with at least k vertices can be completed to a k-tree

with the same number of vertices.

Proof (by induction on the number of vertices of G). The theorem is obviously
true for G with k vertices. Assume that it is true for all partial k-trees with n vertices
and consider a partial k-tree G with n / 1 vertices. Let v be a vertex of G of degree
not greater than k such that the graph G’-S,(G, v) in a partial k-tree. There is a
k-.tree H with n vertices, with G’ as a partial graph, and such that a k-complete
subgraph K of H contains all vertices of F(v) (see Lemma 2.3). The k-tree Hk(H, K)
has n + 1 vertices and contains G as its partial graph.
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An alternative definition of partial k-trees can be given using the notion of
k-decomposability: a graph G is k-decomposable iff either G has k + 1 or fewer vertices
or there is a subgraph S of G with at most k vertices such that G- S is disconnected,
and each of the connected components of G-S augmented by S with completely
connected vertices is k-decomposable.

THEOREM 2.7. The class of k-decomposable graphs is exactly k"
Proof. Since all minimal separators in a k-tree have order k (Beineke and Pippert

[4]), k-trees are k-decomposable, together with all their partial graphs. If a k-decompos-
able graph with more than k+ 1 vertices can be embedded in a union of two k-trees
with at most k completely connected vertices in common, then--by Lemma 2.3--the
common part can be extended to a k-complete graph, the embedding graph can be
extended to a k-tree, and the theorem follows by induction on the order ofthe graph, l-1

Unfortunately, this characterization of partial k-trees does not give us an efficient
algorithm for recognition of this class of graphs since the separator property is lost in
subgraphs. Namely, in a partial k-tree we may be able to find a "small" separator
which cannot be extended to a complete subgraph of a k-tree in an embedding of the
partial k-tree.

3. Partial 3-trees. Wald and Colbourn [14] restate Duffin’s [5] characterization
of series-parallel graphs by completely characterizing the class of partial 2-trees as
graphs with no subgraphs homeomorphic to K4. This characterization does not carry
into higher values of k. Figure l(a) shows a planar graph (which cannot have a
homeomorph of Ks) which is not a partial 3-tree.

A natural generalization of the recognition algorithm for series-parallel graphs
[5], [10] would be to perform applicable reductions in S in any sequence. Since the
operations I and $1 do not introduce any new edges, they result in partial 3-trees
whenever applied to a partial 3-tree. However, the other reduction operations in S
may not be "safe," i.e., a partial 3-tree may be reduced to a graph which is not a
partial 3-tree. An example is given in Fig. l(b), where a partial 3-tree can be reduced
to the graph in Fig. l(a) by application of $3 to vertex v. We can recognize a simple
case of safe application of the reduction S:

Ca (b)

FIG. 1. (a) The 6-vertex, 4-regular plane graph G, and (b) a partial 3-tree H such that G S3(H, v).

THEOREM 3.1. For any partial 3-tree G, S2(G, w) is a partial 3-tree and S3(G, v)
is a partial 3-tree if at least two neighbors of v are adjacent. See Fig. 2.

Proof (by induction on the number of vertices in G). The theorem is obviously
true if G has not more than 3 vertices. Assume that in any partial 3-tree with less than
n > 3 vertices such reductions lead to partial 3-trees. Consider a partial 3-tree G with
n vertices and a reduction G(G, u) resulting in a partial 3-tree, G’. If u =w, u v,
or u is not any of the neighbors of v or w, then the theorem follows directly from the
assumption. If degree of u is less than 3, the cases of its adjacencies are trivial.
Otherwise, there are three cases to consider: (i) u is a neighbor of w. Then, S3(G’, w)
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(i) (ii) (iii)

FIG. 2. Cases in the proof of Theorem 3.1.

is a partial 3-tree by the inductive assumption (two of w’s neighbors in G’, y and z,
are adjacent) and it is isomorphic to $3($2(G, w), u). (ii) u is one of the adjacent
neighbors of v. If u is also adjacent to the third neighbor of v, then G’ is isomorphic
to S3(G, v). Otherwise, S3(G’, v) is a partial 3-tree by the inductive assumption (v’s
neighbors in G’, x and y, are adjacent) and it is isomorphic to $3($3(G, v), u). (iii) u
is not adjacent to the other two neighbors of v. Then, S3(G, v) is isomorphic to a
partial graph of S3(G, u), which is a partial 3-tree by the assumption. This completes
the proof of the inductive step. D

The operation $3 plays a crucial role in the eventual reduction of vertex degrees
in the graph, even though the star substitution operation applied to vertices with
independent (nonadjacent) neighbors increases their degree. Fortunately, we are able
to isolate configurations involving such independent neighborhoods of vertices of
degree 3 that make the degree reduction possible.

THEOREM 3.2. A graph G without vertices of degree O, 1, or 2, and with no vertex

of degree 3 that has two adjacent neighbors is a partial 3-tree only if there are subgraphs
of G isomorphic to either C’ or C" in Fig. 3, where vertices u, v and w have degree 3 in
G, and vertex x of C’ has degree 3 in G.

V W X

CI II

FIG. 3. The necessary subgraphs in a partial 3-tree.

Proof. Consider a partial 3-tree G such that its minimum vertex degree is 3 and
no two neighbors of a degree 3 vertex are adjacent. Let H be one of G’s embedding
3-trees. H’ is the induced subgraph of H obtained by deleting all 3-1eaves from H (at
least two exist). G’ is the graph obtained from G by removing the 3-1eaves with the
$3 reduction. G’ is a partial graph of H’. Let x be any 3-leaf of H’ (or any vertex if
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H’= K4), and let L, be the nonempty set of 3-1eaves of H adjacent to x. Every member
of Lx has degree 3 in H and thus degree 3 or less in G which is a partial graph of H.
But G has also minimum degree 3, so each member of Lx has degree 3 in G. Since
no two neighbors of a degree 3 vertex are adjacent in G, no two neighbors of a vertex
in Lx are adjacent in G, so Lx and x have disjoint neighborhoods in G. The degree
of x in G’ is not greater than 3 and x’s neighborhood in G’ consists of two disjoint
sets, F(x)-L (the original neighbors) and F(L)-{x} (the neighbors introduced
by $3 transformations), i.e.:

The possible solutions to this inequality are severely constrained by the degree assump-
tion on G and the fact that for both set differences the second operand is a subset of
the first. Since G has minimum vertex degree 3, the second term in the left-hand side
is at least 2, so the first term can only be 0 or 1, and IZxl is at least two. We split cases
by the second term, which can be 2 or 3:

(i) IF(L)I 3. All vertices in Lx have the same neighbors, and since they are
at least two, configuration C" must be present.

(ii) ]r(Lx)]=4. This case implies F(x)= L, so Itxl must be at least 3, and
every vertex in L is G-adjacent to x and two other vertices among the three in
Fa(L)-{x}. This implies configuration C" if Itl>-4 and C’ or C" if ILx[--3. Since
F(x) L, whenever only configuration C’ is present, one of its occurrences must
have degree 3 in G for its vertex x. [3

Now that we know of the necessity of subgraphs with vertices of degree 3 involved
in triangles or squares, we have to establish safe reductions thereof. For example, in
the graph G (see Fig. 4) which has the graph C’ of Fig. 3 as a subgraph, reduction
S3(G, x) leads to a graph which is not a partial 3-tree even though the original graph
G is one.

FIG. 4. A partial 3-tree G with an unsafe reduction S3( G, x).

THEOREM 3.3. For any partial 3-tree G with a subgraph isomorphic to either graph
C’ or C" in Fig. 3, the graphs S3(G, u), S3(G, v), and S3(G, w) are all partial 3-trees if
vertices u, v, and w have all degree 3 in G.

Proof (by induction on the number of vertices of G). By inspection, the thesis is
true for graphs with no more than 6 vertices. Assume it is true for graphs with fewer
than n > 6 vertices and consider a partial 3-tree G with n vertices. By Theorem 2.5,
there is a vertex s such that S(G, s) is a partial 3-tree. If s is one of the vertices u, v
or w, or is not adjacent to any of them, then the thesis follows by the inductive
assumption. Otherwise, we have to consider three cases: (i) In a subgraph isomorphic
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tO C’, s x. Applying the operation S to u, v, w and x, in this order, reduces graph
G to a graph G1, where the three remaining vertices induce a triangle (see Fig. 5(a)).
Since the graph S3(G, s) is a partial 3-tree, so is its subgraph G2 in which the edges
(u, v), (v, w), and (u, w) are missing. But G2 is reducible to G1 by application of the
operation $2 (which is safe by Theorem 3.1) to u, v, and w (see Fig. 5(b)). Thus,
S3(G, u) is a partial 3-tree.

(a) (b)
t

v w

t

y’- -z

,w

z

G,
FIG. 5. Reduction of a partial 3-tree G, case (i).

(ii) In a subgraph isomorphic to C’, s y (by symmetry, a similar argument holds
for s z and s t). Applying the operation $3 to vertices u, v, and w in this order
reduces G to a graph containing as a subgraph the graph G (see Fig. 6(a)). On the
other hand, since S3(G, y) is a partial 3-tree, so is its subgraph G2 in which the edge
(q, v) is missing (q is the third neighbor of y). But G2 is reducible to a graph isomorphic
to G (in which u is isomorphic to y in G1) by a sequence of safe applications of the
operation $3 to v and w (see Fig. 6(b) and Theorem 3.1). Thus, S3(G, u) is a partial
3-tree.

(iii) In a subgraph isomorphic to C", s- x (by symmetry, a similar argument
applies to the cases s =y or s z). Applying the operation $3 to u, v, and x in this
order reduces G to a graph G where the remaining vertices induce a triangle (see
Fig. 7(a)). The graph G2 Sa(G, s)-{(v, q)} (where q is the third neighbor of x) is a
partial 3-tree and is reducible to G1 by application of the safe instances of the operation
Sa to v and u in this order (see Fig. 7(b)). Thus G1 is a partial 3-tree. U

It should be obvious that the reduction S is confluent in a system recognizing
partial 3-trees, since S(S(G, u), v)= S’2(S(G, v), u), for any graph G and its two
vertices u and v. By inspection of cases when two adjacent vertices can be reduced
according to any two safe reduction rules, we can easily show that the set of instances
of S investigated in Theorems 3.1 and 3.3 are confluent.
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q

FIG. 6. Reduction of a partial 3-tree G, case (ii).

THEOREM 3.4. Thefollowing reduction rules are confluent under a congruence relation
under which all partial 3-trees are equivalent to the empty graph: isolated vertex removal,
reduction of a vertex of degree 1, reduction of a vertex of degree 2, and star-triangle
substitution when (i) two of the neighbors ofa vertex of degree 3 are adjacent (Theorem
3.1), (ii) all the neighbors of a vertex of degree 3 are also neighbors of one other vertex

of degree 3, or (iii) the neighbors of a vertex of degree 3 are shared with those of two
other vertices of degree 3 that also share a fourth vertex (Theorem 3.3).

The theorem above has a generalization which concerns a complete set of reduction
rules. A set of reduction rules will be called complete if they are sufficient to reduce
all and only graphs from a given class to a given canonical form. In this context, a
reduction rule is safe if it cannot take a member of the class outside the class.

THEOREM 3.5. Each of the reductions from a complete set of confluent rules is safe.
Proof. Let us assume, to the contrary, that a graph x in a class C has a successor

(reduct) y not in C. Since the reduction rules are complete, x can be reduced to the
canonical form z, while y can not. However, confluence implies that all reducts of x
have a common successor. [3

The results of this section yield an O(n3) algorithm for finding an embedding
3-tree of a graph with n vertices or deciding that no such embedding exists. The time
required for performing the S reductions once the vertex order has been decided is,
with suitable data structures (see Wald and Colbourn [14]) O(n). In order to find the
next vertex to reduce, first in time O(n) select a vertex of degree -<2 or a vertex of
degree 3 with either (i) two adjacent neighbors (in which case the selected vertex is
reduced) or (ii) three neighbors of degree 3 with overlapping neighborhoods so that
the selected vertex is x in a subgraph isomorphic to C’ of Fig. 3 (in this case the
neighbors of x are reduced). If no such vertex exists, check for all O(/12) degree 3
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(b) v(a) v

u ul

v

G G2
FIG. 7. Reduction of a partial 3-tree G, case (iii).

vertex pairs if they have common neighborhood (in which case they are reduced).
Each pair can be processed in constant time. The total worst-case time for finding the
reduction order or deciding that no such order exists is clearly O(n3). Our referee has
pointed out that this can be considerably improved by two modifications: The first
consists in having all neighborhoods of degree 3 vertices (where vertices have been
numbered in an arbitrary order and each neighborhood is represented as an ordered
triple) as keys in a structure supporting insert, search and delete in time O(log n) (e.g.
an AVL tree). This makes it unnecessary to examine all pairs in order to find configur-
ation C". The second improvement consists in having a list of ready vertices (that
fulfill the conditions for safe reduction). Each reduction made implies a neighborhood
change for at most 3 vertices and removal of at most 4 vertices from the ready list
(which means that the total number of additions and deletions in the ready list is
O(n)). With these improvements worst-case processing times of O(n log n) seem
possible.

4. Conclusion and further research. We have found a set of confluent reductions
on graphs such that any graph can be reduced to the empty graph if and only if it is
a partial 3-tree. This set ofreductions yields a polynomial time algorithm for recognizing
partial 3-trees and embedding them in full 3-trees. This generalizes the previously
known recognition algorithm for partial 2-trees of Wald and Colbourn’s 14].

Already for the case of k 4, there is no easy generalization of our methods used
in recognition of partial 3-trees. A solution to this problem for arbitrary k would have
significant practical applications, since graph algorithms based on decomposition are
frequently used, even though only heuristic decomposition strategies are known. The
cost of such a decomposition algorithm is often exponential in the order of the
articulation sets used. Thus, the minimax solution given by a k-tree embedding for
the minimum value of k is clearly highly relevant.

In a preliminary presentation of this research we describe families of safe (but
not necessarily complete) reductions for general partial k-trees [2, Thms. 4.1-4.6]. We
have programmed these reduction rules and tested them on partial k-trees generated
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by Monte-Carlo techniques. For small values of k (up to 7), almost all of the graphs
were correctly recognized, but the failure rate grew with increasing k. The existing,
incomplete set of safe reduction rules could thus be used as another heuristic decompo-
sition method. It differs from most such methods in its "bottom-up" (rather than
"top-down") approach. This method has the worst case complexity of order O(nk),
which compares favorably with the O(n k+2) complexity of the only known complete
recognition algorithm for partial k-trees [3]. If complete sets of safe reductions are
found for arbitrary k and if the improvements suggested by the referee (see 4) carry
over to this case, one could even expect an algorithm for recognizing partial k-trees
in time O(f(k)n log n). Heref(k) is probably exponential since the general recognition
problem for partial k-trees (with the value of k given in the problem instance) is
NP-complete [3].
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INT-8318441 and by the Swedish Board for Technical Development under grant
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Abstract. In designing and evaluating industrial robots, it is important to find optimal configurations
and locate optimum points in the workspace for the anticipated tasks. In the current paper the singular
value decomposition and perturbation analysis are applied to the Jacobian of robot kinematics; the condition
number of the Jacobian is then proposed to be a measure of the "nearness" to degeneracy. Then qualitative
measures called kinematic "manipulability" and "sensitivity" are proposed. Some properties of proposed
measures are investigated and the relation between these measures are discussed. Optimal postures ofvarious
types of industrial robots are obtained.
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1. Introduction. In designing and evaluating industrial robots, it is important to
find optimum configurations, or postures, and locate optimum points in the workspace
for the anticipated tasks. This becomes increasingly important in high precision
assembly. Several measures of workspace are available. The size of reachable volume
is an important performance measure 1]. To obtain full mobility throughout its range
of motion, the ideal manipulator would have no singularities, or degeneracies, in its
workspace. In general, a manipulator becomes degenerate in its workspace; therefore,
the "nearness" to the degeneracy is also an important measure. Yoshikawa [2], [3]
calls it "manipulability." Another important measure of workspace quality is the
accuracy with which the task would be achieved. Particularly if the magnitude of
accuracy of the manipulator is comparable to that of the anticipated tasks such as
high precision assembly tasks, this measure is extremely important.

In this paper a new qualitative measure for manipulability is proposed. Advantages
ofthe proposed measure over Yoshikawa’s definition are discussed. Another qualitative
measure of a manipulator’s ability of accurately positioning and orienting a manipu-
lator, so-called sensitivity, is proposed. Some properties of proposed manipulability
and sensitivity are investigated and the relation between these measures are discussed.
Optimal postures of various types of manipulators are obtained. Some computational
consideration of proposed manipulability and sensitivity are also discussed.

2. Manipulability: A new definition. Yoshikawa [2] proposed w /det (JJ) for
a qualitative measure of manipulating ability of robot arms, and called it manipulability.
According to the singular valued decomposition (SVD) theorem [4], assuming J is
m-by-n matrix there exist orthogonal matrices U Rmm and V R"" such that

(1) J= U E V,

where

0"2

0"m

0

* Received by the editors January 15, 1985. This paper was presented at Second SIAM Conference on
Applied Linear Algebra, Raleigh, North Carolina, April 29-May 2, 1985.

f AT&T Bell Laboratories, Holmdel, New Jersey 07733.
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with

The entries 00i in are called the singular values of J. Therefore, according to
Yoshikawa’s definition, the manipulability is given by the product of the singular
values 001, 02, 00m, i.e.

W 001002 00m"

Mathematically the manipulability is a measure of the "nearness" of J to degeneracy.
For this purpose, the determinant of jjT- is a "terrible measure" of nearness, because
it depends on not only the size of J, m, but also the scaling factor such as the product
of all singular values [5].

In this paper the condition number of J, or cond(J), is proposed to be a better
measure of the manipulability.

DEFINITION (manipulability). The manipulability M of a robot arm is defined by
the condition number of its Jacobian:

(2) M cond (J)= II111 III-111,
where I1" is a norm.

Note that mathematically the condition number is a much more precise and reliable
measure of "nearness" to singularity than quantities such as the determinant or the
smallest pivot [4]. If II" is a Eucledian norm, then M= 00max/00min, where 00max and
00min are the largest and the smallest absolute values of singular values of J, respectively;
therefore, the measure is not affected either by the size of J or by the scaling factor.
Another advantage of this measure is that the condition number is greatest when 00min
is close to zero, so that the near-degeneracy configuration is the most sensitive. Points
in the workspace that minimize the condition number of the Jacobian, i.e. manipulabil-
ity, are the best conditional ones to operate manipulators. The best conditioning
possible in terms of manipulability occurs when M cond (J)= 1. Such best condi-
tional points, called isotropic points [6], may or may not exist for a given design. For
example, a Cartesian type manipulator would have manipulability of one everywhere
within the workspace because M cond (J)= cond (I)= 1, where I is a unit matrix.

3. Kinematic sensitivity functions. The location ofmost accurate operational points
in the workspace is a useful design and evaluation consideration, especially for precise
assembly tasks. The effect of the parameter joints on the positional accuracy in the
workspace can be expressed in terms of sensitivity.

DEFiniTiON (kinematic sensitivity matrix). The parameter-induced trajectory devi-
ation [7] is expressed by

(3) AX=S(Oo)AO

where S(0o) is called the kinematic sensitivity matrix.
Note that (3) is equivalent to the familiar matrix form AX J(0o)A0 where J(0o)

is the configuration dependent Jacobian matrix. In other words, a Jacobian matrix can
be considered as a kinematic sensitivity matrix of a given robot manipulator. Therefore,
(3) can be also written in the familiar matrix form such as:

(4) AX=J(Oo)AO.

The instantaneous velocity in the task space is expressed in terms of the kinematic
sensitivity and the joint velocity 0"

(5) (AX/AT) S( Oo)(AO/AT) S( Oo)O.



SINGULAR VALUE DECOMPOSITION AND ROBOTS 317

The velocity of a manipulator in the workspace is defined by the kinematic sensitivity,
i.e. the Jacobian, and the speed of each joint. In other words, the maximum controllable
velocity of a manipulator in the workspace is decided by the kinematic sensitivity, i.e.
the Jacobian, and the maximum controllable velocity of each joint.

The effect of the velocity change in joint coordinates on the velocity change in
the workspace can also be expressed in terms of the sensitivity function.

DEFINITION (kinematic velocity sensitivity). The kinematic velocity sensitivity S
is a measure of the manipulator’s velocity response in the workspace to velocity
variations in the joint coordinates and is given by

(6)

where

(relative velocity change in workspace)
Sff- (relative velocity change in joint coordinates)

IId ll/ll ll
IId ll/ll ll

" and d: velocity and velocity error in the workspace,

and dO" velocity and velocity error in the joint coordinates,

Applying linear system error analysis [5] to (5), the relative velocity errors in the
joint coordinates are bounded by the product of the cond (S), or cond (J), and the
relative velocity error in the workspace.

(7) lid011 __< cond (J)II011 II:ll
In other words, the condition number of J, or manipulability M, gives a measure of
how much error in " may be magnified in errors in . From (7) it can be easily shown
that an inverse value of the maoipulability M, i.e. 1/M, gives the lower bound of the
kinematic velocity sensitivity Sff"

(8)
IId ll/ll ll >
dO II/II M

where M cond (J)= II111 II1- 11. Since M 1, S and IlM are bounded as follows"

1
(9) 1NS0,
it can be concluded from (9) that the best conditioning possible points in the workspace
in terms of manipulability are the worst conditioning possible points in terms ofvelocity
sensitivity, and vice versa. us, the relation between manipulability and velocity
sensitivity is established.

4. MII sestfdsesfltors. The simulations
on manipulability and sensitivity of various types of manipulators demonstrate the
utility and effectiveness of the proposed measures.

The optimal postures of a two-joint link in terms of manipulability and sensitivity
with various second link lengths are shown in Fig. 1 and Fig. 2, respectively. It is
wohwhile to note that the optimal manipulatable postures of the first link remain the
same for various lengths of second link as long as 0.707 l N l N l. This is similar to
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FIG. 1. Postures with optimal manipulability.

FIG. 2. Optimal postures for precise assembly.

X

our arms" in general the upper arm remains almost in the same posture as long as the
lower arm and hand can reach the anticipated points in the workspace.

Salisbury and Craig [6] used the condition number of jT to find optimal posture
of fingers to minimize error propagation from input torque to output forces because
the torque z and the force F are related by the equation ’r jTF. Yoshikawa [2], [3]
proposed w /det (JJT) for a measure of manipulability as mentioned previously. In
Fig. 3, the optimal postures of a two-joint link in terms of these measures are depicted
along with the optimal postures determined by the measure proposed in this paper.
While optimal postures determined by Yoshikawa’s measure give the second joint
angles in the vicinity of r/2 for various length of the second link, optimal postures
determined by the proposed measure in this paper give the first link in the same posture
as long as it can. Similar optimal postures are obtained for other articulated manipu-
lators which contain two-joint links.

Note that the optimal postures determined by the measure proposed by Yoshikawa
for cylindrical and polar type manipulators are given when the prismatic joint at the
arm is stretched out and the tip of the arm reaches the outer boundary of the work
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(a) CONO (JT) (b) W (c) M CONO (J)

2 --o’ 1’ "2-- O’7O?gl’ "2 =1
FIG. 3. Comparison of optimal postures based on various definitions.

space. As Yoshikawa pointed out in his paper [3], this is very inconvenient. This
inconvenience is caused by the "scaling factor" which was mentioned previously in
this paper. The proposed measure is free from this scaling factor. Therefore, the
proposed measure gives the optimal postures when the prismatic joint is pulled in and
the tip of arm reaches the inner boundary of the work space. These are more reasonable
postures than those determined by Yoshikawa’s definition. Figure 4 shows the
manipulability M of a cylindrical manipulator as a function of the sliding distance of
a prismatic joint of the arm. It clearly shows that the optimal posture occurs when the
tip of the arm reaches the inner boundary of the workspace. Note that the position in
the direction of Z-axis does not affect the manipulability.

5O

40

30

20

10

0

FIG. 4. Manipulability of a cylindrical manipulator.

5. Summary. A reliable and useful measure of robot manipulability has been
proposed; kinematic sensitivities has been defined. It has also been proved that the
velocity sensitivity is bounded by the inverse of the measure of manipulability. In other
words, the best conditioning possible postures of robot manipulator in terms of
manipulability are the worst possible postures in terms of velocity sensitivity.

Optimal postures in terms of kinematic manipulability and sensivitity of various
types of manipulators are obtained. It has been demonstrated that the measures
proposed in this paper to find optimal postures of arms are more suitable than other
measures.
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Appendix. Numerical calculation of the condition number. The actual computation
of cond (J) involves knowing J-. If sj are the columns of J and are the columns
of j-1 then in terms of the vector norm we are using

(A1) M cond (J) max II" max II.
J

It is easy to compute IIll, but finding II - ll would roughly triple the time required
for Gaussian elimination. Fortunately, the exact value of cond (J) is rarely required.
Any reasonably good estimate of it is satisfactory. In this paper, the manipulability is
estimated by

(A2) M cond (J) max sj gll’

where Y and Z are two vectors such that IIzll/ll Ell ll - ll. This involves solving two
systems of equations

jTy= E, JZ= Y,

where jT is the transpose of J and E is a components +1 chosen to maximize the
growth during the back substitution for [8].

Two subroutines used to obtain the condition of J are decomp and solve ().
Decomp carries out the pa of Gaussian elimination and saves the multipliers and
the pivot information. Solve () uses these results to obtain the solution. Decomp ()
also returns an estimate of the condition of the matrix Z Such an estimate is a much
more reliable and useful measure of nearness to singularity than quantities such as
the determinant or the smallest pivot. Decomp can be used to compute determinants.
The last component ofthe pivot vector returns + 1 if an even number ofrow interchanges
is used, and the value -1 if an odd number is used. This value is multipled by the
product of the diagonal elements of the output matrix to obtain the determinant. Both
subroutines are coded in C and implemented on VAX 11/780.
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A MULTIPLIER METHOD FOR IDENTIFYING KEYBLOCKS IN
EXCAVATIONS THROUGH JOINTED ROCK*

J. L. DELPORT’ AND D. H. MARTINf

Abstract. G. H. Shi and R. E. Goodman have recently pointed out the practical importance of the
keyblock principle in supporting underground and surface excavations in jointed rock and have given an
elegant procedure involving stereographic projection and graphics for identifying the shapes of keyblocks.
This paper presents the mathematical analysis of an entirely different keyblock characterisation and iden-
tification algorithm. The characterisation rests upon Tucker’s Theorem of the Alternative, and the algorithm
requires only the execution of a few linear programming type pivot operations and sign tests.

Key words, keyblock, keystone, stability of excavations, theorem of the alternative

AMS(MOS) subject classification. 49D33

1. Introduction. Following Shi and Goodman [5], [6], we consider a body of rock
that is traversed by a number of families of more or less parallel discontinuity planes
or faults. The rock body is divided by these discontinuities into blocks and slabs and,
when excavating a tunnel, some of these may be liable to loosen and fall into the
tunnel. As described by Shi and Goodman, once these first blocks have fallen, others,
which were previously held in place by them, may also be free to all, possibly leading
progressively to a major collapse. Shi and Goodman have termed these critical blocks
that must fall first, keyblocks, and have shown how they may be identified using a
graphical method involving stereographic projection. See also 1].

In this paper we develop an efficient, purely computational algorithm for identify-
ing the keyblocks. Execution of the algorithm requires only the reduction of a system
of three linear equations, followed by successive LP-type pivot operations and tests
for the signs of the entries. In practice, the number of families of discontinuity planes
seldom exceeds five, and the algorithm can easily be executed in such cases on a
programmable pocket calculator.

This paper deals with what may be termed the convex case, in which the excavation
is taken to be convex and bounded by finitely many planes, and the visible blocks of
rock, which may or may not be keyblocks, are convex apart from nonconvexities
introduced by the excavation itself. The complicating effects of other nonconvexities
will be dealt with in a subsequent work.

2. Discontinuity planes and rock blocks. Suppose there are rn >-3 families of
discontinuity planes. Each family is idealised to a family of parallel planes, and hence
all members of the ith family have a common unit normal vector ni and are given by
linear equations of the form

(1) hi" r-- C

for different values of the constant ci. Here r= (x, y, z) is the position vector of a
representative point on the plane, and the dot denotes the scalar product. We adopt
the convention that the normal vectors ni are oriented upwards. Then points above
the plane (1) are given by

ni r >- ci,

* Received by the editors August 16, 1984.
f National Research Institute for Mathematical Sciences of the CSIR, PO Box 395, Pretoria 0001, South

Africa.
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while those below the plane (1) are given by

ai" r ci.

Equivalently, if we introduce the orientation scalar

1 for upward orientation,
ei _1 for downward orientation,

then the inequality

eini r >-- eci

gives points above or below the plane (1) according to the choice of orientation. We
make a standing assumption that no trio of the normals n is coplanar.

The discontinuity planes divide the body of rock into blocks, and the shape of a
particular block depends upon above which and below which planes it is, while its
size is influenced by the relative position of the planes. A convex block bounded by
m different planes is thus given by simultaneous inequalities

(2) eni" r >- eic, i- 1, 2,..., m,

and its shape is thus characterised by an orientation pattern (el, e2, , era). It remains
to introduce the excavation that exposes the block. For simplicity we suppose that
only one plane face of the excavation intersects the block--this assumption is relaxed
later. Let N denote unit normal to this excavation face, oriented to point out of the
rock face into the excavation. Then the rock block is visible in the excavation face

N.r=d

and is given by the inequalities

ein" r >- eic, 1, 2, , m,
(3)

N. r-<d.

We make the further standing assumption that N is not coplanar with any pair of the
normals al, , am. This is equivalent to the assumption that discontinuity planes from
different families show as nonparallel lines in the excavation face.

3. Keybloeks. The characteristic properties of a keyblock given by the system (3)
are first, that it is of finite size--i.e., constitutes a bounded point set--and second, that
it is movable without any neighboring block having to move simultaneously. A standard
theorem about convex sets (see, for example, [4, Thm. 8.4, p. 64]) ensures that the set
(3) is bounded if and only if the associated homogeneous system

(4)
eiai.r>-O, i= 1,2,..., m,

N.r_<_0

has no nontrivial solution.
The movability of the block requires the existence of a nonzero translation vector

v that will not entail the block encroaching upon any adjoining block, i.e. such that

(5) 0, eiai" v-->--0, i= 1,2,’’’, m.

The question treated in this paper is the following: Which among the 2 different
orientation patterns (el, e2," ", em) correspond to keyblocks--i.e, which are such that
(4) has no nontrivial solution, while (5) does have? Shi and Goodman have noted that
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the number of different keyblock orientation patterns is

2 = (m- 1)(m-2).

The characterisation (4), (5) differs notationally but agrees mathematically with that
used by Shi and Goodman in the cited references. However, from this point on our
approach to the identification of those orientation patterns (el, e2, , e,,) that corre-
spond to potential keyblocks is quite different to that of Shi and Goodman. Whereas
their technique hinges on a stereographic projection of possible solutions (r or v) of
(4) and (5) onto a plane, ours involves multipliers that are introduced using a so-called
theorem of the alternative and leads to a simple algorithm that requires only the
solution of systems of linear equations and sign tests.

4. Multiplier eharaeterisation of keybloeks. We first show that since no trio of
normals ni is coplanar, the existence of a solution v such that (5) holds is equivalent
to the existence of a solution v to the ostensibly stronger inequalities

(7) ein.v>0, i= 1,2,..., m.

Clearly, if (7) is consistent, so is (5). For the converse suppose (7) is inconsistent, but
(5) consistent. By Tucker’s Theorem of the Alternative the inconsistency of (7) implies
the existence of nonnegative multipliers/zl, ,/z,, such that

(8) Y /zien 0, each/z >= 0, not all/zi zero.
i=1

But if v is any solution of the system (5), then from (8) we have

0= Y. tz,(e,n," v),
i=1

where each term is nonnegative. Hence for every index i, either/z 0 or en. v 0.
Since at most two of the normals can be orthogonal to v, at most two of the multipliers
in (8) are nonzero, leaving at most two terms. But this means two of the normals are
parallel, which is false. Thus the consistency of (5) is equivalent to that of (7) and,
by Tucker’s Theorem of the Alternative, is equivalent to the inconsistency of the
system (8).

Turning to the system (4), since the normals nl, , n,, are not coplanar, a solution
r will be nontrivial if and only if not all of the scalar products eni. r vanish. Hence
the nonexistence of a nontrivial solution to (4) is equivalent to the system

en.r>=0 for all i, and not all zero,
(9)

N.r_<0

being inconsistent. By Tucker’s Theorem of the Alternative this inconsistency is
equivalent to the consistency of the system

(10) -/zN+ /zieini=O, /z->0, all/zi>0.
i=1

See, for example [3, p. 29]. For the possible convenience of readers, this theorem is stated in an

Appendix hereto. It is applied here with the m m identity matrix in the role of the matrix B and the 3 m
matrix with columns given by the vectors eini, 1, 2,. -, m in the role of D, C being vacuous.
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Thus an orientation pattern (e,. ., e,,) corresponds to a keyblock if and only if the
system (10) is consistent while (8) is inconsistent.

Clearly we cannot have (8) being inconsistent while (10) is consistent with/x 0.
Hence it suffices to consider (10) with / 1. But then the inconsistency of (8) is
precisely the condition that the solution set of (10), if nonempty, should be bounded.
Setting ei/xi hi in (10), this establishes the following characterisation.

A visible convex block (3) is a keyblock if and only if its orientation pattern
(e,..., e,,) is such that the set of multiplier m-tuples (h,..., h,,) that satisfy the
equation

(11) E hini =N
i=1

and have the sign pattern

(12) sgn ,i ei, 1, 2, , m
is both nonempty and bounded.

The advantage of this characterisation is that it involves a fixed system (11) of
equations that does not depend on the choice of orientation pattern. Geometrically,
(11) defines a plane II of m-3 dimensions in the m-dimensional space " with
coordinates (,,..., ,,,). In 1", each orientation pattern (e,,.., e,,) corresponds
via (12) to a particular orthant in I’, and keyblock orientations correspond to those
orthants that have a nonempty but bounded intersection with the plane II.

5. Determination of the orientation patterns of keyblocks. In ’, each coordinate
hyperplane hk 0 intersects the plane II of all solutions of (11 in a (relative) hyperplane
that partitions II into two half-planes, each characterised by the sign of hk. Let
(e, e.,-.-, e,,) be the orientation pattern of a keyblock. This will be so itt the
simultaneous inequalities

(13) ekhk =>0, k 1,2,. ", m,

together with (11), define a nonempty compact polyhedron P on II with nonempty
interior relative to II. At vertices of this polyhedron m 3 of the coordinates ’k vanish.
Because of the standing assumption that N is not coplanar with any pair of the normals
nk, it is clear from (11) that at any vertex precisely three of the coordinates ,k are
nonzero. The vertices are therefore distinct, and may be labelled according to the
nonzero coordinates" Vuk denotes that point of II at which ,h 0 for all h i, k--here
i, k will always signify distinct indices.

For any fixed index k, the quantity ek,Xk, regarded as an affine function on H, is
positive throughout the relative interior of our compact polyhedron P, and hence
achieves a positive maximum on Pmi.e., subject to the constraints (11) and (13). By
a fundamental theorem of linear programming (see, for example, [2]) this maximum
is achieved at a basic feasible solution--i.e., at some vertex of P. Since ekhk > 0 at this
vertex, it is necessarily of the form Vkij for some indices i, j, and the variables
hj are the only nonzero ones at Vkij. Since nk, ni and n are not coplanar, equations
(11) may be solved for hk, hi and h in terms of the other variables to produce an
equivalent reduced system of the form

(14)
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as in the well-known simplex method of linear programming. Here bk, bi, bj are the
nonzero values of Ak, Ai and Aj respectively at the maximum, and it follows immediately
that

(15) ek sgn bk, ei sgn b, e sgn b.
We may rewrite the first equation in (14) as

ekAk + ekehakh ehAh ekbk,
h ya i,j,k

and then, from the fact that the function ekAk achieves its maximum subject to (14)
(which is equivalent to (11)) and (13), it follows that we must have

ekehakh >= 0 for all h k, i, j.

It will be shown at the end of this section that none of the coefficients akh aih ah
appearing in (14) can be zero. Accepting this for the moment, it now follows that the
maximizing vertex VkO is unique and that

(16) eh ek sgn akh, h k, i, j.

To summarise, this proves that for any index k held fixed, to each keyblock orientation
pattern (el,’", era), there corresponds a unique index pair i,j k such that the
orientation pattern is generated from (14) by the formulas (15) and (16).

We now establish a converse statement. Still holding the index k fixed, let i, j be
any pair of distinct indices different from k, and consider the simplex So in II generated
by the m 2 vertices

Vho, h i,j.

For any h # i, j, the face of So opposite vertex VhO lies in the hyperplane Ah --0, whereas
at VhO, the coordinate ’h is nonzero. It follows that throughout the relative interior of
S0, the coordinate Ah has the same sign as it has at Vho. In equations (14) (which are
equivalent to (11)) we see that for h # k, i, j, if we set all coordinates zero other than
Ah, Ai, Aj, the first equation reduces to

akhAh bk,

from which it follows that the sign of Ah at VhO is given by

(17) sgn Ah =sgn (bk/akh)=(sgn bk)(sgn akh), h k, i,j,

For h k, it follows directly from (14) that at VkO,

(18) sgn Ak sgn bk.
Thus (17) and (18) hold throughout the simplex S0.

The situation for Ai and A; is diiterentmthey may or may not change sign within
So. However, from (14), at the vertex VkO of So they have the signs

(19) sgn Ai sgn b, sgn A sgn bj.

It follows that points in the relative interior of So sufficiently close to the vertex VkO
have the sign pattern given by (17), (18) and (19). Furthermore, since at least one sign
changes across any boundary face of the simplex S0, this pattern of signs occurs only
at points of a bounded subset of II. It therefore corresponds to a keyblock orientation
pattern. It remains only to note that (17), (18) and (19) can be written as sgn Ah --eh
for all h with (el," , e,,) given by (15) and (16). This proves the following result.
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For each index k held fixed, there is a one-to-one correspondence between keyblock
orientation patterns (el,..., era) and pairs of distinct indices i, j different from k such
that the orientation pattern is generated by reducing the equations (11) to the form (14)
and applying the formulas (15) and (16).

As a spin-off, this argument provides a proof of the formula (6) for the number
of different keyblock orientation patterns--the number of pairs of distinct indices i, j
different from a given index k is of course

This result leads immediately to the following efficient algorithm for generating
the full list of keyblock orientation patterns:

With k 1 held fixed, successively reduce the system of equations (11) to the form
(14) for each pair of distinct indices i, j between 2 and m inclusive, and apply formulas
(15) and (16) to generate orientation patterns. The result will be the complete list of
keyblock orientation patterns. The successive reductions of (11) can be performed
incrementally using so-called pivot operations in a linear programming tableau.

It remains to show that in (14) none of the coefficients or right-hand sides can
vanish. Let

aiAi=b
i=1

represent any nontrivial equation deduced by reduction operations from (11). This
means that this equation is some linear combination of the three component equations
in (11), which implies the existence of a nonzero vector a such that

a =a n, i= 1,. ., m and b =a. N.

Since no trio of the normals is coplanar, clearly no more than two of the coefficients
ai, b can vanish. In (14) this leads to the desired conclusion.

6. Keyblocks visible in more than one excavation face of a convex excavation. The
above considerations do not apply to blocks of rock that, instead of being visible only
in some single excavation face, are visible in two or more excavation faces. We limit
attention to the case in which the relevant part ofthe excavation is given by simultaneous
inequalities of the form

(20) Na" r_-> da, a 1, 2,. , n,

where part of the block is visible in each of these n faces. The block is thus given by
conditions of the form

(21)
eini" r >-- eici for all 1, 2, , m,

N. r_-< d for some a 1, 2,. ., n.

As before, the block is movable if and only if there exists a vector v such that (7)
holds. Turning to the question of the boundedness of the block, let us denote by B
the set of all points r such that

ein. r >- ec for all 1, , m and Na" r-< da.

Then the block itself is the union of the sets B and hence is bounded if and only if
each of the sets B, is bounded. Note that each set B, is nonempty since the block is
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assumed to be visible in each of the excavation faces. Since (7) is independent of any
particular face, we arrive thus at the conclusion that the block (21) is bounded and
movable if and only if each of the blocks Ba is bounded and movable. It follows from
the multiplier characterisation that the block is a keyblock in a convex excavation ifand
only if its orientation pattern is such that for every excavation face in which it is visible,
the system (11) with sign conditions (12) has a nonempty bounded, set of solutions. In
applying the algorithm described in the previous paragraph, the different normal vectors
Na involved may be treated simultaneously in performing the reduction of and sub-
sequent pivot operations on the system (11). An orientation pattern then corresponds
to a keyblock if and only if it appears in the list corresponding to each choice of
normal vector Na.

7. Hanging keyblocks. In practice a keyblock may present a particular danger if
it is potentially capable of sliding out in a direction having a downward component.
Such keyblocks will be termed hanging keyblocks, and a block (21) is a hanging
keybiock if it is bounded and there exists a translation vector v such that

eini’v>0 for all i= l, 2, m,
(22)

K. v_<-0,

where K denotes a vector pointing vertically upwards. We assume that no two normal
vectors ni are coplanar with K. Once again, by Tucker’s Theorem of the Alternative,
this is equivalent to the inconsistency of the system

(23) /xK- /ziein, /z _-> 0, /z > 0 but not all zero
i=1

and the individual consistency of each of the systems (for a- 1, 2,. ., n)

(24) Na xieini, Iz > O.

Suppose this holds. Then, in particular, (23) with/z 0 is inconsistent, which is precisely
the condition for the boundedness of the solution sets of (24). Thus the algorithm of
5 will include the particular orientation pattern (el, , e,) in the list generated for

each choice N Na, but not for the choice N K. Conversely, if this outcome occurs,
then each of the systems (24) has a nonempty bounded solution set, while that of (23)
must be either nonempty but unbounded, or empty. However, the condition for
boundedness of solution sets in (23) is the same as that for (24), i.e. (23) with/ =0
to be inconsistent. Hence the first alternative here cannot occur, and (23) must have
been inconsistent.

Thus a block (21), visible in n faces of a convex excavation, is a hanging keyblock
if and only if its orientation pattern appears in the list generated by the algorithm of 5
for each of the specifications N Na, but not in the list generated for N K.

Once again, in executing the reductions of system (11), the various specifications
for N can be treated simultaneously.

8. Example. For illustrative purposes we use the same example as is treated by
Shi’ and Goodman in [6]. This involves rn =4 sets of discontinuity planes and one
excavation face, the orientations of which are given in Table 1. In addition, we consider
a second excavation face, viz. a horizontal roof with inward normal vector directed
vertically downwards.
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TABLE

Family
Family 2
Family 3
Family 4
Excavation Face

(excavation above this face)

Dip direction
in E of N

172
243
302
343
300

Dip angle in
below horizontal

71
68
38
13
60

Resolving the various upward normal vectors into components east, north, and vertically
upwards, equations (11) become

.936 -.421 .326 .215
/2

/ .433
.326 .375 .788 .974

/3
L .500

A4

where we propose to deal simultaneously with two selections of excavation face. The
first step is to select h to play the special role in the algorithm, and to reduce this
system of equations to the form (14) for the first pair of indices i, j 1, say 2, j 3.
This yields the equivalent system

(25) 0 1 0 -.679 hz .451 .691
0 0 1 1.337 A3 .608 -1.285

A4

To each of the right-hand sides separately we now apply formulas (15) and (16).
Dealing first with the sloping excavation face, we have from (15)

el =sgn (-.455)=-1, e2=sgn (.451)= +1, e3=sgn (.608)= +1,

while from (16)

e4 el sgn (.539)=-1.

Thus the orientation pattern (-1, +1, +1,-1) corresponds to a keyblock. This means
that a block that is bounded above by planes of the first and fourth families and below
by planes of the second and third, and that is visible only in the sloping excavation
face, is a keyblock. For this reason we use the simpler notation L U U L for the
orientation pattern.

Similarly, for the second right-hand side in (25) we obtain

e =-1, e2 +1, e =-1, e4 -1, or L U L L.

In tableau form the system (25) is simply

.539
-.679
1.337

-.455 -.758
.451 .691
.608 -1.285
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and by a simple "pivot" operation we bring the variable /4 into the basis in exchange
for A3, in order to deal with the index pair 2, j 4. This produces the new tableau

A2
-.403 -.700 -.240
.508 .760 .038
748 .455 -.961

From (15) and (16) the corresponding orientation pattern for the first right-hand side
is

el sgn (-.700) -1, e2 sgn (.760) +1, e4 sgn (.455) + 1,

e3 el sgn (-.403)= +1, or L U U U,

and similarly, L U U L for the second right-hand side.
A final pivot operation to swap A2 and A3 produces the tableau

A3
A4

.793
1.969

-1.472

-.097 -.210
1.496 .069
-.664 -1.017

From (15) and (16), the corresponding orientation patterns are L L U L for both
right-hand sides. The complete list for the sloping excavation face is thus

L U U L
(26) L U W W

L L U L,

which agrees with that given by Shi and Goodman in [6, Fig. 7a]. For the horizontal
roof the complete list is

L U L L
(27) L U U L

L L U L,

and any block that is visible solely in this roof and has any one of these orientation
patterns is a keyblock.

The patterns common to both lists are

(28)
L V U L
L L U L,

and these correspond, as shown in 6, to keyblocks that embrace the corner between
the sloping excavation face and the roof.

We can determine which of these are hanging keyblocks by observing that replace-
ment of the vertically downward normal vector by the vertically upward one (i.e. by
K) merely reverses the sign of all orientations for that case. Thus the list corresponding
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to N K can be deduced from (27) to be

U L U U
(29) U L L U

U U L U.

According to 7, patterns that are in the list (26) but not in (29) correspond to hanging
keyblocksin this case all three do. Likewise, all three patterns in (27), and hence
also those in (28), also correspond to hanging keyblocks.

Finally, we observe that if the excavation is below, rather than above, the sloping
excavation face, so that (26) is replaced by the list

U L L U
(30) U L L L

U U L U,

then there is no overlap with (27), so that in this case no blocks that intersect the
corner are keyblocks. The pattern U L L L is the only one from (30) that is not in
(29), and hence it represents the only hanging keyblock in this case.

Appendix---Statement of Tucker’s Theorem of the Alternative. For the convenience
of readers we give a statement of Tucker’s Theorem of the Alternative, as presented
in [3, p. 29].

Let B, C and D be given matrices, with B being nonvacuous. Then either the system
Bx >= 0 but not all zero, Cx >= O, Dx 0 has a solution x or the system h B +/z’C + v’D O,
A > O,/ >-0 has a solution A, I, , but never both.

This theorem was first given by Tucker in [7].
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Heerden and F. A. Vreede of the National Mechanical Engineering Research Institute
of the CSIR, Pretoria for stimulating discussions on the practical importance of the
Shi-Goodman work, and for prompting our interest in in the keyblock identification
problem.
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HARD ENUMERATION PROBLEMS IN GEOMETRY
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Abstract. A number of natural enumeration problems in geometry and combinatorics are shown to be
complete in the class # P introduced by Valiant. Among others this is established for the numeration of
vertices and of facets of a polytope, acyclic orientations of a graph and satisfying assignments of implicative
boolean formulas.
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Introduction. This article contains a contribution to the theory ofhard enumeration
problems. The foundations of this area were laid by Valiant [Val], [Va2] who defined
the class : P of enumeration problems and the subclass of problems complete in P.
The most interesting of his results is the : P completeness of computing permanents
of 0-1 matrices. This problem can also be stated as the problem of enumerating perfect
matchings in bipartite graphs. While deciding whether a bipartite graph has a perfect
matching can be done in polynomial time [HI the enumeration problem is P-complete.

Valiant’s pioneering work was continued by a recent article of Provan and Ball
[PB] who prove the P-completeness of a number of natural enumeration problems.
With every enumeration problem there is an associated decision problem. Instead of
asking for the number of objects in question we ask whether this number is zero or
not. The decision problem associated with the computation of the permanent function
is the question whether a given bipartite graph has a perfect matching. While this
decision is solvable in polynomial time, it is by no means trivial. Notice, however, that
for many ofthe problems discussed in [PB] the situation is even more extreme: Consider
for example the problem of enumerating independent sets in a bipartite graph, the
decision problem associated with this enumeration problem is trivial: Every graph has
an independent set of vertices. So an enumeration problem can be = P-complete even
if the existence problem is trivial.

This article assumes acquaintance with the theory of = P-completeness as presented
in [Val], [PB] and [GJ]. Our purpose is to present a number of natural enumeration
problems which belong to the class of = P-complete problems. The problems are
geometric, combinatorial and from propositional calculus.

Here is our main theorem"
THEOREM. The following enumeration problems are P-complete.

(1) Vertices in a polytope.
Input: A system of linear inequalities Ax <-_ b defining a polytope P
Output: The number of vertices of P.

(2) d-dimensional faces of a polytope (fixed d).
Input: As in (1).
Output: The number of d-dimensional faces of P.

* Received by the editors December 10, 1984.

" Institute of Mathematics and Computer Science, Hebrew University, Jerusalem 91904, Israel.
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(3) Facets of a polytope.
Input: A finite set of points in R n.
Output: The number of facets ((n-1)-dimensional faces) of P.

(4) Components of slotted space.
Input: A set {Hil I} of hyperplanes in Rn.
Output: The number of connected components of {R"\U Hili I}.

(5) Acyclic orientations of a graph.
Input: A graph G V, E).
Output: The number of orientations of G with no directed circuit.

(6) 3-colorings of a bipartite graph.
Input: A bipartite graph G- (A, B, E).
Output: The number of ways to properly color G with 3 colors.

(7) Satisfying assignments of an implicative Boolean formula.
Input: A Boolean formula B on variables Xl,"’,x, of the form B=
AI=, (x,1 v
Output: Number of truth assignments for Xl,. ", X which makes B true.

Proof. (1) We use the fact from [PB] that enumerating order ideals is : P-complete.
Given a poset (P, ->_) with P- n] we associate with P a polytope B- B(P) in " as
follows:

B {x I"[1 -> xi-> 0, x> xj if i>-j in P}.

(See [St2], [Li], [KS] where use is made of this polytope.)
We claim that the vertices of B are in 1"1 correspondence with the order ideals

of (P, >_-). First we prove that all vertices of B have 0-1 coordinates. Let x B have
some 0<x < 1. If a =max {xj]0 < x < 1}, then by replacing all coordinates x a by
a + e or by a e we will get a point of B. This implies that x is not a vertex of B. The
correspondence between vertices and ideals is as follows"

x vert (B) --> S {1 <-_j <= n[xj 0}.

It is easily verified that S is an ideal and that this correspondence is bijective.
(2) Suppose that for some fixed d we can find fa (K) the number of d-dimensional

faces of a polytope K. Consider r-fold pyramids P with K as basis. In [Gru, p. 55]
one finds

If we write (*) for r= O, , d and have all fe(P) evaluated, then we obtain a system
of equations in unknown

fo(K), ,f(K).

This system of equations has a triangular matrix and so they can be solved successively
and fo(K) can be determined in polynomial time. Since evaluating fo(K)= the number
of vertices of K is #P-complete by (1), our claim follows.

(3) This is just the dual of (1): See [Gru, p. 46] for polytope duality.
(5) The proof here is based on two observations.
PROPOSITION [Stl]. Let G=(V, E) be a graph with n vertices and let P(G, A) be

its chromatic polynomial. Then (- 1)nP( (3, 1) equals the number of acyclic orientations

of G.
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For the other observation we have to define the operation of join of two graphs
G V1, El), H V2, E2) where V1 fq V2 . The join G+ H has V1 U V2 as its vertex
set and

E U E2 U {Ix, y]lx V, y V2}

as its edge set. The following observation is immediate.
PROPOSITION. P(G+ K,, A)= A(A 1), , (A t+ 1)P(G, A t).
Now we can combine these two facts as follows. Being able to enumerate acyclic

orientations is equivalent to computing P(G,-1) for the graph. But if we have the
values of P(G 4-K,,-1) for t- 1,..., n, that means we can calculate the integers

P(G, -j) (n+ 1 _->j_-> 2).

But P is a monic polynomial of degree n so from these numbers we can compute
P(G, A), the chromatic polynomial of G. This is a 4 P-complete problem because the
reduction to coloring is parsimonious [GJ, p. 169].

(4) The proof here makes use of (5) that enumerating acyclic orientations is
4 P-complete and on the following result of Greene. H

_
R is the hyperplane given

by {x Rnlx, xj}.
PROPOSITION [Gre]. Let G V, E) be a graph on n vertices and consider

S( G) "\U Hj

where the union is over all i, j such that i, j] E. The number of connected components
of S( G) equals the number of acyclic orientations of G.

(6) We base this proof on the P-completeness of enumerating independent sets
in bipartite graphs [PB]. Let G- (A, B, E) be a partite graph for which we want to
find I(G) the number of independent sets. Consider a graph H which is obtained by
adding two new vertices a, b with a being adjacent to all vertices in B U {b} and b to
all vertices of A U {a}. Now let us compute x(H, 3), the number of 3-colorings of H.
Suppose w. l.o.g, that a, b are colored 1, 2 respectively. The 3-coloring is now uniquely
defined by the set of vertices colored 3. This can be any independent set of G and so

x(H, 3)=6I(G).

This proves the 4 P-completeness of computing 2’(H, 3).
(7) This follows from : P-completeness of enumerating ideals in posets [PB]: Let

(P, >_-) be a poset with P- {Pl,""", P,}. Associate with it the Boolean expression

B ^ {xi v Xjl Pj > Pi in P}.

It is fairly easy to verify that the set of xi which are assigned a true value in any
assignment satisfying B is an ideal in (P, _->) and that all ideals are obtained in this way.

Let us mention in closing a most intriguing problem in this field: For a poset
(P, >=) a linear extension is a 1:1 mapping f:P{1,..., [P[} such that if x<y in P
then f(x)<f(y). Consider the problem:

Enumeration of linear extensions.
Input: A poset (P, >-_).
Output: L(P), the number of linear extensions of (P, =<).

Conjecture. The enumeration of linear extensions is a # P-complete problem.
A proof of this conjecture will provide a first explicit statement to the effect that

computing the volume of a convex polytope is a hard computational problem. To see
this we remind the reader about the polytope B(P) which was used in proving part 1
of our main theorem. We quote without proof of the following fact from [Li]:
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PROPOSITION. For a poset (P, >-) on IPl=p elements L(P) the number of linear
extensions of P satisfies

L(P)=p!vol(B(P)).

The connection between the P-completeness of enumerating linear extensions
and the complexity of evaluating the volume of a convex polytope is now clear.

Let us also comment about the relationship between the number of linear
extensions of a poset and enumerating order ideals. We use I(P) to denote the number
of ideals in the poset P. For posets P, Q we define their product P x Q to be a partial
order on the cartesian product of P and Q with (Xl, yl)>= (x2, Y2) if xl >= x2 in P and

Yl => Y2 in Q. A mapping f: P-> Q is order preserving if x => y in P implies f(x) >=f(y)
in Q.

PROPOSITION. Let (P,->_) be a poset and let Ct be the chain on elements. Then
I(P x Ct) equals the number of order preserving maps f: P --> {0, 1,. , t}.

Proof. With an ideal J
_
P we associate a function f: P--> {0,..., t} as follows:

For every xP there is unique t>-j>-O such that (x,j)J and (x,j-1)J. Let
f(x) t-j for that value j. Since J is an ideal, f is well defined and easily seen to be
order preserving. It is also a routine matter verifying that this correspondence is
bijective.

Now we come to the expression for the number of linear extensions of a poset.
THEOREM. For a poset (P, ->) on IPI n elements, the number of linear extensions

L(P) satisfies

L(P)= I(Px C,_I)-nI(Px C,_2)+(n2)I(Px C,-3)

-+. .+ I(P
n-2

X C1) :::
n-1

Proof. This follows from the previous proposition and Inclusion-Exclusion.
Classify order preserving maps f: P->{0,..., n-1} according to their range. There
are I(Px C,_1) such mappings altogether. Say f has property (n-l>- t>-0) if is
not in the range of f. L(P) is the number of order preserving maps which arc onto,
i.e., have no property and there are

n)I(P+ C,,__,)
J

maps having a given set of j properties.
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ERRATUM: VOLTERRA MULTIPLIERS II*

RAY REDHEFFERf

The following note should be added on page 621.

A more accurate calculation by Professor Kachar of Karlsruhe University indicates
that the inequality c > 12.58 following (28) should be c-> 12.60043, leading to minor
emendation elsewhere. Meanwhile the method of this paper has been programmed on
a computer by Wolfgang Walter, Jr., also of Karlsruhe University. He finds that the
multiplier exists if c >= 12.45 and not if c =< 12.40.

*This Journal, 6 (1985), pp. 612-623.
f Department of Mathematics, University of California, Los Angeles, California 90024.
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A PARALLEL BLOCK ITERATIVE SCHEME APPLIED TO
COMPUTATIONS IN STRUCTURAL ANALYSIS*

ROBERT J. PLEMMONS"

Abstract. In this paper it is shown how a block cyclic successive overrelaxation direct-iterative method
can be applied to the parallel solution of certain large-scale linear equality-constrained quadratic program-
ming problems. The scheme is similar in nature to those studied recently by de Pillis, Niethammer and
Varga and by Markham, Neumann and Plemmons for solving large sparse least squares problems. It is
based upon a partitioning strategy of the fundamental matrix into a block consistently ordered 2-cyclic form
where the nonzero eigenvalues of the Jacobi matrix are all pure imaginary. The method is shown to be
globally convergent and convergence rates are established.

Applications of the algorithm are discussed for large-scale structural analysis computations where it is
shown how the algorithm can be adapted to the simultaneous computation of the system forces and the
nodal displacements. Here, advantage can be taken ofthe special forms ofthe matrices involved. In particular,
it is shown that much of the algorithm lends itself to efficient implementation on pipelined vector machines
and on multiprocessors.

Key words, block successive overrelaxation, constrained minimization, linear systems, parallel process-
ing, structural analysis
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1. Introduction. The first part of this paper is concerned with a class of iterative
schemes for solving the following constrained minimization problem:

Minimize 1/2x tAx xrs
(1.1)

subject to Ex t.

Here it is assumed that A is a real positive semidefinite n x n matrix, E is a real
rn x n matrix with full row rank m, is a real m-vector and s is a real n-vector. Thus
(1.1) is an equality-constrained quadratic programming problem. It is known from the
theory of quadratic programming (e.g., Gill and Murray 1974] or Hadley 1964]) that
if A and E have no nontrivial null vectors in common then (1.1) has a unique solution
x which forms part of the solution (:) to the following system of linear equations.

(1.2)
E 0

Under the assumptions made above, the coefficient matrix

(1.3) B=
E 0

of (1.2) is nonsingular. The system (1.2) is sometimes called the fundamental system,
B is called the fundamental matrix and h the vector of Lagrange multipliers for the
quadratic programming problem.

Iterative schemes for solving (1.2) have recently drawn considerable interest. Dyn
and Ferguson [1983] have considered methods based upon classical splittings of the
matrix A. Axelsson [1984] has considered various implementations of the conjugate

* Received by the editors March 18, 1985, and in revised form June 17, 1985.

t Departments of Computer Science and Mathematics, North Carolina State University, Raleigh, North
Carolina 27695-8205. This research was sponsored by the U.S. Air Force under grant AFOSR-83-0255 and
by the National Science Foundation under grant DMS-82-19500-A01.

337



338 ROBERT J. PLEMMONS

gradient method applied to (1.2). These types of schemes are typically efficient only
when the matrix A is large and sparse and there are only a moderate number of
constraints.

In the first part of this paper we develop a direct-iterative scheme for solving (1.2)
which is based upon a partitioning strategy of the fundamental matrix into a block
consistently ordered 2-cyclic form, where the nonzero eigenvalues of the Jacobi matrix
are all pure imaginary. In contrast to the scheme of Dyn and Ferguson, both the
matrices E and A are involved in the splitting. This work was motivated in part by
the work of Markham, Neumann and Plemmons [1985] in which a similar 2-cyclic
scheme was used to solve certain large sparse linear least squares problems.

It is assumed here that A and E can be permuted or partitioned so that A is block
diagonal and that E has the form [El EEl, with E1 square and nonsingular. That these
assumptions hold for a large class of engineering problems is established in 3. Here
an implementation of the algorithm is given for solving large-scale structural analysis
problems on pipelined vector machines and on multiprocessors. The 2-block SOR
iterative method is developed and its convergence is established in the next section.

2. Block SOR iteration. Consider the constrained minimization problem (1.1)
with A n x n and positive semidefinite and E m x n with rank m. Assume first that A
and E have been permuted or partitioned so that A has the block diagonal form

0 A
with A1 m x m and with A2 nonsingular and so that E- [El E2] with E1 m x m and
nonsingular. Partition x and s conformally into x- [] and s- [] with Xl and sl
m-vectors. Then the (m+n)x(m+n) fundamental system of linear equations (1.2)
can be expressed as

0 A2 E x2 s.
E E2 0 h

By interchanging row blocks one and three the following block system is obtained

llXll I,l(2.1) 0 A2 E2r x2 s_

A 0 E1 A s

Then

(2.2) C -=
E1 E2 0 10 A2 Ef
A1 0 E"

is block 3-cyclic (see Varga [1962, pp. 99-114]).
At this point a natural 3-block SOR iterative scheme could be developed for

solving (2.1), perhaps in a manner similar to the 3-block scheme studied in Chen
1975], Plemmons 1979] and de Pillis, Niethammer and Varga 1984] for solving large

sparse linear least squares problems. It was pointed out by Markham, Neumann and
Plemmons 1985], however, that a repartitioning of the coefficient matrix into a 2-block
form leads to a method which always converges and has superior convergence rates.
Although the matrix C in (2.2) is somewhat more complicated than the coefficient
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matrix for the least squares problem, an analysis similar to that given in Markham,
Neumann and Plemmons [1985] can be given to show that a 2-block partitioning of
C also leads to superior convergence rates for solving the constrained minimization
problem (1.1). (The least squares problem can, in fact, be considered as a special case
of the problem discussed here.) Thus only the 2-block approach will be developed in
this paper.

The coefficient matrix C in (2.2) can be partitioned into a 2 x 2 block form in two
obvious ways, each leading to similar convergence results. The following partitioning
is chosen.

(2.3) C-- 0 A2
A 0 IEJ

This leads to the following 2-block SOR direct-iterative scheme applied to the solution
to (1.1). Let D, L and U denote the 2-block matrices

(2.4) D= 0 A2 [_0__1, L= 0 01_0_], U=10 01-E2r
0 0 E] -A,, 011 0J f0--0-1----"

Let

(2.5) y=- x2 b-= s2
A s

Then the 2-block SOR iterative scheme for solving the constrained minimization
problem (1.1) can be expressed in the following matrix form:

(2.6) yk+l)= ,,yk)+(D_toL)-ltob, k =0, 1,"

where to is the SOR parameter and the SOR iteration matrix is given by

(2.7) ,o (D- toL)-l[(1 to)D + toU].

A detailed block by block version of the iteration (2.6) will be provided after the
following convergence theorem is established. Here p denotes the spectral radius.

THEOREM 1. For the constrained minimization problem (1.1) let A and E be such
that A2 is positive definite and El is nonsingular in the block partitioned form (2.3). Let

(2.8) p =- p[(E-’E_)AI(E-IE_) TA,].
Then the 2-block SOR method (2.6) converges to the solution y [] to thefundamental
system (1.2) for every y<O) for all relaxation parameters to in the interval

2(2.9) 0<to<
l+p"

Here the optimum SOR relaxation parameter tob to(P) is given by

2
(2.10) tob 41+p2+ 1
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and the spectral radius of the resulting iteration matrix ,,b is given by

(2.11) p(,,b)= [/ p ]2,l+p2+l

SO that the method converges for all p given by (2.8).
Proof An adaptation of the theory of consistently ordered p-cyclic matrices will

be applied. The proof will be obtained from a simple application of the results in
Young [1971, 6.4].

Observe first that the Jacobi iteration matrix J for the 2-block form of C in (2.3)
is given by

Then

It 0110 0
J D-I(L+ U)= A2 0 0 0

0 0 E-T -A1 0

0 0 ET1Ev_AIEI0 0 -A’E
-E-(rA 0 0

01
-E-E2AIEfE-(TA1 0 0

j2= AIEr2 E-(rA 0 0

0 -E-rA1E-(IE2A1Ef
Here the first and third diagonal blocks of j2 have the same eigenvalues. Thus the
spectrum of j2 includes zero and the spectrum of

K =--(E-IE2)AI(E-IE2)TA1
Since -K is the product of positive semidefinite matrices, all the eigenvalues of j2

are real and nonpositive. Then J has zero and all pure imaginary eigenvalues and,
moreover, p(J)= p(K)=p where p is given by (2.8).

Now since C given in (2.3) is block consistently ordered and 2-cyclic, (2.9) follows
from Young’s Theorem 4.1, p. 191. Finally, since the eigenvalues of J are zero and
pure imaginary, (2.10) and (2.11) follow from Young’s equations (4.17) on p. 195.

Observe that with to given by (2.9) the SOR method always converges, regardless
of the value of p(J). However, the convergence rate given by (2.11) improves as
decreases.

The 2-block SOR scheme given in (2.6) is now summarized.

ALGORITHM 1. A direct-iterative block cyclic SOR scheme for the constrained
minimization problem (2.1).

Step 1. Factor A2 and E1 using appropriate sparse matrix decomposition routines.
Step 2. Estimate p--p(J) given by (2.8) and the optimum SOR parameter tob

given by (2.10), using the factorizations in Step 1.
Step 3. Choose initial approximations

X(0)

to the solution x to (1.1) and A (o) to the vector A of Lagrange multipliers.
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Step 4. FOR k 0 STEP 1 UNTIL convergence DO

1) Solve

A2x2k+’) (1 wb)A2x2k)- wbEh (k) + WbS2.

2) Solve

E,x+’)= (1-to,)E,x)+ E2[(1 co)x2) x+’)] + tot.

3) Solve

The algorithm just described is, of course, a direct-iterative scheme in that it
requires the solution of systems of linear equations involving the m x m and (n- m) x
(n- m) matrices E1 and A2, respectively, at each step. However, as indicated earlier,
the case of interest here is where E and, accordingly, El, have a special structure,
such as bandedness. Here well-developed software exists (e.g., Duff and Reid [1979])
for factoring the general unsymmetric matrix E for use in parts 2 and 3 of Step 4.
With regard to part 1 of Step 4, eq. (2.12), the (n m) x (n m) matrix A2 will at least
be block diagonal in our applications with relatively small diagonal blocks. For this
important case, the equations (2.12) of the iteration can be solved in parallel. Indeed,
if A2 has p diagonal blocks, then (2.12) can be solved in one major time step using p
processors in each major iteration. This approach will be developed further in 3.

Step 2 of the algorithm involves the usual difficult task of effectively estimating
the optimum SOR iteration parameter tob (which is less than or equal to one so that
the process is underrelaxation) and a similar difficulty exists in applying the iterative
schemes suggested by Dyn and Ferguson 1983] for solving constrained minimization
problems. Some methods for estimating tob that apply in our situation are reported in
Huang 1983].

Also, Chebyshev acceleration ofthe Gauss-Seidel implementation ofthe algorithm
(to 1) might be considered, as for the 3-block formulation discussed in Chen [1975]
and Plemmons [1979]. In general, however, the algorithm will not converge for
to>2/(l+p), so that Gauss-Seidel will not converge with p> 1, unless such an
acceleration scheme is applied.

It should be remarked that in the direct-iterative method suggested here the formula
for/9 in (2.8) simplifies somewhat for certain problems. Such problems are discussed
in 3 where applications of Algorithm 1 to large-scale structural analysis computations
are described.

3. Application to structural analysis. One application area of wide interest for the
method discussed in this paper involves the engineering analysis of large-scale struc-
tures. The fundamental problem of linear elastic analysis is that of finding the vector f
of internal forces and the vector r of nodal displacements, given a finite element model
of a structure and a set of external loads. Specifically, let E be the m n equilibrium
matrix, p be the m-dimensional vector of nodal (applied) loads and F be the n x n
element-level, block-diagonal element flexibility matrix (here F- is the element-level
force-deformation matrix). Assume that the structure does not form a mechanism (so
that rank E m) and the structure is statistically indeterminant with degree of indeter-
minancy n m.



342 ROBERT J. PLEMMONS

It is well known (e.g. Robinson [1973]) that the internal force vector f is the
particular solution x to the underdetermined system of equilibrium equations

(3.1) Ex=p

such that

(3.2) 1/2x’Fx
is minimal, i.e., f solves (3.1) and satisfies the principle of minimal energy. Thus the
fundamental problem of linear analysis is the particular constrained minimization
problem:

Minimize 1/2x 7"Fx
(3.3)

subject to Ex p.

Clearly then, the methods developed in this paper apply to this problem. In particular,
the internal force vector f and the nodal displacement vector r satisfy:

(3.4) [E 0

so that -r is, in fact, the vector A of Lagrange multipliers in (1.2).
The most widely used scheme for computing r from (3.4) is the displacement

method. If block elimination is applied to (3.4), the following m x m system (e.g.,
Robinson 1973])

(3.5) Kr=p

is obtained, where

(3.6) K EF-1E r

and K is called the stiffness matrix. One must still recover f from, say,

Ff E%.

Here (3.5) might be solved by classical schemes such as sparse Cholesky decomposition
or by a pre-conditioned conjugate gradient scheme. In any case the explicit formation
of K in (3.6) can worsen the condition of the problem and can lead to a 10ss of
accuracy, as is the situation for using the normal equations to solve least squares
problems.

Another approach is the force method where the internal force vectorf is computed
first. Here, any particular solution y to the equilibrium equations (3.1) is computed
and a basis matrix Z for the null space of E is found. Then

f=y+Zx
where x solves

ZrFZx Z7"Fy.

Thus the force method involves solving the fundamental system

rather than (3.4), where v is the system displacement vector and f= F-1 v. The matrix
Z is called the self-stress matrix for the problem (e.g., Robinson [1973]). Although the
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force method can require considerably more computation for one step than the
displacement method, it is useful in reliability analysis and in solving multiple redesign
problems when n-m < m, where F alone changes in a sequence of problems and Z
needs only to be computed once. Some recent sparse matrix schemes for applying the
force method are discussed in Kaneko, Lawo and Thierauf [1982] and in Heath,
Plemmons and Ward 1984].

Of special interest in this paper is the fact that the element flexibility matrix F is
block diagonal in (3.4), i.e.,

F diag Fl l, Fqq
where the diagonal blocks F, are symmetric positive definite and correspond to the
ith element in the finite element model of the structure. Generally, these blocks range
in size from 1 x 1 to 6 x 6 (e.g., Robinson [1973]). This situation facilitates and simplifies
considerably the use of F in the 2-block SOR algorithm. Here F is readily partitioned
into

where F1 and F2 are block diagonal matrices with diagonal blocks having relatively
small sizes. Of course for the force method formulation of the problem given in (3.7),
F-1 is also block diagonal. Here F- is called the element stiffness matrix and is often
available without computing the inverse of F (e.g., Robinson [1973]).

In addition, the equilibrium matrix E for the structure is generally sparse and the
ordering of the nodes and elements is often chosen so that E is banded as illustrated
in Figs. 1-4. An efficient scheme is described in Berry, Heath, Kaneko, Lawo, Plemmons
and Ward [1985] for computing a banded matrix Z for use with (3.7). Moreover, a
further ordering of the nodes of the model can lead to a natural partitioning so that
E E1 E2] where E1 is a nonsingular banded matrix. Alternatively, a one-pass sparse
matrix algorithm for finding column dependencies in E, such as the one given in Heath,
Plemmons and Ward [1984], could be used to choose a set of m linearly independent
columns to form El.

Regarding the implementation of Algorithm 1 for solving structural analysis
problems represented by the block equations (3.4) (or (3.7)), advantage can readily

(R)
(R)

(R)
(R)

5 i- th element F21

FIG. 1. Finite element modelfor two-dimensional flame.
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FIG. 2. Sparsity pattern of equilibrium matrix Efor Fig. 1.

be taken of the special forms of the matrices involved. As indicated above, the matrix
E1 for (3.4) (and the corresponding Z1 for (3.7)) can generally be taken to be banded,
greatly simplifying the implementations of parts 2 and 3 of the iterations and the
subsequent solution steps. Furthermore, since F in (3.4) (and the corresponding F-in (3.7)) is block diagonal, with relatively small diagonal blocks, the equations (2.12)
of Part 1 of the iterations lend themselves to parallel implementation.

The application of Algorithm 1 to structural analysis computations is now
described. The algorithm is stated for the solution of (3.4) in terms of the system force
vector f and the nodal displacement vector r. This corresponds to the displacement
method. A similar algorithm can be stated for the solution of (3.7), corresponding to
the force (or flexibility) method in structural analysis. It will be assumed, as discussed

FIG. 3. Finite element model for plane stress problem (wrench).
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FIG. 4. Sparsity pattern of equilibrium matrix E for Fig. 3.

earlier, that the m x n equilibrium matrix E is assembled into E [E1E2], with E1
m x m nonsingular and banded. Moreover, the element flexibility matrix F is block
diagonal with positive definite diagonal blocks and can be partitioned conformally into

0 F2 F1 diag (F,. ., Fss), F2 diag (Fs+,+l,

where F1 is m x m and q is the number of elements in the finite element model. Finally,
f is partitioned conformally with the diagonal blocks F, of F; namely,

f--f2’ fanm-vector, fl f2-"

where fs is a vector of the same dimension as Fs, for j 1, 2.

ALGORITHM 2. Parallel solution of the structural analysis equations (3.4) by the
block cyclic method.

Step 1. Compute the Cholesky factors of the diagonal blocks Fj of FE,j-
s / 1,. , q (concurrently) and compute the banded triangular factors of
El.

Step 2. Estimate p p(J) given by (2.8) and the optimum SOR parameter
given by (2.10), using the factorization obtained in Step 1.

Step 3. Choose initial approximations

f,o} rff)]/f(o)
where fo) is an m-vector, to the system force vectorf and r() to the nodal
displacement vector r.

Step 4. FOR k =0 STEP 1 UNTIL convergence DO
1) FOR j s + 1 STEP 1 TO q solve (concurrently)

1, c(k+ 1) r’(k)
jjJ 2j 1 rob FjsJ robE r(k).
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2) Solve

r+ (1 Ob)Elfk)+EE[(1--Ob)fk)--fk+l)l+obp.

3) FOR j 1 STEP 1 TO s compute (concurrently) vectors

(k)
Yj =tb" jj.J lj

and set y

Y

4) Solve

Er<k+l)= (rOb 1)Er<k) + y.

Observe first that, as promised, parts of Algorithm 2 lend themselves to parallel
processing. The computations of the Cholesky factors of the F2j, j s + 1,..., q, in
Step 1 can be done in parallel in one major time step with q s processors. In addition,
parallel algorithms are available for the triangular factorization of the banded matrix
E1 in Step 1 (see Dongarra and Sameh [1984]). Next, part 1 of Step 4 is essentially a
block Jacobi iterative scheme and can be accomplished in one major time step, if q- s
processors are employed. Similarly, part 3 of Step 4 can also be accomplished in one
major time step, if s processors are employed. Generally speaking, all parts of Step 4
involve sums of matrix-vector products and can be efficiently implemented using
SAXPY or GAXPY type algorithms on pipelined vector machines (see Dongarra,
Gustavson and Karp 1984] or Ortega and Voigt 1985]).

Another situation of interest in Algorithm 2 is where E is fixed and only the Fj
vary in multiple redesign problems. Here the original factorization of E1 is used in
each major redesign step, i.e., in each application of Algorithm 2. Furthermore, the
iterative nature of the algorithm facilitates the use of the previous approximation
solution [Y] to (3.4) as the initial starting vectors fo) and r) in the next redesign step.
It should also be pointed out that the scheme described here iterates relative to the
system force vector f and the nodal displacement vector r simultaneously; whereas,
the force method determines f directly and then r and the displacement method
determines r directly and then f.

A numerical comparison of the 2-block SOR parallel iterative scheme suggested
here with recent direct serial and parallel algorithms for structural analysis computa-
tions is in preparation. Comparisons are being made on a variety of structural analysis
problems, including two- and three-dimensional frames, plane stress, plate bending
and mixed finite element problems considered in Berry, Heath, Kaneko, Lawo, Plem-
mons and Ward 1985] and Berry and Plemmons 1985a, b]. A description of this work
will appear elsewhere.
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A DYNAMIC PROGRAMMING ALGORITHM FOR COVERING
PROBLEMS WITH (GREEDY) TOTALLY BALANCED

CONSTRAINT MATRICES*

MARTIN W. BROIN" AND TIMOTHY J. LOWE*

Abstract. Given an mxn (0, 1) matrix A possessing special structure, we consider the Minimum Cost
Maximal Covering Problem (MCP):

Min {cx + dylAx + y >- m, l"x<= p; x {0, 1}", y {0, 1}m}.

We give an O(p2n min {m2, n2}) dynamic programming algorithm for solving (MCP) when the matrix A is
totally balanced. Totally balanced matrices arise naturally in tree network location problems; however, the
class of totally balanced matrices is not equivalent to the class of covering matrices arising from tree network
location problems: we give an example of a totally balanced matrix for which there exists no corresponding
tree network covering problem.

Key words, dynamic programming, integer programming, graphs and matrices

AMS(MOS) subject classifications. 90C10, 90C39, 05C50

1. Totally balanced covering problems. Berge [1] and Fulkerson et al. [2] provide
the foundations for the study of balanced matrices. A (0, 1)-matrix A is said to be
balanced if it does not contain an odd square submatrix of size at least three which
has no identical columns and with all of its row and column sums equal to two.
Fulkerson provides the following lemma:

LEMMA 1. If an m n (0, 1)-matrix A is balanced and if
P ={xlAx >- 1 m, x >=

is not empty, then every vertex of this polytope has coordinates 0 or 1.
The Minimum Cost Covering Problem is

(cP) Min {cxlAx >= 1 m, X E {0, 1 }n},

where A is an m n (0, 1)-matrix and c E RT-. Thus the minimum cost covering problem
can be solved by relaxing the binary constraints and utilizing the linear programming
relaxation as long as the covering matrix A is balanced.

A (0, 1)-matrix A is said to be totally balanced if it does not contain a square
submatrix which has no identical columns and with all row and column sums equal
to two. Clearly a totally balanced matrix is balanced and so enjoys the integer extreme
point property implied by the above lemma.

Example. Let T (V, E) be a tree with vertex set V and edge set E. Each edge
e E is assumed to have a positive length associated with it. Let X {Xl, , xn} and
Y--{Yl,’’’, Ym} be two sets of points on the tree, and each point xj X has a
nonnegative number rj (called a radius) associated with it. The distance between two
points z and z’ on T, denoted d (z, z’) is defined to be the length of the shortest path
connecting them. Let A (aij) be the m x n (0, 1)-matrix defined by ai 1 if d (x, yi) -< t)
and aj 0 otherwise. Giles [3] proved that the matrix A is totally balanced. Tamir

* Received by the editors August 18, 1983, and in revised form June 17, 1985. This research was

supported in part by the National Science Foundation under grant ECS-8317026.
t School of Management, University of Texas-Dallas, Richardson, Texas 75080.
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11 generalized Giles’ results to obtain: Let r be a nonnegative radius associated with
yi Y and define B (b0) by bj= 1 if d(x,y)<-_t)+r and bij=0 otherwise. Then the
(0, 1)-matrix B is totally balanced. The matrix B is called the intersection matrix of
neighborhood subtrees versus neighborhood subtrees on T. Tamir exploits this gen-
eralization, and Lemma 1, to verify the use of linear programming to solve various
versions of problem (CP) on a tree network. In addition, Tamir provides a dynamic
programming algorithm for the problem which directly utilizes the tree network.

The Minimum Cost Partial Covering Problem is

(PCP) Min {cx + dylAx + y >- 1 m, X {0, 1 }", y {0, 1 }m},

where A is an m x n (0, 1)-matrix, c R and d R’. It can be shown that if A is
totally balanced, then the matrix [A, I] is totally balanced (where I is the identity
matrix) and so problem (PCP) defined on a tree network can be solved by relaxing
the integer conditions and using linear programming.

Kolen [7] provides an elegant O(nm) algorithm to solve problem (CP) when the
matrix A is totally balanced. The algorithm first solves the dual of the linear program-
ming relaxation of (CP) via a greedy algorithm and then recovers the optimal primal
solution to (CP) using complementary slackness. The algorithm requires that the matrix
A be in standard greedy form. A (0, 1)-matrix A is standard greedy if aik ai ajk 1
implies that ajt 1 for all i, j, k, with i<j, k < I. In other words, the ordered matrix
A does not contain the ordered submatrix:

Kolen also shows that an m x n (0, 1)-matrix is totally balanced if and only if it can
be transformed by row and column permutations into standard greedy form. He also
provides an O(n2m) algorithm for transforming a totally balanced matrix into standard
greedy form.

Hotiman, Kolen and Sakarovitch [4] extend Kolen’s algorithm to problem (PCP),
by giving an algorithm for a generalization of problem (PCP) with an ordered integer
m-vector b on the right-hand side of the covering constraints. Again it is assumed that
the totally balanced matrix A is in standard greedy form, and an O(mn) algorithm is
given which solves the dual problem via a greedy procedure and recovers the optimal
primal solution.

In [8], Kolen considers problems (CP) and (PCP) and the closely related plant
location problem (see Kolen and Tamir [9], for example) when these problems are
defined on a tree network with m nodes, each of which is a demand point. Kolen
shows the relationship between these problems and gives polynomial algorithms for
each problem. By exploiting properties of the tree network, an O(m) algorithm is
given to transform the matrix A into standard greedy form. Then, the O(nm) algorithm
in [4] is used to solve (CP) or (PCP).

For a thorough discussion of covering problems on tree networks, see [9].
The Minimum Cost Maximal Covering Problem is

(MCP) Min {cx + dylAx + y >- 1", 1 "x <-_ p, x {0, 1 }", y {0, 1 }m},

where A is an m x n (0, 1)-matrix, c R_, d R’ and p is a positive integer. The
Minimum Cost Maximal Covering Problem cannot always be solved by relaxing the
integer constraints even when the covering matrix A is standard greedy. As an example,
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with c (0, 0, 0, 0), d (2, 3, 4, 5, 5, 5), p 2, and

-1 0 0 0-
0 1 0 0

0 0 1 0

1 0 0 1

0 1 0 1

0 0 1 1

the optimal answer is x --X4 --1, xl x2- 0, y Y2 1 and Y3 Y6 0 with an

optimal objective value of 5. However, if the integer constraints are relaxed, then the
solution xl x2 x3- x4- 1/2, Yl Y2 Y3 1/2 and Y4 Y5- Y6 0 is feasible and has an
objective value of 41/2.

In the next section we give an O(p2nmin{m2, n2}) dynamic programming
algorithm to solve (MCP) in the case that A is totally balanced. The algorithm works
directly with the matrix A, once in standard greedy form.

Megiddo et al. [10] consider a maximum coverage facility location problem on
a tree network, where if demand point on the tree is "covered" by a facility, then a

gain of wi > 0 is obtained. Demand point has an associated cover radius, ri-> 0 and
is covered if a facility location xj is chosen where d (y, xj)_-< r. In the problem, there
is an upper bound p on the number of new facility locations that can be chosen.
Clearly, the maximum coverage problem can be formulated in terms of (MCP), with
c- 0, d w, 1,..., m, and taking A as the intersection matrix of demand point
neighborhoods and potential facility locations. In [10] a dynamic programming type
algorithm is given which works directly with, and exploits properties of, the tree
network. Also, Hsu [5] considers a version of the maximum coverage problem on a
tree network and gives an algorithm which works directly with the tree network.

Prior to giving our algorithm, we first show that it can be applied to a broader
class of problems than "covering problems" on a tree network. We demonstrate this
by showing that for a particular totally balanced matrix, there is no tree network T
for which matrix is the intersection matrix of neighborhood subtrees versus neighbor-
hood subtrees on T. For our result, we need the following lemma.

LEMMA 2. Let T be a tree with vertex set V and arc set E, with nonnegative arc
lengths. Let { a, b, c, d } be a subset of V, and let rv denote the nonnegative radius associated
with each v V. Further, let Puw be the (undirected) shortest path between points u and
w in T. If there exist points x and x2 on T, with associated nonnegative radii r and r
such that

(1)
(a, b}= V={v(a,b,c,d}ld(x,v)<=r+ro},

{c, d}= V2={v{a, b, c, d}ld(x2, v)<=r2+ro},

and

then Pab f’) Pea .
Proof. Assume that (1) holds and that there exists z T such that z Pab 0 Pcd.

Due to properties of a tree, it follows that either (i) z Pd and z Pb, or (ii) z P
and z Pdb, or that both (i) and (ii) hold. Without loss of generality, we assume that
(i) holds. For the remainder of the proof, it may be helpful to refer to Fig. 1, which
provides a representation of Pb, Pa and z. In the figure, f is the closest point in P,b
to c and g is the closest point in Pa to b.
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a d

FIG.

The purpose of the figure is to show the orientation of a, b, c, and d relative to z. We
note that, for example, c may be on Pab in which case c coincides with f. Also, for
example, if Pab intersects Pea at a single point (z), then both f and g coincide with z
(in which case, both (i) and (ii) above hold).

Given that (i) holds, from the properties of a tree, we note that for any u Pz 13 Pcz
and w Pd t3 Pb, d (u, w) d (u, z) + d (z, w). Let x be the closest point in Pb Pod
to Xj, j 1, 2. Again from the properties of a tree, for any u Pb k3 Pd, d(u, xj)-
d(u,x)+d(x),x),j= l,2.

First, suppose that x P 13 Pz. Since b V1 but d V1, we have d (b, xl) rb <- rl <
d d, x) rd. But,

d(b, Xl)- d(d, Xl)= d(b, z)+ d(z, x)+ d(x, x)-(d(d, z)+ d(z, x)+ d(x, Xl))

-d(b,z)-d(d,z)

so that

(2) d(b, z)- rb < d(d, z)- rd.

Since bV but cV, we have d(b, Xl)-rb<-_r<d(c,x)-rc. But d(b, Xl)=
d(b,z)+d(z,x)+d(x,xl). Also, due to the triangle inequality, d(c,x) <-

d(c, z)+d(z,x)+d(x,xl) so that d(b,x)-d(C, Xl)>=d(b,z)-d(c, z). Thus,

(3) d(b, z)- rb < d(c, z)- r.
If xPat3Pz, then with de V_ but b V2, we have d(d, x2)-rd<-_r2 <

d(b, x2)-rb. But d(d, x2)-d(b, x2)=d(d,z)+d(z,x.)+d(x’2, XE)-(d(b,z)+
d(z, x’2)+ d(X’E, XE)) d(d, z)- d(b, z) so that d(d, z)-- rd < d(b, z)- rb which contra-
dicts (2). If x Pdz t3 Pb, then with c V2 but b V2 we have d(c, XE)-rc<-r2 <
d b, x2) rb. But d C, XE) d c, z + d z, x’E) + d x, x2) and d b, x2) <-

d(b,z)+d(z,x)+d(x,x2) so that d(C, XE)-d(b, XE)>-d(c,z)-d(b,z). Thus,
d (c, z) r, < d (b, z) rb which contradicts (3).

Due to symmetry, similar contradictions can be established when x Pdz t3 Pbz.
Using Lemma 2, we can now prove the following.
PROPOSITION. For the totally balanced matrix

0 0 0 1 0

0 0 1 0 1 0

0 1 0 0 0

0 0 0 1 0 1

0 0 1

0 0 1 1 1 1

there exists no tree, T, where A is the intersection matrix of neighborhood subtrees versus
neighborhood subtrees on T.
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Proof. We assume a tree, T, exists and show a contradiction. For the matrix A,
let the row indices correspond to the indices of a subset of the vertex set of T and let
the column indices correspond to the index set of points on the tree. Using Lemma 2
with a 1, b 5, c 2 and d 6 and the first and third columns of A, it follows that
P15 ["1 P26 - Using Lemma 2 with a 1, b 5, c 4 and d 6 and the first and fourth
columns of A, we have P5 fq P46- " Thus, P5 f’){P26 [.J P46}--.

Using Lemma 2 with a 3, b 5, c 2 and d 6 and the second and third columns
of A, we have P35 fq P26 . Using Lemma 2 with a 3, b 5, c 4, and d 6 and
the second and fourth columns of A, we have P35 f’)P46--"

It now follows that {P15 LI P35} {P26 [,-J P46}- . Since {P15 P35} and {P26 P46}
are disjoint subtrees of T, there exists some point z in the shortest path connecting
these subtrees such that z Puw for all u {PI IO P35} and all w {P26 [-J P46}. Thus
z P12 [’) P34 so that P12 [’) P34 . But then, letting a 1, b 2, c 3 and d 4, and
using the fifth and sixth columns of A, we have a contradiction via Lemma 2.

2. A dynamic programming algorithm for (MCP). A row and column index pair
(i, j) is called a root of a standard greedy (0, 1)-matrix A if aij 1 and it is the last
nonzero entry in the jth column and the last nonzero entry in the ith row of A. An
essential property exploited by the algorithm is that if a standard greedy matrix has
more than one root, then (MCP) can be decomposed into as many subproblems as
there are roots and the only constraint linking the subproblems together is the constraint
l"x<__p.

In what follows, we consider an equivalent formulation of (MCP):

(4)

Max cxj +
j=l i=1

s.t.
, aoxj-y>-O, i=l,...,m,
j=l

Z xj<--P,
j=l

xj, Yi{O, 1}, j=l,’’’,n; i=l,...,m.

We define a subproblem of (MCP) as problem (4) restricted to a subset I of rows of
A and a subset J of columns of A, and nonnegative integer 7r =< p as the constraint on
j x; we write the optimal objective function value of the subproblem as V(/, J, 7r).
Two subproblems defined by (L, J, m) and (Is, Js, 7rs) are said to be independent if
LNIs=, JNJs= and aj=0 for every iL,jJ, and iJ,jJ.

THEOREM. If a subproblem defined by 7r and index sets I and J has K roots, then
the subproblem can be decomposed in K mutually independent subproblems (onefor each
root) such that

K

v(I,J, r)V(/,J, Tr) max E E 7rk q’J’, 7rk 0, integer, k 1, , K
k=l

To prove the theorem, we will show that any column (or row) of the submatrix
defining the subproblem can be associated with exactly one of the K roots. For a
nonzero entry (i’,j) in a standard greedy matrix, we define the last nonzero entry in
row and the last nonzero entry in column j to be feasible destinations for the given
entry (i,j). By definition, any root is its own unique feasible destination.
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For a nonzero entry (i,j), a feasible walk (from (i,j)) is a sequence of distinct
nonzero entries (i,,j,),t=l,..., T such that (il,jl)=(i,j),(iT.,jr) is a root, and
(i,+l,j,+l) is a feasible destination of (i,,j,), 1,. ., T- 1. If (i,j) is a root, then the
feasible walk is just (il,j)=(i,j). Given a feasible walk (ij, j,), t= 1,..., T, where
T> 1, we say that nonzero entry (i’, j’) is on the feasible walk, if either

or

(i) i, i’= i,+ andjt_-<j’-<j,+, for some t, l_<_t__< T-l,

(ii) j, =j’=j,+ and i, =< i’-< i,+1, for some t, 1-<_ t_-< T- 1.

The next property follows immediately from the definitions of feasible destinations
and feasible walks.

Property 1. Let (it, j,), t= 1,..., T, be a feasible walk from nonzero entry (i, j).
Further, suppose nonzero entry (i’, j’) is on the feasible walk where we suppose, without
loss of generality, that (i) above holds at some value of t. Then (i’,j’),
(it+l,jt+),’’’, (it, jr) is a feasible walk from (i’,j’), when j’ <jt+l. Otherwise, when
j’=jt+l, then (it+,jt+l),’’’, (it, jr) is a feasible walk from (i’,j’).

LEMMA 3. Two feasible walks starting at the same nonzero entry , f) terminate
at the same root.

Proof. If nonzero entry (i, j) is in the last row or last column, the result is true
since there is only one distinct feasible walk from i, j). Thus consider a nonzero entry
(’, f) which is not in the last row or column. Fuher, suppose the result is true for all
nonzero entries (i, j) where either ->/’ and j > j, or > and j -> j.

If (/’, f) is a root, then the result is true by definition of a feasible walk from a
root. Thus we suppose that (i f) is not a root and consider the case where (i f) has
only one feasible destination. Without loss of generality suppose this feasible destina-
tion is (/’, j) with j > Clearly, (i j) is on any feasible walk from (, f). But then using
Property 1 and the induction hypotesis for entry (i,j) proves the result.

Now consider the case where i, j) has two distinct feasible destinations i, j) and
(i, f) with j > f and i> . Because the matrix is in standard greedy form, it follows
that entry (i, j) is nonzero. If (i, j) is a root, the result is true. Otherwise, using Property
1 and the induction hypothesis on (i,j) proves the result.

From Lemma 3, we have that any nonzero entry is associated (through the definition
of a feasible walk) with exactly one root. Furthermore, from Property 1, it follows that
all nonzero entries in a given row (or column) are associated with the same root. This
observation proves the Theorem.

Using the concept of a feasible walk, we have identified the root with which a
given nonzero entry is associated. By essentially "reversing" the walk from a root, we
can easily find the subproblem rows and columns associated with the given root.
Henceforth, we will identify a subproblem with a single root by the root itself.

There are two major procedures used in the dynamic programming algorithm to
solve (MCP). These two procedures recursively call each other in a well defined way.

The first procedure, denoted as SUBPROB((i,j), zr) solves a subproblem of
(MCP), with a single root (i,j) by setting at most r(=<p) x’s in the subproblem equal
to one. In SUBPROB ((i,j), r), we check to see if xj should be set to one or zero.
When x is set to one, we remove column j and all rows covered by column j (rows
i’ where a, 1). When x is set to zero, we remove only column j.

In either case (x 1 or xj =0), for the remaining matrix (after column and row
removal) we find the roots and solve the problem using procedure ALLOCATE (.).
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Procedure ALLOCATE (roots, 7r) solves the problem of optimally allocating 7r

over a subproblem with a set of K roots {(ik, jk), k 1,’’ ", K} and is, as justified by
the theorem, the one-dimensional packing problem:

K

V((ik. jk), k= 1,. ., K, 7r)= Max V((ik, jk), ’rrk)
k=l

K

s.t.
k=l

7]"k O, integer.

Since V((ik, jk),’n’k) is needed for various values of rk, procedure ALLO-
CATE (roots, zr) calls procedure SUBPROB (.). For completeness, the procedures are
stated formally below.

Let I be a subset of row indices and J be a subset of column indices of the matrix
A. Given any j J, define I(j) as the index set of rows in I for which there is a one
in column j; and for any /, define J(i) as the index set of columns in J for which
there is a one in row i. More formally,

I(j)=--{iaIlao=l}, and J(i)=-{jJlao=l}.

Let (i,, j,) be a root of the submatrix defined by I and J, and let I, and J, denote
the subproblem associated with the root (i,,j,). We note that in procedure SUBPROB
we do not need to explicitly compute I, and J,.

Procedure SUBPROB ((i,,j,), r);
comment: solve a subproblem with a single root (i,,j,) and
begin
M1 {i I(j,)li <-i,};
N1 {j UillJ(i)lj <j,};
M2 {i UvI(j)}\I(j,);
comment: Case 1: xj, is set to zero, find new roots.
Find all ROOTS in the submatrix defined by the index sets I, and J,\{j,};
comments: All ROOTS will be roots of the submatrix defined by M1 and N1.
if [ROOTS[ 0 then Z <--- 0
else Z - ALLOCATE ((ROOTS1), r);
comment: Case 2: xj, is set to one, find new roots.
Find all ROOTS2 in the submatrix defined by the index sets I,\I,(j,) and J,\{j,};
comment: All ROOTS2 will be roots of the submatrix defined by M2 and N1.
if (IROOTSI 0) or (r= 1) then Z2-iM1 d-c,
else Z2 Y’.M d- c,+ALLOCATE ((ROOTS2), zr- 1);
comment: Choose the maximum of Case 1 and Case 2.
return V((i,,j,), 7r) max {Z1, Z2}

end

Procedure ALLOCATE ((roots), zr):
begin
comment: K is the number of roots in the subproblem.
K <--[roots[;
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comment: Let (ik, jk) denote the kth root.

K

V((roots), 7r) <-- Max SUBPROB (ik, A), 7Fk)
k=l

K
s,t. E "B’k"/r

k=l

r >_- 0, integer;

return V((roots), r)
end

We remark that in Case 1 of SUBPROB (.), the index sets M1 and N1 are always
subsets, and may in fact be proper subsets, of I, and J,\{j,}, respectively. However,
it is easy to verify that any roots of the submatrix defined by index sets I, and J,\{j,}
will be roots of the submatrix defined by M1 and N1. Similarly, in Case 2 it is easily
verified that any roots of the submatrix defined by the index sets I,\I,(j,) and J,\{j,}
will be roots of the submatrix defined by M2 and N1.

In procedure ALLOCATE, we are solving a one-dimensional packing problem
with separable objective functions. Each of these objective functions is the solution
V((ik, jk), 7rk) of a subproblem with a single root (ik, jk) and 7rk. We note that each
time ALLOCATE is accessed, there are no more than min{m, n} such objective
functions, i.e., K-<_min {m, n}. Further, it is always the case that 7r_-<p.

Karush [6] gives an O(pEK) dynamic programming algorithm for solving the
one-dimensional packing problem with K objective functions and p the upper bound
on the packing constraint. Thus, it follows that ALLOCATE can be solved in
O(pEmin{m, n}). In fact, Karush’s algorithm can simultaneously solve the one-
dimensional packing problem for all rr 1, 2, , p with no increase in computational
effort.

We now consider the total number of roots that will be identified in the solution
of (MCP). Consider column n- !+ 1 (which is the lth column of A measured from
the right). Certainly the bottom-most entry of this column will be a root since the
algorithm will eventually set all x,j > n- + 1, to zero at some stage. Let be a row
index, where a,_+ 1, and this entry is not the last nonzero entry of column n + 1.
Further, let i’ denote the row index, where entry (i’, n + 1) is the first nonzero entry
in column n + 1 below row i. If entry (i, n + 1) is ever a root, there must exist a
column q(i) of A, q(i) > n + 1, where ai,q(i) 0 and ai,,q(i) 1. (If there were no such
column q(i), then every subproblem containing entry (i, n- + 1) would also contain
entry (i’, n- l+ 1), in which case (i, n- + 1) could not be a root). But then since A
is a greedy matrix, it follows that for every r=> i’, if a,,-+l 1, then ar,q(i)-" 1. From
this it follows that for each nonzero entry a,,,,-t+l of column n- l+ 1, which is ever
identified as a root, there must be a distinct column q(t) to the right of column n + 1.
Thus, it now follows that there are at most potential roots in column n- + 1, and
from this it follows that an upper bound on the number of distinct roots of A identified
in the solution of (MCP) is n min {m, n}.

We now consider the number of one-dimensional packing problems that must be
solved via ALLOCATE. For any given roots (i,j) and value of 7r <-p, SUBPROB calls
ALLOCATE with parameters (roots, 7r) and (roots, r-1). We note that for a fixed
root (i, j), roots and roots2 are invariant with respect to 7r. Further, as noted earlier,
ALLOCATE solves the packing problem for all values of or 1, , p, simultaneously.
Thus, even though (for a fixed root) ALLOCATE may be accessed several times as 7r
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varies, it only needs to be solved twice (with roots and roots2) for any root and the
results stored for later use.

Finally, we note that a set of roots for any subproblem can be found in O(mn)
using the concept of a feasible walk. It now follows that (MCP) can be solved in
O(n min {m, n}(mn+p2 min {m, n}))= O(p2n min {m2, n2}), when p2=> max {m, n}.

The algorithm given in 10] to solve the maximum coverage location problem on
a tree network is reported to be of O(n2p), where n is the number of potential facility
locations. This reported complexity bound appears to be dependent upon concavity
of the gain function (as a function of the number of locations chosen) over any subtree
of the tree network. That the gain function is not always concave is evident from Fig.
2, a tree with 7 vertices. In the figure, each vertex is both a demand point and a
potential facility location, each arc is of length 1, all wi are 1, and all ri are one. Letting
f(k) be the maximal gain that can be attained by placing at most k facilities, it is easy
to see that f(1 4, f(2) 5, and f(3) 7. But then 2f(2) <f( 1 +f(3) so that f is not
concave.

v
7

v
6

v I
v
2

v
3

v
4

v
5

FIG. 2

We wish to point out that we were guilty of a similar error in an early version of
this paper, where we falsely asserted that the optimal value of SUBPROB ((i,j), ,n’)
was concave in r. After our error was pointed out by the referees, we discovered the
error in [10]. We also wish to note that although our algorithm is applicable to a
broader class of problems than those addressed in [10], the preferable approach to
maximum coverage problems on trees may be that of [10] (appropriately modified),
since to solve such a problem with our algorithm, it would be necessary to initially
generate the matrix A.

Acknowledgments. We wish to thank Antoon Kolen of Erasmus University, Rotter-
dam, and Eitan Zemel of Northwestern University for their comments on an earlier
version of this paper. In particular, we wish to credit Professor Kolen for providing
the proof of the theorem as given in this paper. The proof herein is an improvement
over the proof given in the earlier version.
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1. Introduction. The computation of the spectrum of a singular boundary value
problem of the form

(1) a(x) -x + b(x) f(x) Ac(x)f(x)

with 0 < a(x), -1 < x < 1, a(+ 1)= 0, can be handled with varying degrees of sophisti-
cation.

One chooses a grid of points (xl, , x,), replaces the function f(x) by the vector
(f(xl),""" ,f(x,,)) T and the differential operator by a tridiagonal (or higher order)
matrix whose entries are obtained by sampling a(x), b(x), c(x) at points related to
the grid. Any such discretization introduces obvious errors, the most blatant being that
(1) has, under appropriate conditions on a(x), b(x), c(x) an infinite discrete spectrum
of simple eigenvalues

0>AI>A2>A3>’" ">An>’’"
while the matrix in (2) below has a simple but finite spectrum given by

The most that one can expect is that the lowest eigenvalues Aj be approximated by
the corresponding/xj as n grows, that is

/z h, j small compared to n.

We will use the notation trid (p(i), q(i), r(i)) for a matrix M with M,_I =p(i),
M, q(i), M,+I r(i), Mq =0 if [i-jl> 1.

Probably the most common discretization of the operator

is given by the matrix

(2)

d d

1
h--i trid (a(x,-1/2),-(a(xi-1/2)+ a(Xi+l/2)), a(xi+l/2)).

See [1, p. 363].
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2. Legendre equation. Here we make the observation that for the Legendre
equation

(’--x((1-xz)x))f(x)--Af(x)
if one chooses

2(i- 1)
(3) xi--l+, i= 1,..., n+l

and instead of (2) uses the less sophisticated n x n matrix

n2

(3’) trid (a(xi),-(a(xi)+ a(xi+l)), a(x,+)),
4

one has the remarkable fact that for each n,

m=Aj, j=l,...,n.

In this case one knows that Aj -j(j- 1), 1, 2, . As an extra bonus, it turns
out that for each n, (3’) is a matrix with integer entries and integer eigenvalues. If one
does not insist on normalized eigenvectors, then (3’) also has eigenvectors with integer
entries.

THEOREM. The matrix (3’) given above has eigenvalues tx, ", I,t, given by

I. -(J-1)J, j= 1,..., n

and normalized eigenvectors X.,, X,2," ", X,, with components X, given by

Xi=P_,,_ -1+
n

Here P.,,_1 denotes a set of n polynomials known as the Gram [1, p. 114] or Hahn
[2] polynomials depending on the author’s background. They correspond to the choice
a =/3 0 in the family of polynomials discussed below. The proof is given after some
comments.

Remarks. (1) These polynomials were considered by Chebyshev, see [5].
(2) The Gram polynomials P.,,(x) are defined by the recursion relation

with

and

pj,n(x Cj_lXPj_l,n(x) Cj_l/ Cj--2Pj--2,n(X), l<--j<__n

n / 4(j+1)2-1
c=j-- (n+ 1)2_(j+ 1)2

1
P_l,,(x) 0, Po,,(x) /n + 1

They are orthonormal in the set xi -1 + 2i/n, 0, , n with respect to the measure
that assigns weight 1 to each point.

(3) The Hahn polynomials given by

h(x, a, fl, n)=- hj(x)=3F2(-j, -x,j+ a + fl + 1;-n, a + 1; 1),

x=0, 1,. .,n, j=0,...,n
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satisfy, for each fixed j, a second order difference equation in x [2], [3], [4]. This
means that the (n + 1) x (n + 1)

(4) trid (D(i),-(D(i)+ B(i)), B(i)), 0 <- i<= n

with D(i) i(n +/3 i), B(i) (n 1 i)(a + 1 + i) has eigenvectors h with eigenvalues
-j(j + c + fl + l ).

In the case c =/3 0 the Hahn polynomials are related to the Gram polynomials,
P,n(-1 +Ei/n)- tzj,nhj(i) with/x,n constants; moreover, from the definition above it
is clear that j! n(n+ 1)... (n+j-1)h(i) is an integer for each integer value of i.

These polynomials are known to be a good uniform approximation to the Legendre
polynomials only for values of j small compared to n 1/2, and for large values of j the
Gram polynomials have wild oscillations, see [6], [7]. An illustration of this
phenomenon is given by the unnormalized eigenvector of (3’) corresponding to the
largest eigenvalue, namely

j=0,1,...,n.

Proofi Use the identity

2n
(1-xE)=(i-1)(n-i+ 1)

4

to conclude that (3’) is exactly the matrix appearing in the second order difference
equation given above for a =/3 0.

Note. The simpler example of Laplace’s equation f"(x) Af, f(+ 1) 0, discretized
by (1/h2) trid (1,-2, 1) has a spectrum given by

/x =-n
2 sinE jr/2(n + 1), j 1, , n

and only for j small compared to n we get

E,.B.2

3. Jacobi equation. The Hahn polynomials for a,/3 >-1 provide natural discrete
analogues for the Jacobi polynomials. They also satisfy second-order difference
equations with eigenvalues exactly matching those of the differential operator [2], [3],
[4]. However, it is only for a =/3 =0 (the Legendre case) that one encounters this
matrix as a "natural" discretization of the differential operator

(l-x) (l+x)dx
(1- (l+x)

The differential operator can be written in the nonself-adjoint form

dE d
(5) (1 -x2) x2+ ((fl ce) (a +/3 + 2)x) xx
and one can wonder if any "natural" discretization of (5) will give a matrix with
eigenvalues -j(j + a +/3 + 1). The answer is probably no; however, a look at (4) shows
that the choice in (3) and the replacement of (5) by

(1 xE)D_D+-(fl + 1)(1 + x)D_ + (a + 1)(1 x)D+
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with D_D+ trid (1, -2, 1), D_ trid (-1, 1, 0), D+ trid (0, -1, 1) gives a matrix with
eigenvalues -j(j + ce + + 1).

The Legendre equation is special in the sense that a very simple-minded discretiz-
ation of the differential equation gives the second order difference equation satisfied
by the corresponding Hahn polynomials.

Acknowledgment. It is a pleasure to thank two referees for comments and sugges-
tions.
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PARAMETRIC LOWER BOUND FOR ON-LINE BIN-PACKING*

G. GALAMBOSf

Abstract. In this note we give lower bounds for such a one-dimensional bin-packing problem, in which
we can use only one-line rules to pack the elements, and the maximal size of the elements are bounded.
Our lower bound contains, as a special case, the result given by Liang [Inform. Proc. Lett., 10 (1980), pp.
76-79].
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1. Introduction. Let us consider one of the simplest draftings of the one-
dimensional bin-packing problem: There is given a list L= {Pl, P2,"" ", P,,}, and let
us suppose that an li size belongs to each pi L (0< l <-1). The problem is to pack
the pieces (the elements of the list) into bins of unit capacity, while attempting to
minimize the number of bins needed for packing. This problem belongs to the AC-hard
problems [2]; therefore many approximation algorithms for its solution were examined
[1], [3], [5]. We will consider those algorithms only, which try to pack one piece at a
time, and after having placed the piece it will be never moved again. We call these
algorithms as on-line algorithms.

Different on-line algorithms were developed for the wide variety of applications,
for example to solve the one-dimensional cutting stock problem, to allocate spaces on
a disc or in a computer memory, to operate a dynamic multitasking, to solve some
scheduling problems, etc.

The performance of an algorithm A is measured by its asymptotic performance
ratio Ra (see below). The first lower bound for the RA of an on-line algorithm was
given by Yao [5]. He concluded that there is no such on-line algorithm, in which
Ra <. Starting from a more general list, Liang [4] improved this bound by stating
that there is no such on-line algorithm in which RA < 1.5364....

By generalizing the result given in [4] we give a lower bound for lists in which
maxp,L l =< 1/r (r 1, 2,...). Our result contains, as a special case, Liang’s lower
bound.

2. The parametric lower bound. Let L be a list and let r be the maximal integer
on which maxp,L l <= 1/r. Let OPT (L) denote the minimal number of bins needed to
pack the items, and A(L) the number of bins that are used by the algorithm A to pack
the list L. Let Ra(k r) denote the supremum of the quotients of A(L)/OPT (L) for
all lists with OPT(L)=k. Then the asymptotic performance ratio is Ra(r)=
lim SUpk_, RA( k, r).

During the proof of our theorem we use the following sequence" For a given
integer r we define the elements of the sequence as follows:

h(r)= r+ l, ti+l(r)= I- t+l, i=>l.
j=l

We introduce further notation: let us suppose that k_-> r+ 1, and let n be a suitable
multiple of tk+(r)-- 1, and O< e _-< l/[(k+ r- 1)( tk+( r) 1)]. Let us consider the list

* Received by the editors September 4, 1984, and in revised form July 17, 1985.
f Universitit Augsburg, Institut fiir Mathematik, Memminger str. 6. D-8900 Augsburg, Federal Republic

of Germany. On leave from Kalmfir Laboratory of Cybernetics, J6zsef Attila University, Arpfid t6r 2 Szeged,
H-6720, Hungary.
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L1 which contains nr pieces of elements of the same sizes I1 1/t(r)+ e. Let Lj be
lists which contain n pieces with sizes/ 1/tj(r)+ e (2<=j<= k). Finally we denote by
(LkLk-l’" L) the concatenated list in which the elements of Lk are followed by the
elements of Lk-1 etc.

LEMMA 1.

n
OPT (Lk" Lj)=

tj(r)- 1’
j>-2.

Proof. On the one hand

1 +e +(k+l-j)e<=
i= tj(r)- tk+l(r 1 t(r)-- 1

So we can put the list into n/(t(r)-1) bins, therefore

n
OPT (Lk" L)<-.t(r)- 1

On the other hand, if we consider the elements of the list Lj only, it is true that we
can pack at most t(r)- 1 pieces into one bin; thus

OPT (Lk L;)>=t(r)- 1

The last two inequalities concerning the optimal packing give the desired result.
LEMMA 2.

OPT (Lk" L1) n.

Proof. Consider a packing which places into one bin r pieces from the list L and
one piece from each of the other lists L (2-<j =< k). These pieces fit in one bin since
the sum of them is"

Consequently,

r

r+l
-}- +(k+ r- 1)e < 1.

i=2 t/

OPT (Lk" L1) -< n.

On the other hand, the sum of the pieces in this list is:

n + +(k+r-1)e <=n;
r+l

therefore

OPT (Lk" L1) >= n.

The last two inequalities concerning the optimal packing give the statement of the
lemma. [3

Now we can formulate the following theorem:
THEOREM. Let A be an optional on-line algorithm. Let us denote the quotient

n/[tj(r)-l] by a. Let RA(a, r)=A(Lk L)/OPT(Lk" L), (l<_-j_<-k), R(r)=
maxl<__j__<k RA(aj, r) and A(r)= maxk_,oo RkA(r). Then

)j
|

1
(1) Ra(r)= 1 tj(-- I tj(r)-- I
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Proof. Since for allj (2 <=j <= k) Ra(aj, r) <= R-a(r), SO the maximum ofthe left-hand
sides gives a lower bound for RA(r).

First we examine the situation when we have packed all the elements preceding
the list L1, but no element from the list L1 has been packed. Let us denote by a(q, i2,...,ik)

the number of those bins in which the algorithm A places q pieces from the list L1
(0_-< q-< r), i2 pieces from L2, i3 pieces from L etc. Then the following inequalities
are true:

(2) i /a(q,,2,...,,k)= n (2 =<j -< k),
q=O

n
(3) a(q, i2,...,ik)

q=o r+ 1

Let us try to pack the elements of the list L with the help of the algorithm A. We will
denote by bq the number of bins in which there is no element from the lists Lk," , L2
and which contain exactly q pieces from the list L. Then

(4) nr<= i q(a(q,i2,...,ik)+ bq),
q=l

and so

(5) n <= (a(q,i2,...,ik)
q- bq).

q=l

Since RA(r) >= A(Lk" Lj)/OPT (Lk. Lj) (j 1, 2,. ., k), so in the casej 1 we get

iA(L L1) a(o,,...,)+ (a(q,,...,) + bq) <- RA(r)n,
q=l

and using the inequality (5), we get

(6) a(o,,,...,, <--RA(r)n (a(q,,,...,,+bq)= RA(r)n--n.
q=l

Let us multiply both sides of the equalities (2) by -j/tj(r)- 1"

J J(7) ), ija(q, i2,...,,k n.
q--o tj(r) 1 tj(r)- 1

The formula (7) is valid for all 2 =<j-< k. If we use again the inequality concerning the
lower bound, and we take into account the result of Lemma 1, we get

(8)
q=o

a(q,i,...,i) <- RA(r) tj(r)-l-,_ 2 <-_j <

Adding all inequalities (6)-(8) we get

1 j
RA(r)n n + Ra(r)n , n

j=2 t(r) 1 j= tj( 1
(9)

a(o,i2,...,i)- ( a(q, i2,..
=2 q=o t 1

lja(q,i2,...,ik) +j=2 q=O
-,i),

and we claim that the right-hand side of the inequality is nonnegative. If this is true,
then rearranging the left-hand side, we get the statement of the theorem.
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To see the nonnegativity, it is sufficient to show that the coefficient of each a(q, i2,...,ik)

(0_-< q-<_ r) is nonnegative. We will distinguish two cases. Examining both of them, we
can assume w.l.o.g, that ik > O, because if ik --0 we can replace k by the highest index
k’ for which ik, > 0 and the rest of the proof remains unchanged.

Case 1. q O. Here we must prove that

(10) J
j__E tj(

_
l
ij<- k"

Our proof is based on two lemmas.
LEMMA 3. Let us suppose that 0 <-q <-_ r. If

then

r+l

k ij ik q

j=2 tk( r) 1 r + 1

Proof. If we suppose that in spite of the statement

i ik q+ > 1-
tj(r) tk(r)-- 1 r/ 1’j=2

then, according to the rule making the tk(r) sequence, the left-hand side of this
inequality is at least 1-q/(r+ 1)+ 1/ tk( r) --1). So we must have

ik ik
tk(r)-- I tk(r)-- I

q
>--1-- +

r+l

1

tk(r)--I
ik ik )tk(-- 1 tk(r)

q
>-_1 +

r+l tk(r)-- 1 tk(r)-- 1

q
r+l’

which is a contradiction.
LEMMA 4. If

then
= t-+ tk(r)-- <=1

k j

t( liJ<-k"j---’2

Proof. Since j/(tj(r) 1) <- k/t(r) if 2 <-j -<_ k 1, thus

j k k

j=2 tj ) 1 i <-
j=2 ti’+ tk(r)-- Iik<=k.
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Returning to the proof of nonnegativity in Case 1, we can see that the contents
of the bins that belong to this case (q O) are not greater than 1, i.e.

O(e) -< 1,
j=2 tj-

from which

j=2 t-<1"

Using the above two lemmas, we get the inequality (10).
Case 2. q > O. We have to prove that

(11) J
)=2 t)(;i- 1/ --< k- 1.

Now we need a lemma again.
LEMMA 5. If

i) ik q
j=2+1-t(r)- 1 r+ 1

then

)=2i) k-l"
Proo Using up the inequality in Lemma 4, we get

)=2 )= t(r)-I r+l

The last inequality follows from the condition k r + 1.
Now we can easily prove the inequality (11). Since for the contents of the bins

belonging to Case 2

i) r-q+l q

=2 r+ 1 r+ 1’

therefore

r-k

TABLE
The values of ha(r for different k values.

1.333 1.5

1.353

1.535

1.365

1.274

1.536

1.365

1.274

1.219
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Using Lemmas 3 and 5, we get the inequality (11). So the proof of the theorem is
completed. 13

Finally, Table 1 shows some values of the lower bound for different k values, and
Table 2 presents, over the lower bound value for k 5, the asymptotic performance
ratio for some well-known algorithms.

TABLE 2
RA( r) values for different on-line algorithms.

Worst Fit

Next Fit

Almost W.F.

First Fit

Harm. Fit

Rev. F.F.

r=l

1.536

2.0

2.0

2.0

1.7

1.691

1.66

r=2

1.365

2.0

2.0

2.0

1.423

N.A.

r=3

1.274

1.5

1.5

1.5

1.33

1.302

N.A.

r=4

1.219

1.33

1.33

1.25

1.233

N.A.
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A STABLE METHOD FOR THE LU FACTORIZATION OF M-MATRICES*

ALAN A. AHAC" AND D. D. OLESKYt

Abstract. We present an algorithm for the LU factorization of M-matrices based upon Gaussian
elimination with a new pivoting strategy. At each step of the elimination, a column that is the most (column)
diagonally dominant in the unreduced submatrix is exchanged into the pivotal column position through a

symmetric permutation on the matrix. We demonstrate that this approach is well-suited to M-matrices, and
can be implemented efficiently. The stability of the method is shown by providing a bound on the growth
factor associated with the backward error analysis of the Gaussian elimination algorithm.

Key words. M-matrix, Gaussian elimination, pivoting, stability, LU factorization

AMS(MOS) subject classifications. 15A06, 15A23, 15A57, 65F05

1. Introduction. An n x n real matrix A--[ai,j] is an M-matrix if ai,j<_-0 for all
j and if Re A >_-0 for all A tr(A), the spectrum of A. It can be shown that an
M-matrix A is nonsingular if and only if Re A > 0 for all A or(A); lengthy lists of
necessary and sufficient conditions for A to be either a singular or a nonsingular
M-matrix are given in Berman and Plemmons [1979].

An n x n matrix A is said to have an LU factorization if there exists a lower
triangular matrix L and an upper triangular matrix U such that A LU. Solving a
system of linear equations

(1) Ax=b

by Gaussian elimination involves the determination of an LU factorization of A (or
PAQ, where P and Q denote permutation matrices). This paper is concerned with the
determination of a permutation matrix P so that an LU factorization of the symmetric
permutation PAPr of an arbitrary (singular or nonsingular) M-matrix may be
computed in a stable manner.

Letting x-(Xl, x2,’’ ", xn) r denote a vector of real numbers, we will use the
following notation:

x >- 0 means x -> 0 for each i;
x > 0 means x -> 0 and x 0 for some i;
x >> 0 means x > 0 for each i.

This notation will also be used for matrix inequalities.
Several recent papers have considered the following problem: characterize those

M-matrices A for which

(2) A LU with L a nonsingular lower triangular M-matrix and U an upper
triangular M-matrix.

For nonsingular M-matrices, the factorization (2) follows from results in Fiedler and
Ptak [1962], and this was extended to irreducible M-matrices by Kuo [1977] and to

* Received by the editors June 24, 1985, and in revised form July 17, 1985.
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generalized diagonally dominant M-matrices by Funderlic and Plemmons [ 1981]. Note
that A is generalized diagonally dominant if

(3) y TA >--_ 0 for some vector y >> 0.

Graph-theoretic necessary and sufficient conditions for an M-matrix A to have a
factorization (2) were given by Varga and Cai [1981].

The LU factorization of PAPr, where A is an M-matrix and P a permutation
matrix, is of particular interest since PAPT is also an M-matrix, and thus retains the
structure and properties of A. With regard to solving (1), the determination of an LU
factorization of PAPT may be realized by using Gaussian elimination with a pivoting
strategy that employs simultaneous interchanges of identical rows and columns of the
coefficient matrix at each step.

Although all (singular) M-matrices do not have an LU factorization, Kuo 1977]
showed that for any M-matrix A there exists a permutation matrix P such that PAPT

has an LU factorization of the form (2). Varga and Cai [1981] proved that PAPT has
such an LU factorization for all permutation matrices P if and only if A is generalized
diagonally dominant. Finally, generalized diagonal dominance of an M-matrix A has
been shown to imply that PBPT= LU for all permutation matrices P and for all
matrices B for which

and

(see Funderlic, Neumann and Plemmons [1982]).
With regard to the above results, the algorithm which we describe determines a

permutation matrix P and matrices L and U as in (2) such that PAPT- LU, where
A is an arbitrary M-matrix; thus it is a realization of Kuo’s existence theorem.
Furthermore, the algorithm is shown to be stable and efficient with respect to the
number of arithmetic operations required for its implementation.

2. Stability of Gaussian elimination. Let A be an n x n matrix. We will denote the
reduced matrix which is determined after k steps (1 <= k <_- n- 1) of the forward elimina-
tion of Gaussian elimination (which we abbreviate to GE) by

(4) Ak

al,1 al,2

2,2

al,k
(1)

a2,k

aff1)

al,k+
1)
2,k+l

k-1)

k,k+l

k)
k+l,k+l
(k)
k+2,k+l

k)
n,k+

al,n
(1)

a2,n

a)

(k)
ak+l,n
(k).a k+z,,,

(k)

Thus A._I is upper triangular For convenience we denote A by Ao, and let ai.j--a.f.
When GE with floating point arithmetic is applied to A, triangular factors L and A._
are determined such that

(5) LA._ A+ E.

This backward error analysis is due to Wilkinson 1961] and bounds on the magnitude
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of elements of E are given, for example, by Reid [1971], and involve

(k)l 0 < k < n 1,a =max ai, i,

the largest element in magnitude in any of the reduced matrices Ak. It is common, and
often more meaningful, to consider the growth factor 3" defined as

maxi,j,k a
3,= O<-k<__n-1,

max,,j la,,]
as a measure of the size of the perturbation E with respect to the magnitude of the
elements of A. Clearly 3, >= 1.

We will say that an algorithm using floating point arithmetic is stable if the
algorithm yields a solution that is "near" the exact solution of a slightly perturbed
problem (see e.g. Stewart [1973]). Thus, if the elements of the matrix E of (5) can be
shown to be "small," then the GE algorithm can be considered stable. This essentially
requires controlling the size of 3,.

For GE with partial pivoting, it is well known that the best possible bound is
,/<-2"-1 while for complete pivoting (see e.g. Stewart [1973])

3’ < (n. 2131/241/3 n/"-l)) /2.

For certain classes of matrices, the growth factor may be bounded independently of
n. For example, if A is either column diagonally dominant or tridiagonal, then 3’ <= 2
(using GE with no pivoting or with partial pivoting, respectively) while if A is positive
definite, then 3,-<_ 1 (without pivoting).

3. LU faetorization of an M-matrix. We will write an M-matrix A as

(6) A A0

a,l -a,2 -al,3

-a2,1 a2,2 -a2,3

-a3,1 -a3,2 a3,3

where ai,j->-0 for all i,j. An M-matrix that has an LU factorization is invariant with
respect to the application of GE without pivoting (see e.g. Fan [1960]). Thus the
reduced matrix (4) may be written as

al,1 --al,2 --al,k+l --al,n
a() (1) (1)

2,2 a2,k+l a2,n

(7) Ak 0 Ak

(k) ...(k)a n,k+ t,l n,n

where Uk is a k x k upper triangular M-matrix, Ak is an (n k) x (n k) M-matrix
and Ck is a k x (n- k) matrix of nonpositive elements.

Funderlic and Plemmons [1981] note that if A satisfies (3), then DA is column
diagonally dominant, where D=diag (y, Y2,"" ", Yn), so that GE without pivoting
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applied to DA is stable (with y 1). In Funderlic, Neumann and Plemmons [1982],
it is shown that GE without pivoting may be applied to A with

T_<_
max Yi

mini
However, in general y is unknown and the above bound on y may be large. For
example, the LU factorization

-100 100 -1 -50 1 0 0 100 -5001
0 -1 100 0 -0.01 1 0 0 49.99

has ,/= 50.01.
The use of partial or complete pivoting to factor an M-matrix is unattractive since

the reduced matrices Ak would not, in general, be M-matrices, and the desirable
M-matrix properties and sign pattern would be lost. However, if A is an M-matrix,
then so is a symmetric permutation PAP, and by Kuo 1977] we know that for every
M-matrix A there exists a permutation matrix P such that PAPr has an LU factoriz-
ation (2). These comments motivate the pivoting strategy of the next section.

4. Column diagonal dominant pivoting. The following theorem states that there is
always at least one column of an M-matrix that satisfies the column diagonal dominance
condition. But before proceeding we need a definition.

For a general n x n matrix A, let denote the reduced normalform of A. That is,

A PAPT A2,2 A2,k

0
Ak,k

where P is a permutation matrix and Aj, is either irreducible or a zero matrix of order
one, 1 <_-j _-< k.

THEOREM 1. Given an n x n M-matrix A, there exists at least one subscriptj such that

(8) aj, ai,j.
i=1
ij

Proof. Assume without loss of generality that A is in reduced normal form. Then
if A1,1 is a zero matrix of order one, trivially

0=al,---> ai,1--0
i=2

and the condition is satisfied. If A1,1 0, it is sufficient to show that the condition is
true for an irreducible M-matrix A.

Any M-matrix may be written as A sI- B with B _>- 0 and s >- p(B), the spectral
radius of B. We assume A is irreducible, so B is irreducible as well. Let j be a column
of B such that

i=1 l<=l<=n i=1

Then by a well-known result of Perron-Frobenius theory (see Varga [1962, Lemma
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2.5, p. 31])

and s >_- p (B) implies

which is (8).
Before proceeding, we note two special cases of the above result.
THEOREM 2. Given a n x n nonsingular M-matrix A, there exists at least one subscript

j such that

aj, > ai,.
i=1
ij

Proof. Since A is nonsingular, the reduced normal form of A cannot have A1,1 as
a zero matrix of order one, so we need only consider the irreducible (nonsingular) case.

The result now follows from the proof of Theorem 1 when we note that s > p(B)
in the nonsingular case.

TIaEOREM 3. Let A be an n x n singular, irreducible M-matrix. There exists a column
j such that

(9) a, > a,j
i=1
ij

if and only if there exists a column r such that

(10) at,r< ai,
i=1
ir

Proof. Assume firstly that (9) is satisfied. If there is no column r as in (10), then

ar, >- ai,
i=1
ir

for all rj. But then (1,..., 1)A->0, and since A is almost monotone (see Berman
and Plemmons [1979, p. 156]), this implies (1,..., 1)A =0, which contradicts (9).

To prove the converse, assume that (10) is satisfied and that there is no j for which
(9) holds. A contradiction is obtained as (-1,...,-1)A =0. l-]

We now define a pivoting strategy based on the existence of a diagonally dominant
column. Assume A Ao is any M-matrix (6), let Ak denote the reduced M-matrix (7),
and assume that columnjk(k <jk <- n) has the maximal column sum in Ak. (By Theorem
1, this sum is nonnegative.) Then column diagonal dominant pivoting (cdd-pivoting) is
the process of exchanging the (k + 1)th and jkth columns and rows of Ak prior to the
(k + 1)th step of GE(O<= k <= n-2). The interchanging is equivalent to forming

TPk+l,jkAkPk+ l,jk

where Pk+l,k is an elementary permutation matrix.
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Note that the application of GE with cdd-pivoting implies that the sum of the
absolute values of the multipliers at each step is <_-1. For GE with partial or complete
pivoting, we know only that the magnitude of each multiplier is _-< 1.

In general, GE (without pivoting) will fail if the elimination process results in
(k) 0 and ,,(k)

ak+l,k+ tl,k+ 0 for some le {k+2,. , n}. Using cdd-pivoting on M-
matrices ensures that the pivotal column sum is nonnegative so if a zero pivot element

(k) =0 for all l{k+2,.., n. No computation is needed atis encountered, then at.k+1
that step, and we can continue on to the (k + 1)th step. Thus, GE with cdd-pivoting
will not fail for any M-matrix, and the resultant LU factorization will be an LU
factorization of PAPT for some permutation matrix P.

The following theorem relates the column sums of the unreduced submatrix ,1
to the column sums of A Ao. This result provides an easy method for determining
the column sums of the unreduced submatrix Ak at the kth step in the elimination
based on information computed at the previous step.

THEOREM 4. Let A be an n x n M-matrix, and define

(11) sj=aj,j- . ai,j, l <-j<--n.
i=1
i#j

Let A (cf. (7)) be the result of one step of GE applied to A and define

(12) s)) ) a) <--j=Uj,j i,j 2 < n.
i=2
ij

Then

s)l)=sj+sl(al’j),
\a,i/

Proof Firstly we note from (11)

2<--j<--n.

From (12),

l<-j<=n.

ai,1a,- ai,- a, v;’
i=2 i=2 a1,1
ij

al,ja, a, + s
i=
i#j

Sj + Sl
al’---j 2 <--j <
a,
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5. Stability of Gaussian elimination with cdd-pivoting. To examine the stability of
our algorithm, we need to find a bound on the growth factor y for the method. The
interchanges required for the pivoting strategy complicate the expressions for the Ak,
making analysis of the algorithm difficult. Fortunately, the following lemma shows
that using GE with cdd-pivoting is equivalent to doing the interchanges first and then
applying GE without any pivoting.

LEMMA 1. Let A’= A) be an n x n M-matrix and let 1 <- k <-_ n 1. Let M, 1 <= <- k,
denote elementary lower triangular matrices and Pi, 1 <=i<--k, denote elementary
permutation matrices such that

Ai_ <p pr 1 <- =k,

denote the reduced matrices obtained by applying k steps of GE with cdd-pivoting to A’.
Let Ao PkPk-1 P1AoP’ 17"" P_IP. Then GE without pivoting may be applied to

(-1) 0 for i+ 1 <=j< n). If M, 1 < < k, denoteAo (and if some pivot a,i/-)= 0, then aj,
the elementary lower triangular matrices such that

A MiAi_l, 1 <= <--_ k,

are the reduced matrices obtained by applying k steps ofGE without pivoting to Ao, then

Ak A’k.

Proof See Stewart 1973, Thm. 2.9, p. 125]. F1

Using Lemma 1, we obtain the following result which gives an upper bound,
dependent upon values contained in A Ao, , Ak-2, for the elements of the inter-
mediate matrix Ak, 1 <-- k <= n 1.

LEMMA 2. Let A’ be an n x n nonsingular M-matrix and let 1 <-_ k <- n 2. Let A Ao
and A, 1 <- <= k, be defined as in Lemma 1. Then for 1 <- <- k- 1,

k (ai, )(k) < ai,j + as, + al,j + as,
ai,j

s=k-t+l \al,1 s=k-t+l al,1/
(13)

k-t-1 (1) (1)-- a +
’+

-F ’(l"-
l--1 al+,. r=k-t+l t/+l,/+l

where k + l <= <- n, k + l <-j <- n and j.
Proof We first note that all elements which appear in denominators in (13) are

nonzero since the reduced matrices Ak are also nonsingular M-matrices.
The off-diagonal elements of A are defined by

a(k) .(k-1)
a(k-1)i,k (-)

i,j =--uid -------- a(k- k,j
ak,k

from which it follows that
(1)

(14) a !k.) ai,1 k-1
(l). ai,l+

,,j a,+-- al, + a 1+1, (t-----
all,1 l=l t/+l,/+l

The lemma is now proved by induction on t.
From (14) we obtain

k (l)(k-l) 2 aa!k.) ai,1 ai,k (k-l) + (!) i,i+l
,j ai,j+ a,j+ ..(k-l) k,j al+l,j (1)

al,1 Uk,k /=1 al+l,l+l

k-2 (!)

< ai’j + ai,1 ,.,(k-l)+ a(l) ai,l+l
a,j + k,j l+ 1,j (l"-’-

al,1 1=1 al+l,l+l
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(k-l)/ 1)since cdd-pivoting guarantees that ai,k a- < 1. On expanding a-1) using (14),

(k)
ai,j -I- ai, ak,1a i,j a,j-t- ak,jh- al,j

al,1 a,l

k-2 r(I) k-2 (1)

-b a (l) tk,/+l (l) ai,t+l
l+l,j (1+ al+l,j (1)

/=1 al+l,l+l /=1 /+1,/+1

+ai,j + ak,j + a,j a, a,1/

(t) ui,t+ a,t+
/=1 x/+l,/+l /+1,/+

Thus, the condition is true for 1.
Now, on assuming that (13) holds for t= m-1 <k-1, we have

k) < ai, + as, + a,ja, + as,
s=k-m+2 al,1 s=k-m+2 al,1/

a+ L a+,,y- "<o. +
l-

/=1 al+,i r=k-m+2 /+1,/+1

s=k-m+2 al,1 =k-m+2 al,1]

k-m i,k-m++ k-m+l,j (k-m) + (k-m)
k-m+l,k-m+l r=k-m+2 Uk-m+l,g- +1

k-m- / () k
(l) i,l+l a,t++ at+, + ?l- }./=1 k /+1,/+1 r=k-m+2 /+1,/+1

Cdd-pivoting implies that

(_(k-m) (k-m) )i,k-m+l r,k-m+l
(_) .(’ 1,

k-m+l,k-m+l r=k-m+2 k-m+l,k-m+l

(k-m)and expansion of ak-.+,; using (14) yields

k (a,, a,l(k) @ @ ak_m+l,ja i,j < ai,j W as,j W al,j
s=k-m+2 al,1 s=k-m+2 al,1/

k-m-1 lak_m+l, a
+al,j + (1) m+,/+l

U+l,j (1)
al,1 !=1 al+l,l+l

+ (0 i,+ a,+,
(0, +" +/=1 al+,! r=k-m+2 l+l,l+ll

a, + a,+ a,
s=k-+l al,1 s=k-+l

a,+(0.k--I [ (l)ar,l++ ( +
/=1 al+l,l+l r=k-m+l

which is (13) with m, completing the proof.
We can now state our result regarding the stability of G with cdd-pivoting on

M-matrices.
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THEOREM 5. Let A be an n x n nonsingular M-matrix Then the growth factor
resulting from the application of GE with cdd-pivoting to A is bounded by

(15) /< n-1.

Proof. Since growth in the elements of the reduced matrices produced by GE
only occurs in off-diagonal positions, we need only consider bounding the growth of
off-diagonal elements of Ak, 1 <-_ k <-_ n 2.

Letting k-1 in (13) we have

(k) ( a,,l + as.,
a i,j < ai,j + as,j -- al,j

=2 \ al,1 =2 al,1]

where k + 1 -_< _-< n, k + 1 <_-j -<_ n and # j. Since

( ai,1 -F as.l] <1
\ al,1 s=2 al,1/

when using cdd-pivoting,
k

(k) < ai, + a,j < (k + 1) max a,.a i,j
s=l se(1, ,k,i)

The result now follows on letting k n- 2, since no growth in off-diagonal elements
can occur when k= n-1. [3

The matrix

(16) Ao

1 0

-l+e 1

-l+e

0 0 -1

0 0 -1

0 0 -1

1 -1 -1
-l/e 1 -1

0 -t 1

is an n x n nonsingular irreducible M-matrix for 0 < e =< 1 and for sufficiently small
> 0. Applying GE with cdd-pivoting results in

1 1 0 0

0 1-l+e 1
0 -l/e

0 0

1
-1-be 1

0 0 0 -/e 1.

0 -1
-2+e

--3-F t3(e

e -(n-1)+8,,_l(e)
1-(:/ e)[n l 8,,_l(e)]

0 0

1-1

where 8,(e)
i(i-1)

e + O(e:).
2

Thus for sufficiently small e >0, we can obtain growth in the (n-1, n)-position of U
approaching n- 1 times the maximum element in magnitude in Ao.

The strict inequality in (15) for nonsingular M-matrices is also applicable to
singular, irreducible M-matrices. By Theorem 3, if A is a singular irreducible M-matrix,
it has all column sums equal to zero, or it has at least one negative column sum and
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at least one positive column sum. For maximal growth to occur, the latter must be
true. But this implies that there exists a pivotal column with positive column sum,
indicating that the sum of the multipliers at that step will be strictly less than one.
This ensures that the growth factor 2’ cannot equal n- 1. Note that by choosing in
(16) so that the (n, n)-element of U is zero, Ao is a singular, irreducible M-matrix
and the upper bound of n- 1 on 2’ is seen to be tight for this case.

We observe that the 5 x 5 singular reducible M-matrix

1 0 0 -1 -1

1 1 0 0 -1

Ao-- 0 -1 1 0 -1

0 0 -1 1 -1

0 0 0 0

can be decomposed using GE with cdd-pivoting to return the lower and upper triangular
factors

1 1 0 0 -1 -1

-1 1 1 0 -1 -2

0 -1 1 1 -1 -3
0 0 -1 1 0 -4

0 0 0 0 1 1

The growth factor 2’ is 4 in this example, so our bound of Theorem 5 can be attained
for singular reducible M-matrices. This is consistent with our expectations considering
that Theorem 1 shows that the sum of the multipliers at every step of GE can be equal
to one. Note that the above example generalizes to the n x n case.

6. Concluding remarks. We have presented a new pivoting strategy for computing
the LU factorization (with L nonsingular) of a symmetric permutation PAPT of an
arbitrary M-matrix. The use of cdd-pivoting assures stability since the growth factor
y associated with the backward error analysis of GE is bounded by n- 1. Previous
algorithms either assume that A is column diagonally dominant or else rely on
knowledge of a scaling vector y (see (3)) to insure stability; bounds on 2’ involving y
(e.g. Funderlic, Neumann and Plemmons [1982]) may be very pessimistic.

The floating-point operation counts for the LU factorization of an n x n M-matrix
using cdd-pivoting are

In + 1/2n 2 +n 3 multiplications/divisions

and

]n3 + n2-n 1 additions/subtractions,

which are, respectively, approximately n2/2 and 3n2/2 more operations than are
required for GE with either partial or no pivoting.

Finally, we note that for large, sparse matrices our algorithm should be modified
to attempt to reduce the matrix fill-in. Since the bound 2’ _-< n- 1 depends only on the
sum of the absolute values of the multipliers being less than or equal to one, the pivotal
column can be any column of the unreduced submatrix Ak having a positive column
sum (not necessarily the maximal column sum). Thus, for example, the sparsity criterion
attributed to Markowitz (see Duff and Reid 1979]) may be used: at each step of the
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elimination, the jth column of Ak (see (7)) is chosen as the pivotal column, where

(k)> (k)
aj, a i,j

i=k+l
ij

(k)...(k) k+ 1 < <and the number ofnonzero terms ai, ,,j,i, n, is a minimum. Note, in addition,
that we can pivot solely for sparsity (without regard for stability) if at any stage of
the elimination all of the column sums of Ak are nonnegative (since it then follows
from Theorem 4 that all column sums of Aj must be nonnegative for all j > k).
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EFFICIENT ALGORITHMS FOR OPTIMIZATION AND
SELECTION ON SERIES-PARALLEL GRAPHS*

R. HASSINf AND A. TAMIR*

Abstract. It is well known that a series-parallel multigraph G can be constructed recursively from its

edges. This construction is represented by a binary decomposition tree. This is a rooted binary tree T in
which each vertex q corresponds to some series-parallel submultigraph of G, denoted by G(q), obtained
as follows. Each leaf (tip) of T represents a distinct edge of G. If q is not a leaf then it is either of a series

or parallel type. If qi and q2 are the two sons of q on T, G(q) is the submultigraph obtained from G(ql)
and G(q2) by the respective series or parallel composition.

In this paper we use this tree to develop efficient algorithms for several optimization and selection
problems defined on graphs with no K4 homeomorph. In particular, we provide a linear time algorithm to
find the shortest simple paths from a given vertex to all other vertices. We also construct an O(n4) algorithm
to solve the uncapacitated plant location problem, where n is the number of vertices.

We prove that graphs with no K4 homeomorph contain a 2-separator, and then use it to show that the
kth longest path in the set of all intervertex distances can be selected in O(n log n) time.

Key words, series-parallel graphs, graph decomposition, selection algorithms, uncapacitated plant loca-
tion problem

AMS(MOS) subject classification. 90C35

1. Introduction. It is well known that various optimization problems that are
NP-hard on general graphs can be solved efficiently on trees, by polynomial algorithms.
Some of these algorithms (e.g. [KH], [KT], [MTZC]) are of the dynamic programming
nature. They represent the given tree as a rooted tree, and then recursively solve
subproblems associated with a sequence of subtrees, (while starting with the tips of
the rooted tree). In other words, these algorithms rely heavily upon the existence of
an efficient construction that recursively generates larger components from previous
ones, and terminate with the given tree, T. The key property of this construction is
that each component T, generated in the process, is associated with some distinguished
vertex, say vi, such that, every simple path connecting a vertex in T with a vertex in
T-T must contain vi.

Another property of trees which is useful in designing efficient divide-and-conquer
algorithms, is the existence of a 1-separator (e.g. [GOL], [KH]). A 1-separator of an
n-vertex tree T= (V, E) is a vertex v for which there exists a partition of V-{v}
consisting of V1 and V2 with,

(1) V, f"l V2-,
(2) [V[_-<(2/3)n, i= 1,2, and
(3) no edge in E connects a vertex in V1 with a vertex in V2.
Another class of graphs for which an efficient construction (or decomposition)

scheme is available is the class of series-parallel graphs [VTL]. Such a construction is
represented by a binary decomposition tree that can be found in linear time [VTL].
Here, each component G of the underlying graph G, generated in the process is
associated with two vertices, say {u, v} such that every simple path connecting a vertex
in G with a vertex in G-G, must contain either u or v.

In this paper we focus on graphs, not necessarily biconnected, that contain no

K4 homeomorph. (Note that this class of graphs contains all trees.) Our main goal is
to extend some of the results mentined above with respect to trees. We will use the

* Received by the editors May 3, 1984, and in revised form July 17, 1985.
t Department of Statistics, Tel Aviv University, Tel Aviv 69978, Israel.
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above binary decomposition tree to design efficient recursive algorithms for several
optimization problems. We will deal mainly with problems which are not affected by
adding to a graph edges with infinite length, (e.g. shortest paths problems). (This will
enable us to convert a graph with no K4 homeomorph into an equivalent series parallel
graph.) In particular, we produce a linear time algorithm to find the shortest simple
paths from a given vertex to all other vertices. We also construct an O(n4) algorithm
to solve the simple plant location problem on an n-vertex graph with no K4 homeo-
morph. (The latter is NP-hard for general graphs.)

We also use the binary decomposition tree to prove the existence and find, in
linear time, a 2-separator of a graph with no K4 homeomorph. (A 2-separator of an
n-vertex graph G- (V, E) is a pair of vertices {u, v} associated with a partition of
V-{u, v} to sets V1 and V2 satisfying (1)-(3) above.)

We mentioned above that the 1-separator of a tree has been used in designing
efficient divide and conquer algorithms on trees. We claim that the 2-separator is useful
for these purposes on graphs with no K4 homeomorph. This is demonstrated in 7,
where we study the selection of the kth longest simple path in the set of intervertex
distances. This set is of O(n2) cardinality. However, we will show that the kth largest
element in this set can be found in O(n log n) time (i.e., without explicitly generating
the entire set). This result generalizes similar results for tree graphs, [FJ2],
[MTZC].

At this point it is worth mentioning the seminal works of Robertson and Seymour,
[RSl], [RS2] that extend the concept of a binary decomposition tree, described above,
for general graphs. Their results are quite general and therefore are not always most
efficient when applied to certain classes of graphs. Specifically, when we apply their
results to graphs with no K4 homeomorph, we get weaker results than those reported
above. In particular, their work implies the existence of a 3-separator, instead of the
2-separator result reported above. This is rather crucial for our purposes, since our
selection algorithm for the kth longest path will fail if 2-separators are replaced by
3-separators. Also, their general work does not yield linear time algorithms for finding
the separators and the binary decomposition tree.

2. Graph-theoretic definitions. A multigraph G (V, E) consists of a finite set of
vertices V and a finite multiset of edges E. Each edge is a pair (u, v) of distinct vertices.
If all the edges of G are ordered pairs G is called a directed multigraph, and if all its
edges are unordered pairs G is an undirected multigraph. If E is a set, G is a graph,
i.e. G contains no parallel edges.

A vertex v is a cut vertex of G if the removal of v, and all the edges incident to
v, from G results in a disconnected graph. G is biconnected if it has no cut vertex. A
biconnected component of G is a maximal submultigraph of G which is biconnected.
A multigraph G contains a subgraph homeomorphic to a graph H, if H can be obtained
from G by a sequence of the following operations:

(a) remove an edge,
(b) remove an isolated vertex
(c) if a vertex v has degree two, remove v and replace the two distinct edges

(u, v) and (v, w) incident to v by an edge (u, w).
This paper focuses on a class of multigraphs, called series-parallel, which are

defined as follows:
We say that edges el and e_ are in series if they have a single common vertex

which is of degree two. The edges el and e are parallel if they have the same set of
end vertices. By a series construction of an edge e (u, v) we mean the replacement
of e by two edges in series, i.e., by (u, w) and (w, v), such that w is a new vertex. By
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a parallel construction of an edge e (u, v) we mean the replacement of e by two
parallel edges el and e2, having u and v as their end vertices. By a series reduction of
two edges in series el (u, w) and e2 (w, v) we mean the replacement of el and e2
by a new edge e (u, v). By a parallel reduction of two parallel edges el (u, v) and
e2 we mean the replacement of el and e2 by a new edge e (u, v).

A series-parallel multigraph (SPM) is a multigraph that can be obtained by a
sequence of series and parallel constructions of edges starting from a single edge.
Alternatively, G is SPM if it can be reduced to a single edge by a sequence of series
and parallel reductions.

3. Basic results on series-parallel multigraphs. The basic theorem on a SPM is due
to Dirac [DIR] and Duffin [DUF].

TIaEOREM 3.1. Let G be a multigraph. Then each biconnected component of G is
series-parallel if and only if G does not contain a subgraph homeomorph to K4, the
complete graph on four vertices.

The next result shows that a multigraph that does not contain K4 as a homeomorph,
can be augmented by edges to obtain a biconnected SPM.

THEOREM 3.2. Let G be a connected multigraph that does not contain K4 as a
homeomorph. If G has I biconnected components, then G can be augmented by at most
k- 1 edges such that the resulting multigraph is a biconnected SPM.

Proof The proof is by induction on k, the number of biconnected components.
Let G1,. ., Gk, k-> 2, be the biconnected components of G. Each pair of biconnected
components has at most one vertex in common. Suppose without loss of generality
that G and G2 have a vertex in common, say u. Let ui be a vertex in Gi, 1, 2, which
is adjacent to u (i.e., (u, u) is an edge of G). Connect u and u2 by an edge, and call
the new multigraph G’. Clearly G and G, with the augmented edge, form a biconnected
submultigraph which we denote by G._. The biconnected components of G’ are G,,
G3," ", Gk. A multigraph does not contain a K4 homeomorph if and only if none of
its biconnected components does. Thus, it suffices to show that G,2 does not contain
a K4 homeomorph.

Suppose that G. contains a K4 homeomorph, H, and let x, y, z and v be the
four vertices of H of degree 3. Assume first that none of G1 and G2 contains all of
these four vertices. Thus, without loss of generality, let x be in G, y be in G, and
x u, y u. Since x and y are of degree 3, there exist in H three (intermediate) vertex
disjoint paths connecting x and y. But, this is clearly not possible since the connection
in G’ between G and G_ is only via u and or ul. Next assume without loss of generality
that x, y, z and v are all vertices of G. Since G has no K4 homeomorph, it follows
(without loss of generality) that there is a path, P(x, y), in H connecting x and y,
which contains a subpath P(u, u), consisting of no edges of G1. Replacing P(u, ul)
by the edge (u, ul) of G we obtain from H a K4 homeomorph H’, which is contained
in G. This is impossible since G has no K4 homeomorph.

Remark 3.3. Since the biconnected components of a graph can be obtained in
linear time, [TAR], the augmentation process described in the proof of Theorem 3.2
can also be performed in linear time.

SPM’s can be constructed recursively as follows. Each is associated with two
vertices called terminals.

(1) A single edge is SPM. Its end vertices are the two terminals.
(2) If G and G are SPM’s with terminals x, y and z, w respectively, so are the

multigraphs obtained by each of the following compositions.
(2.1.) Series composition. Identify a terminal of G, say x, with a terminal of G,

say z. The terminals of the new multigraph are y and w.
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(2.2.) Parallel composition. Identify one terminal of G1, say x, with one terminal
of G2, say z, and the second terminal of G1, y, with w. The terminals of the new
multigraph are the two vertices where the identifications occur.

The above recursive construction of an SPM G is represented by a binary decompo-
sition tree [VTL]. This is a rooted binary tree T in which each vertex q corresponds
to some series-parallel submultigraph of G, denoted by G(q), obtained as follows.
Each leaf (tip) of T represents a distinct edge of G. If q is not a leaf then it is either
of a series (S) or parallel (P) type. Let ql and q2 be its two sons. G(q) is the
submultigraph obtained from G(ql) and G(q2) by the respective series or parallel
composition. In particular, if r is the root of T G(r) is the multigraph G. Figure 5 of
[VTL] illustrates a binary decomposition tree of an SPM. We note that a linear time
algorithm that finds the binary decmposition tree of a given SPM is presented in [VTL].

Remark 3.4. Given a SPM G, a binary decomposition tree associates two terminals
with G. Suppose that G is also biconnected. If (u, v) is an edge of G it follows [DUF,
Corollary 4] that there exists a binary decomposition tree of G that induces the vertices
u and v as the two terminals of G. (This tree can be found in linear time by the
algorithm of [VTL] that constructs a binary decomposition tree for a directed series-
parallel multigraph.)

In the following sections we will utilize the binary decomposition tree representa-
tion of a SPM to produce efficient algorithms for several combinatorial problems
defined on series-parallel graphs.

4. Finding a 2-separator of a graph with no K4 homeomorph. In this section we
assume that G- (V, E) is a graph, i.e., it has no parallel edges. Suppose that G has
n vertices and n > 2. A set of vertices X

_
V is a k-separator of G if the following

conditions are met: There exist subsets of vertices V1 and V2 such that V1, V2, X are
pairwise disjoint, V1 k.J V2 U X- V, there is no edge (u, v) E such that u V1 and
v V2, and ]XI= k, ]V[_-<n, i= 1,2.

It is well known [KH] that if G is a tree it has a 1-separator. (For example, the
centroid of a tree, [GOL], [KH], is a 1-separator.) We will extend this result and prove
that a graph that does not contain a K4 homeomorph has a 2-separator. We will also
exhibit a linear time algorithm for finding a 2-separator.

Using Theorem 3.2 we restrict our analysis to biconnected series-parallel graphs.
These graphs are planar and have at most 3n-6 edges. Given such a graph let T be
its binary decomposition tree. As noted above each leaf of T corresponds to a distinct
edge of T. Thus, T has m <_-3 n- 6 leaves and m- 1 vertices which are of degree greater
than one.

Since G is biconnected and n > 2, there exists a one-to-one mapping of the vertices
of G to the set of edges. Such a mapping can be constructed, for example, by considering
some spanning tree of G, say T(G). Then, root T(G) at a leaf of T(G), make it an

out-tree, and map each vertex to the edge directed into it and the root into an incident
edge not included in T(G). Therefore, we now suppose that each vertex of G corre-

sponds to a distinct leaf of T. (Note that when m > n certain leaves of T are not

assigned a vertex of G). Each leaf of T which is assigned a vertex of G is given a

unit weight while all other vertices of T have zero weight. Call the leaves with unit
weight weighted leaves. In linear time, [GOL], [KH], we can find a vertex of T (called
a weighted centroid), say q, such that each of the (at most 3) connnected components
of T, obtained by removing q from T, contains at most n/2 weighted leaves. Since
n > 2 q itself is not a leaf and it corresponds to a series-parallel subgraph of G, say
G(q). See Fig. 1.
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q

FIG.

Let q and q2 be the two sons of q on T corresponding to the SP subgraphs G(q)
and G(q2) respectively. Let ui, vi denote the two terminals of G(q), i-1, 2. Let V
denote the vertex set of G(qi), i-1, 2.

Denote by T, 1, 2, the connected component of T which is obtained by removing
q, and contains qi. T contains at most n/2 weighted leaves, and T U T2 contains at
least n/2 weighted leaves. Since each weighted leaf in T U T2 corresponds to a distinct
vertex in V U V2, it follows that V U V21--> n/2. Also, each vertex in V, i= 1, 2, which
is not a terminal corresponds to a distinct weighted leaf in T. Thus VI <_- n/2 + 2, 1, 2.

Define V3 V V U V2). Then V31 <-- n/ 2.
Suppose first that IVa] max {1VI, V2[, v l}. Then from IVy[ +lv=l +lv l >-- we

obtain n/3 <--IV31 -< n/2. There is no edge of G connecting a vertex in V3 with a vertex
of G(q) which is not one of the two terminals of G(q). (Recall that G(q) is the
composition of G(q) and G(q2).) Thus, the two terminals of G(q) constitute a
2-separator of G. It separates V3 from the remaining vertices of V, i.e., V- V3. Clearly
IV- V31-<n since Iv31=> n/3.

Next assume, without loss of generality, that levi =max {Ivl, Iv=l, vl}, Then
n/3 <-Ivl <-- n/2 + 2. There is no edge of G that connects a vertex which is not a terminal
of G(q) with a vertex in V-V. Therefore the two terminals of G(ql) separate the
nonterminal vertices of G1 from V- V. We have [V- V[ =<n since IVl[ -> n/3. Also
the number of nonterminal vertices of G is V[-2_-< n/2.

The complexity of the above scheme for locating the 2-separator is governed by
the complexity of constructing T, the binary decomposition tree of G, and finding a
weighted centroid on it. As mentioned above both take linear time.

We have proved the following.
THEOREM 4.1. Let G V, E) be an n-vertex graph that does not contain K4 as a

homeomorph. There exist two vertices u, v in V and two subsets V1, V2 V IVi[ }n,
i= 1, 2, such that V [3 V2 { u, v} V, and there is no edge of G connecting a vertex in

VI with a vertex in V2. Furthermore, the vertices, u, v and the sets V and V2 can be
found in linear time.

Remark 4.2. The above theorem can easily be extended to the weighted version
where each vertex v in V is associated with a positive weight wv. In this case the
condition VI-< }n is replaced by Y.v v, w <= v wo.

Remark 4.3. From the above discussion it follows that the 2-separators which we
find consist ofa pair ofvertices {u, v} that are terminals ofsome series-parallel subgraph.
Therefore if we add the edge (u, v) to the underlying graph G (V, E) the resulting
graph will also not contain K4 as a homeomorph.

5. Linear time algorithms for finding shortest paths on series-parallel graphs. We
have already noted above that a binary decomposition tree of a series-parallel graph
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can be generated in linear time [VTL]. With the aid of this tree one can design efficient
algorithms for solving a variety of combinatorial problems defined on the underlying
series-parallel graph. For example, linear time algorithms for finding a minimal vertex
cover, a minimal dominating set or a Hamiltonian cycle can easily be constructed,
utilizing the decomposition tree.

In this section we demonstrate the use of the decomposition tree to solve edge-
weighted problems on graphs that do not contain K4 as a homeomorph. Although we
will focus on the problem of finding shortest (simple) paths, the approach can easily
be modified to solve other problems like the matching problem and the travelling
salesman problem. In particular, since the dual of a series-parallel graph is also
series-parallel, the method described in [HAS] combined with the algorithm of this
section yields a linear time algorithm for the maximum flow problem on series-parallel
graphs.

To this end let G (V, E) be a connected directed graph with Ivl n, that does
not contain K4 as a homeomorph. Each (directed) edge e in E has a "length" (weight)
We (which is not necessarily nonnegative). For each pair of vertices u and v define
d(u, v) to be length of a shortest simple directed path from u to v. Given a vertex s
in V, we wish to find the distances from s to all vertices v in V. This problem is
recognized as the single source shortest paths problem.

If the graph may contain negative cycles (we do not exclude this possibility), the
problem is NP-hard for general planar graphs. If We >= 0 for each edge, then this problem
is solvable for any n-vertex planar graph in O(nx/log n) time, [FRED]. (In particular,
this bound is applicable to our class of graphs, since these graphs are planar.) However,
we will show that the single source shortest paths problem is solvable in linear time
for graphs with no K4 homeomorph.

Without loss of generality we assume that G is biconnected and series-parallel,
since otherwise we may apply the procedure described in the proof of Theorem 3.2,
and add to G edges with infinite length. We consider (as noted in Remark 3.4), a
decomposition tree T, that induces the vertex s (from which the distances d(s, v),
v V, are sought for) as one of the terminals of G.

We now give a brief overview of the algorithm, which consists of two phases. In
the first phase we start with the leaves of T and recursively compute for each subgraph
of G, G(q), (that corresponds to a vertex q of T), the distances, restricted to G(q),
d(q, i(q),j(q)) and d(q,j(q),i(q)) between its two terminals i(q) and j(q). The
recursive equations are rather straightforward and therefore they are omitted.

In the second phase we start with the root of the tree (corresponding to the graph
G), and recursively compute the distances in G from s to the terminals of each subgraph
G(q). Note that each vertex of G is a terminal of at least some subgraph G(q).
Therefore, at the end of the second phase we will have the distances d(s, v) for all
vertices in V. The second phase uses the following auxiliary distance function. If x is
a terminal of G(q), let d’(q, s, x) denote the length of a directed shortest simple path
from s to x that does not contain any edge of G(q). Starting with the root of T, we
recursively compute d’(q, s, x) and d(s, x). The recursive formulae are again quite
clear. For example, suppose that G(q) is generated from G(ql) and G(q2) by a series
composition with, say, i(q)= i(q) and j( q) -J( q2), (i.e., j(q)= i(q2)). Then,

d’(q, s, i(q))= d’(q, s, i(q)),

d’(q, s,j(q))= d’(q, s,j(q))+ d(q2,j(q2), i(q2)),

d(s, i(q))= d(s, i(q)),
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and

d(s,j(q)) Min [(d’(q, s, i(q))+ d(q, i(ql), j(ql))),

(d’(q, s,j(q))+ d(q,j(q), i(q:)))].

For the benefit of brevity we omit the recursive equations for the other cases.
We claim that the above algorithm solves the single source shortest paths problem

in linear time. The linear complexity follows from the facts that the decomposition
tree has O(n) vertices, and that each recursive equation used in either one of the two
phases can be computed in constant time.

6. The uncapacitated plant location problem. The uncapacitated (or simple) plant
location problem is defined on a n-vertex undirected graph G (V, E). Each edge e
in E is assumed to have a positive length We. Each vertex v in V is associated with a
fixed cost co (the set up cost of a facility at v), and a transportation cost function fo(. ),
which is a nondecreasing function of its argument. Each vertex is viewed as both a
potential site for a service center (facility) as well as a customer. The uncapacitated
plant location problem is to locate facilities at vertices so as to minimize the sum of
the setup costs and the transportation costs. Since the transportation cost functions
are nondecreasing each customer will use the closest facility to him. Formally the
problem is to find a subset of vertices S__ V that minimizes

E co + E fo(d(v, S)),
yes V

where

d(v, $)= Min d(v, u).

This problem is NP-hard on general planar graphs. However, O(n2) algorithms
are given in [KT], for the case when G is a tree. In this section we will present an
O(n4) algorithm solving the problem for graphs containing no K4 as a homeomorph.

As in the previous section, the procedure will be based on a recursive approach
on the corresponding binary decomposition tree.

Since we can add to G edges with infinite length, we use Theorem 3.2 and assume
without loss of generality that G is a biconnected series-parallel graph and T is its
binary decomposition tree. We will use the terminology that customer v is served by
facility u if u is the closest established facility to v.

Let q be a vertex of T, G(q) its respective series-parallel subgraph of G and i(q)
and j(q) the two terminals of G(q). For each pair of vertices u, v in V we define
h(q, u, v) to be the solution value of the uncapacitated plant location problem restricted
to the subgraph G(q), with the constraint that i(q) is served by u and j(q) is served
by v. u and v are not restricted to be in G(q). Formally, if we let V(q) denote the
vertex set of G(q), h(q, u, v) is defined by

h(q,u,v)=Min{ Cw+ , fw(d(w,S),}S V wS V(q)

s.t. i(q) is served by u and j(q) is served by v.

The solution to the uncapacitated plant location problem on G is, therefore, given by
Minu, v h (r, u, v), where r is the root ofthe decomposition tree. The functions h (q,.,
will be evaluated, recursively, starting with the leaves of T. Suppose that G(q) is a
composition of G(q) and G(q2). For a series composition with, say, i(q)= i(q),
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j(q) =j(q2), (i.e., j(ql)= i(q)) we obtain

h(q, u, v) Min {h(ql, u, w)+h(q2, w, v)-f(ql)(d(j(ql), w))-Cw-Cu(u, v, w)},
V(q)U{u,o}

where 8(u, v, w) is equal to 1 if u v- w and 0 otherwise. For a parallel composition
with i(q)= i(ql) i(q2) and j(q)=j(q)=j(q2) we have h(q, u, v)= h(ql, u, v)+ h(q2,
u, v)-fi(q)(d(i(q), u))-f(q)(d(j(q), v))-cu-cve(u, v), where e(u, v) is equal to 1 if
u v and 0 otherwise.

To compute the complexity of this recursive procedure, we assume that it takes
a constant time to compute any cost function fv(x) at a given value of x. To compute
these functions we need the distances between all pairs of vertices in G. If we use the
algorithm given in 5, this task can be performed in O(n2) time. It follows from the
above recursive formulae that the complexity bound of the proecure is O(kn3), where
k-> 1 is the number of vertices of the decomposition tree of the series type.

7. Finding the kth longest distance on series parallel graphs. Let G (V, E) be an
n-vertex directed graph with nonnegative edge-lengths We >= O, e E, and consider the
(multi) set of intervertex distances

S={d(u, v)lu, v V, u v).

(d(u, v) is the length of a shortest simple directed path from u to v.)
The cardinality of S is O(n2), and therefore if S is given explicitly, the kth largest

element in S can be found in O(n) time by a standard algorithm [AHU]. For general
graphs no algorithm is known for finding even the largest element in S in time which
is of a lower order than the time required to compute $ explicitly. (The best time
bound known is O(n3(log log n/log n) 1/3) [FRE].) When G is a tree, S can be given
a succinct representation that requires only O(n log n) space. The construction of this
representation takes O(n log n) time, and it enables the selection of the kth largest
element in S in O(n log n) time, [FJ2], [MTZC], i.e., the time is sublinear in the
size of S. (We note that for trees the largest element in S can be found in linear time,
[HAN].)

As discussed in [FJ2], [MTZC], the ability to select efficiently in the set S gives
rise to efficient algorithms for a variety of center location problems.

In this section we extend the results of [FJ2], [MTZC] and show that if G does
not contain K4 as a homeomorph, the kth largest element in S can be selected in
O(n log n) time, using O(n log n) space.

The algorithm is a divide-and-conquer scheme, which is based extensively on the
linear time algorithms of 4 and 5 to compute 2-separators and distances.

The first phase of the algorithm deals with the succinct representation of S. We
partition S into r O(n log n) subsets such that the kith largest element in the jth
subset, for all j- 1,. ., r, can be found in a total time of O(r log n) O(n log2 n).

The partitioning phase starts by finding a 2-separator of G consisting of a pair
of vertices u, v. Let V1, V2 be the two subsets of V separated by u, v (Theorem 4.1).
Without loss of generality we assume that the three sets V and V2 and {u, v} are
mutually disjoint.

At this stage we partition only the subsets of S corresponding to distances from
vertices in V1 to vertices in V2 and from vertices in V2 to vertices in V1. (We then
proceed recursively by decomposing V1 U {u, v} and V2 U {u, v}.)

For any pair of vertices x V and y V_, any simple path connecting the two
must contain at least one of the separators u and v. Moreover, since all edge lengths
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are nonnegative, we have

d(x, y)= Min {d(x, u)+ d(u, y), d(x, v)+ d(v, y)},

d(y, x) Min {d(y, u)+ d(u, x), d(y, v)+ d(v, x)}.

For any disjoint subsets of vertices X, Y___ V we will define

S(X, Y) {d(x, y):x X, y Y}.

Focusing first on S( V1, V2) we partition it to S-( V1, V2) and S+( V, V2), where

S-(V1, V2) {d(x, u)+ d(u, y)[x V,y V2, d(x, u)-d(x, v)+ d(u, y)-d(v, y)_-< 0},

S+(Vl, V2)= {d(x, v)+ d(v, y)lx V,, y V_, d(x, u)-d(x, v)+ d(u, y)-d(v, y) > 0}.

Defining ax d(x, u), c,, d(x, u)- d(x, v), x V1 and by d(u, y), dy
d(u,y)-d(v,y), y V2, we note that S-(V1, V2) (and similarly S/(V, V2)) are both
of the nature of the sets described in Appendix 1. The sequences {ax}, {Cx}, x V,
and {by}, {dy}, y V2 can be constructed in linear time if we find the 2-separator {u, v}
by the algorithm in 4 and the distances from (and to) u and v by the algorithm in 5.

Using Appendix 1 and noting that El O(n), i= 1, 2, we conclude that S( V1, V_)
can be partitioned into m’= O(n) lists and stored in a data structure (of O(n) space),
on which we can select the kith largest element in the jth list for all j 1,. ., m’ in
a total time of O(n log n).

Clearly the same partitioning will be applied to the set S( V2, V1). From Appendix
1 we see that the complexity bound of this stage of the recursion is O(n log n).

We now have to proceed with the distances within the set of vertices V t_J {u, v}
(and similarly the distances within V2 t_J {u, v}).

Let Gi, i= 1, 2 denote the subgraph of G induced by the vertices V El {u, v}. To
compute the distances within, say, V1 U {u, v}, we may not restrict our discusion to

G, since the shortest path connecting u to v (or v to u) may not be included in G.
However, this difficulty can easily be resolved by adding to Gi, i= 1, 2, the (directed)
edges (u, v) and (v, u) with edge-lengths d(u, v) and d(v, u) respectively. (Note that
d (u, v) and d (v, u) have already been computed earlier). To proceed recursively with

Gi, i= 1, 2, we need the property that Gi, 1, 2, with the above augmented edges
does not contain K4 as a homeomorph. Indeed, this is guaranteed by Remark 4.3. To
make sure that each pair of vertices is taken into account precisely once, when we

deal with the set of distances within V2 U { u, v} we will not record the distances between
u and v.

We now estimate the total number of lists created during the entire partitioning
process. Let f(n), denote the maximum number of such lists created in such a partition
of a graph with n vertices. Then

f(n) <= cln +f(nl) +f(n2),
where n=lV{u,v}[<=n+2, i=1,2, and n,+n2=n+2. Therefore, f(n)=
O(n log n).

To estimate the total space needed for the process, g(n), we note that g(n) satisfies

g( n) <-- c:zn + g( n,) + g( n_)

with n as above, and thus g(n) O(n log n). Finally, the running time, T(n), of the
partitioning phase satisfies

T(n)<-c3 n log n+ T(nl) + T(n2)

where n<=-n+2 i=1,2, and nl+n:=n+2. It thus follows that T(n)=O(nlog: n).
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Next we turn to the selection phase. At this point S is represented by n O(n log n)
lists (subsets), say, $1," , Sa. These lists are maintained in a data structure on which
the total time to select the kth largest element from Sj for allj 1, , r is O(n5 log n),
(Appendix 1). Since each list is of cardinality O(n), we can use the algorithm of [FJ1]
to select the k-th largest element (i.e., kth longest distance) in S in O(n log n) time.
(Note that the time bound O(n5 log n) mentioned in [FJ1] is based on the assumption
that the total time to select the kith largest element from S for all j 1,.-., n5 is
O(). Since in our case the latter is replaced by O(r log n), our total time bound is
O(r log2 n) O(n log n).)

Finally we note that if we only wish to find the largest element in S, i.e., the
diameter of the graph, we do not need the first phase. In fact, the diameter can be
found recursively by finding at each iteration, the largest element in S(VI, VE)t.J
S( V2, V). The latter can be found in O(n) time, thus yielding an O(n log n) total time
for the scheme that finds the diameter.

Appendix 1. Representation of and selection in the set R = {ai + blci + dj<-O,
1,.’’, n, j 1,..., m}. Suppose that we are given four sequences of real numbers,
{a,}, i= 1,..., n, {c,}, i= 1,..., n, {b}, j= 1,..., m, {d}, j= 1,..., m. Define the
(multi-) set R by

(A.1) R= {a,+ blc,+ d<-_O, i= 1,..., n,j= 1,..., m}.

Our goal is to provide a partition of the multiset R, (whose cardinality is O(mn))
into rn lists R,..., R’,,, and a data structure (requiring a total space of O(m/ n)),
for storing these lists, on which the following operations can be implemented: Given
integers k,..., kin, select the kith largest element in R for all j= 1,..., m, in
O((m + n) log n) total time. (The total time consumed in constructing this data structure
will be shown to be O(m log m + n log n).)

For each j, j 1,..., m, define the set R {alc + d _-< 0, i= 1,..., n}. Sort the
sequences {ci}, 1,. ., n, and {d}, j 1,. ., m, and assume without loss of general-
ity that Cl --< C2 Cn, and d <- d2 <- din. Next, define I(j) { ilci / d <- 0}, j
1,..., m, to note that

(A.2) I(1)
_
I(2)_..._I(m).

Rewriting R, j 1,. ., m, as Rj {aili I(j)}, define h, j 1,. ., m, to be the
difference between adjacent sets, i.e.,

h--II(j)l-II(j/ l)l.

The subset R+ is obtained from R by deletion of h elements. Thus using a 2-3
tree data structure, [AHU], we can delete the respective elements, and find the kith
largest element in R for allj 1,. ., m, in a total time of O((ym=- h) log n + m log n).
By (A.2) this bound is O((m + n)log n).

The total effort to construct this data structure is dominated by the sorting of the
sequences, {c}, i= 1,. ., n and {d}, j 1,. ., m, i.e., O(n log n + rn log m).

The multiset R, defined by (A.1), can now be represented as the union of the
following m subsets, R,. ., R’m, where R {bj} + R, j 1,. ., m. Using the above
we conclude that the kth largest element in R for all j 1,. ., m, can be found in
O((m + n) log n) total time by selecting the elements in R, j 1,. ., m and adding
the appropriate b value.
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CONVERGENT ITERATIONS FOR COMPUTING STATIONARY
DISTRIBUTIONS OF MARKOV CHAINS*
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Abstract. Classical iterative schemes such as the Gauss-Seidel method and its variations constitute
powerful tools for computing stationary distribution vectors for large-scale Markov process, such as those
arising in queueing network analysis. The coefficient matrix A in these processes in a Q-matrix, i.e., a

singular irreducible M-matrix with zero column sums and, unlike the nonsingular case, the classical iterations
for A do not always converge. The purpose of this paper is to survey the recent literature and to analyze
the behavior of these methods completely in terms of the graph structure of A. The results given here hold
under somewhat weaker assumptions on A.

Key words, iterative methods, Markov chains, singular M-matrices, queueing networks, sparse matrices
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1. Introduction.
1.1. Background. In this paper we primarily consider n x n irreducible matrices

A (aij) with aij -< 0 for all j and with a 0, 1 =<j -< n.
i=l

Adopting the terminology used in Rose [1984], and elsewhere, we call such matrices
Q-matrices. These matrices arise in several areas, including the analysis of queueing
networks, from whence the term Q-matrix orginated, (see, e.g., Kaufman [1983]), in
the analysis of compartmental models in the biological sciences (see, e.g., Funderlic
and Mankin [1981]), and in the input-output analysis of economic models (see, e.g.,
Berman and Plemmons [1979, Chap. 9]). O-matrices form an important subclass of
the widely studied class of M-matrices and thus they possess several useful properties
described, e.g., in Berman and Plemmons [1979, Chap. 6].

Let A be a Q-matrix. In many of the applications listed above the stationary
distribution vector p for an underlying Markov process associated with A is of primary
importance. In particular the solution of the homogeneous system of linear equations

(1.1) Ax-O

where A is a Q-matrix is of interest. Our purpose is to compute the unique stationary
probability distribution vector p (p), p > 0, ’,=1Pi- 1, which solves (1.1). Here A
is considered to be the transfer rate matrix for a finite ergodic process. The evaluation
of the stationary probability vector p of such a process, defined by its transition
probability matrix Q, is a classical problem in the modeling and the performance
analysis of computer systems, of data communication networks, or of telephone
exchange systems. Here p is the left positive eigenvector of Q and thus Ap 0 where
A=I_Q7"

Various problems related to the computation of p have drawn considerable
attention recently. Iterative methods have been studied, e.g., by Buoni 1986], Courtois
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and Semal 1985], Funderlic and Plemmons 1984], Kaufman 1983], Koury, McAllister
and Stewart [1984], Lubacheuski and Mitra [1985], Rose [1984], Schneider [1984],
and Stewart, Stewart and McAllister [1985]. In addition, the sensitivity analysis of p
in terms of perturbations of A has recently been studied, e.g., by Barlow [1985],
Funderlic and Meyer [1985] and Golub and Meyer [1985].

In many applications, the Q-matrix A is quite large and sparse. In fact, problems
with 100,000 or more equations are not uncommon, especially in queueing network
applications, as described by Kaufman [1983]. In this regard, variations of the power
method for Q and methods based upon Jacobi and Gauss-Seidel type splittings of
A- I- QT constitute powerful tools for computing the stationary distributions. We
point particularly to the recent work of Kaufman 1983] in which point Gauss-Seidel
type methods are investigated, to the work Lubacheuski and Mitra [1985] in which a
chaotic asynchronous variation of the power method is investigated for parallel pro-
cessors and to the work of Stewart, Stewart and McAllister 1985], in which a two-stage
iteration based upon the Gauss-Seidel method is considered. It is these papers that
motivated our work described herein.

Unlike the nonsingular M-matrix case, the classical iterative methods (the power,
Jacobi and Gauss-Seidel methods) applied to the computation of p do not always
converge. In this paper we survey and clarify the recent literature on convergence
results for these computations and summarize, by applying elementary properties of
nonnegative matrices, necessary and sufficient conditions for convergence in terms of
the graph structure of Q or A. Our results are given for point iterations. Analogous
results can be stated for more general block iterative schemes. Several numerical
examples are given in order to illustrate the variety of convergence situations that can
occur.

1.2. Notation and conventions. For a real n x n matrix B (bij) the directed graph
F(B) of B is the graph with vertices 1,2,..., n and edges (i,j) for biO. As in Rose
[1984], we say that vertex vl is adjacent to vertex v2 if (Vl, v2) is an edge of F(B). A
path of length A 1 is an ordered set p (Vl, , vx) such that for each i, vi is adjacent
to V+l. If vx vl, then p is called a closed path. A closed path for which Vl," ", Vx_l
are distinct is a cycle (a circuit in Schneider [1984]). A monotone path is a path
p (v, , vx) for which either v <... < vx (monotone increasing) or Vl >"" > vx
(monotone decreasing). By a slight abuse of the language, a closed path p (Vl, , vx,
Vl) will be called a monotone cycle if p is a cycle and p (Vl,. ", vx) is monotone
with vx < v if pl is decreasing and vx > v if p is increasing.

For an n x n matrix B, the graph F(B) is called strongly connected if every pair
of vertices is connected by a path in F(B). In this case B is said to be irreducible.
Equivalently, B is irreducible if and only if there is no permutation matrix P for which

p.Bp=[B O]B 8

where B and B are square submatrices of B.
The following terminology and elementary facts about nonnegative matrices can

be found in, e.g., Berman and Plemmons [1979]. A nonnegative matrix B is called
primitive if some power of B consists only of positive entries. It follows that B is
primitive if and only if B is irreducible and the greatest common divisor of the lengths
of all the cycles in F(B) is 1. In this case p(B), the spectral radius of B, is a simple
eigenvalue of B. Next, an n x n matrix A is called a singular M-matrix if it can be
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written as

A=p(B)I-B

where B is nonnegative. In particular, if Q is the transition probability matrix for an
ergodic (irreducible) Markov chain, then the Q-matrix A I-QT is an irreducible
singular M-matrix. For such matrices we are concerned in this paper with regular
splittings, i.e., splittings of the form A M-N, M-1 and N nonnegative, and the
resulting iterative schemes

(1.2) Mx(m+) Nx(m), rn 0, 1," ".

It is well known (see, e.g., Neumann and Plemmons 1978]) that for regular splittings
of a singular irreducible M-matrix A, the general iterative scheme (1.2) converges if
and only if 1 is the only eigenvalue of the iteration matrix M-1N on the unit circle.

In the next section we first review and summarize the necessary and sufficient
conditions for convergence of the power method and iterations based upon the Jacobi
splitting of A. We will be mainly concerned, however, with convergence criteria for
the Gauss-Seidel method. The results here are based upon recent work of Rose 1984]
and Schneider [1984] and are given for point Gauss-Seidel. However, similar results
can be stated for the more general block Gauss-Seidel splitting, based upon a block
partitioned form of A (see Courtois and Semal 1985] and Rose 1984] for discussions
of block iterations for Q-matrices).

2. Convergence criteria.
2.1. The power and Jacobi methods. First, suppose that Q is the transition probabil-

ity matrix for an ergodic Markov chain. Then the (point) power method

(2.1) x(m+l QTx(m), m =0, 1,...

results from a regular splitting of A into A I- QT.
Next, let A denote a singular irreducible M-matrix. By a (point) splitting of A

we mean a splitting

(2.2) A=D-L-U

where D, L and U are the diagonal, strictly lower triangular and strictly upper triangular
submatrices of A, respectively. Then the Jacobi method

(2.3) Dx("+)=(L+ U)x(’), rn =0, 1,...

results from a regular splitting of A, since D is a positive diagonal matrix. Note that
if we replace A by D-1A, then (2.2) corresponds to the power method for L+ U,
although L+ U need not be stochastic. The following well-known proposition reviews
conditions on the graph structure of A alone in order that the Jacobi method converge.
By a proper cycle of a matrix we mean a cycle of length at least 2.

PROPOSITION 1. Let A be an irreducible singular M-matrix. Then the following
statements are equivalent.

1. The Jacobi method (2.3) for A converges for each x().
2. D A is primitive.
3. The greatest common divisor of the lengths of all proper cycles in A is one.
Proof. From 1, it follows that (2.3) converges if and only if D-A L+ U is

primitive, since p(L+ U)= 1 and L+ U is irreducible. An application of Berman and
Plemmons [1979, p. 35], or Varga [1962, p. 69], establishes the equivalence of 2 and
3.



STATIONARY DISTRIBUTIONS OF MARKOV CHAINS 393

The proof of the following proposition concerning the power method for comput-
ing stationary distributions is analogous to the proof of Proposition 1.

PROPOSITION 2. Let A- I- Qr, where Q is the transition probability matrix for an
ergodic Markov chain. Then the following statements are equivalent.

1. The power method (2.1) for computing the stationary distribution vector converges
for each x).

2. I- AT Q is primitive.
3. The greatest common divisor of the lengths of all cycles in A is one.
Observe that from part 3 of Proposition 2, it follows that the power method must

converge whenever Q has at least one nonzero diagonal entry, for then A-I-QT
must have a cycle of length one.

Also note that the power method must converge for Q whenever the Jacobi method
converges for the matrix A I-Qr. However, the converse of this statement is not
true, as the following simple example shows.

Let

Q= 1 0 0.

0 1 0

Then Q is primitive since it is irreducible with a nonzero diagonal entry, and thus the
power method converges. However, the Jacobi method for

A=I-Qr= 0 1 -1

-1/2 0 1

does not converge since A has one proper cycle and it has length 3.

2.2. The Gauss-Seidel Method. Let A D-L-U be a singular irreducible M-
matrix. Then there are two possible Gauss-Seidel iterations for solving homogeneous
system Ax O. These are

(2.4) (D- L)X(re+l)-- UX(m), m =0, 1,.’.,

with the iteration matrix

(2.5) TL= D- L)- U,

and

(2.6) (D- U)x<’+) Lx’),
with the iteration matrix

(2.7) Tu D U)-1L.

The iterations (2.4) and (2.6) will be called forward and backward Gauss-Seidel,
respectively. It is well known that these iterations may not converge for an arbitrary
Q-matrix A (see the examples given later). If A I QT, Q stochastic, and convergence
results then the stationary distribution vector p can be obtained as the limit by scaling
X(k)

SO that " Xk)-" 1i----1

The iterations (2.4) and (2.6) converge for each x() if and only if the powers of
the iteration matrices (2.5) and (2.7), respectively, converge. It follows then that the
nonnegative matrices TL and Tv converge if and only if 1 is the only eigenvalue of
modulus 1. From Rose 1984] or Schneider 1984] we know that there exist permutation
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matrices PL and Pt such that

and

where HL and Hv are irreducible nonnegative matrices. This establishes the following
elementary observation on the convergence of Gauss-Seidel iterations in terms of HL
and Hr.

LEMMA 1. The forward (backward) Gauss-Seidel iteration scheme converges for
each x( if and only if the matrix HL given by (2.8) (Ht given by (2.9)) is primitive,
that is, some power is positive.

In order to characterize convergence in terms of the graph structure of A alone
we need some special notation. Let a be any cycle in the graph F(A) and let us and
Is denote the number of edges of a which lie in the graph F(U) and F(L), respectively.
Our main result follows. Here "gcd" is an abbreviation for the "greatest common
divisor".

THEOREM 1. Let A be a singular irreducible M-matrix. Then:
1. The forward Gauss-Seidel method (2.4) converges for each x) if and only if

gcd {us: a is a cycle in F(A)} 1.

2. The backward Gauss-Seidel method (2.6) converges for each x if and only if
gcd {/: a is a cycle in F(A)} 1.

Proof. We consider T/ given by (2.5) since the argument will apply to Tt given
by (2.7) mutatis mutandis. We wish to apply Schneider [1984, Thm. 3.3] along with
Lemma 1. Let

c(T) gcd {length of a: a is a cycle in F( T)}.

It is easy to see from (2.8) that there is a one-to-one correspondence between cycles
of T and cycles of H/ with corresponding cycles having the same length: Thus
c(T) C(Hl). It is well known (see Varga [1962, p. 49] or Berman and Plemmons
1979, p. 35]) that H/ is primitive exactly when c(H)= 1. Further, the regular splitting
A--(D-L)-U partitions the elements of A between D-L and U so that F(A) is
simply the union of the graphs F(D- L) and F(U). Thus from Schneider 1984, Thm.
3.4], it follows that c(T) is the greatest common divisor of the numbers of edges
which lie in F(U) for all cycles in F(A). Thus H/ is primitive if and only this greatest
common divisor is one. The theorem now follows from Lemma 1. [-1

As a result of Theorem 1 we can state the following sufficient condition for
Gauss-Seidel convergence.

COROLLARY 1. (Rose [1984, Corollary 3]). If F(A) has a monotone decreasing
(increasing) cycle then theforward (backward) Gauss-Seidel iteration scheme converges
for each x(.

Proof. If a is a monotone decreasing (increasing) cycle in F(A) then us (Is) is 1.
Alternatively, it also follows from Rose [1984] that H(Hu) has a nonzero diagonal
term and is thus primitive, l-1

Remark. This corollary and several corollaries in Schneider 1984, Corollaries 3.6
through 3.10] essentially have hypotheses which insure, at least for Gauss-Seidel
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splittings, that the iteration matrix has a nonzero entry on its diagonal. For example,
if A has any symmetric zero structure (see Funderlic and Plemmons [1984]) then
convergence of both forward and backward Gauss-Seidel follows. The existence of a
nonzero diagonal term is sufficient but, as we show in 3 by example, not necessary
for convergence. However, this idea underlies our next two corollaries.

COROLLARY 2. There is a permutation matrix P such that the forward (backward)
Gauss-Seidel iteration scheme for pTAp converges for each x.

Proof. Let c be any cycle of the irreducible singular M-matrix matrix A. Relabel
the vertices so that a is monotone decreasing (increasing). Convergence then follows
by Corollary 1.

The final corollary suggests a simple scheme for forcing Gauss-Seidel convergence
by modifying the diagonal elements of the splitting with a scalar multiple of I. As we
explain later, this iteration is closely related to the SOR method and an alternate proof
of convergence can be obtained using Theorem 3.4 in Buoni, Neumann and Varga
[1982]. The method will be stated for forward Gauss-Seidel. A similar statement can
of course be made for backward Gauss-Seidel.

COROLLARY 3. Let e > O. If
A D L- U (D L+ eI) U+ el)

and

(2.10) T=(D-L+eI)-I(U+eI),
then T is convergent for every e > O.

Proof. Since A is a singular irreducible M-matrix, it is easy to see that T is a
nonnegative matrix with spectral radius 1, and the elementary divisors associated with
the eigenvalue 1 are linear. Further, since (D-L+ eI)- and (U+ eI) both have a
positive diagonal, so does T. Thus T, is convergent by Rose [1984, Prop. 2].

We note that the iteration matrix T given by (2.10) reduces to the usual SOR
iteration matrix ,,, (I- toL)-l[(I- to)I + toU]

by the transformation e I/to- 1. However, the use of (2.10) avoids scaling L and U.
There exist algorithms for finding the cycles of a graph, as in Aho, Hopcroft and
Ullman 1974]. Thus it may be feasible to apply Theorem 1 to determine a priori "for
A the convergence of backward or forward Gauss-Seidel iterations. Alternatively, one
could find a cycle and permute the rows and columns of A by a permutation matrix
P so that convergence is assured in view of Corollary 1. The concept of ordering a
Q-matrix A to assure convergence is also discussed in Kaufman [1983] in the context
of queueing networks.

The rate of convergence of an iteration matrix T is governed by the parameter

y(T) max {IAI: A is an eigenvalue of T and A # 1}

(see e.g., Berman and Plemmons [1979, Chap. 7]). The choice of the permutation
matrix P in the above discussion to minimize y(TL) or y(Tu) remains an open question.
Some results for choosing the SOR parameter to (or equivalently e) in order to minimize
y(T) have been given by Hadjidimos [1984] for certain A. The paper is concluded
with some numerical examples which illustrate several of the ideas developed in this
section concerning the convergence of Gauss-Seidel iterations.

In Buoni, Neumann and Varga 1982] there is an example, due to Hans Schneider,
of a Q-matrix A for which (forward) Gauss-Seidel does not converge, but the Jacobi
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method, with the splitting A I-(L+ U), does converge. This example answered in
part a question in Neumann and Plemmons [1978]. Since we require zero column
sums rather than zero row sums, the following matrix is the transpose of theirs.
Specifically let

1 0 - 0 -1

-1 1 0 0 0
A= 0 -1 1 0 0

0 0 - 1 0

0 0 0 -1

Then (I- U)-IL is the transpose of the matrix in Buoni, Neumann and Varga [1982,
eq. (4.2), p. 194]. However, A has a monotone decreasing cycle, viz. (5, 4, 3, 2, 1, 5),
and so (forward) Gauss-Seidel does converge for A by Corollary 1. In fact,

oo1/2o 
oo1/2o 
oo1/2ol
oo1/4o 
oo- o1/2

and the eigenvalues are 0 and 1. Thus TL is idempotent and (forward) Gauss-Seidel
converges in one iteration.

It would be tempting to conjecture that for a Q-matrix either To or TL will always
converge. Unfortunately, this is false. For if

then

1 0 -1 0

0 1 0 -1
0 -1 1

0 0

0 0 1 0 0 1 0 0

(I_L)_IU
0 0 0 1 1 0 0 O^

0 0 1
(I- U)-IL

1 0

0 1 0 0 0

are both cyclic and so neither converges. However, if rows and columns 1 and 3 or 2
and 4 of A are interchanged, then both forward and backward Gauss-Seidel converge
for the resulting matrices.

As we have seen, several sufficient conditions for convergence have been stated
in the literature by giving conditions under which the iteration matrix viz. (2.5), has
a. positive diagonal entry. This need not always be necessary for convergence. Let

0 -1 0 0

-1 1 0 0 0

0 0 1 0 -1

0 - 0 1 0

0 - 0 -1 1
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with the graph

r(A)

1 2
O

4

3

in which the edges from F(L) are given by solid lines and those from F(U) by broken
lines. We have two cycles

a (1, 3, 5, 4, 2, 1), u =2,/ =3,

fl (1, 3, 5, 2, 1), u =2,/ =2.

Thus gcd {us, us} =2 and gcd {l,l} 1, so by Theorem 1, Tt.=(I-L)-Iu does not
converge, while Tt (I U)-L converges. In fact

00100 01/2010
0 0 1 0 0 1 0 0 0 0

0000,1 =01/2010

oo1/2o o1/2ooo
0010 01/2010

with spectra tr(TL) {0, 0, 0, -1, 1} and tr(Tt) {0, 0, (1 + i)/2, 1}. Note in particular,
that although Tu is convergent, it has all O’s on its diagonal, illustrating our point.
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ON AN INVARIANT OF GRAPHS AND THE RELIABILITY POLYNOMIAL*

A. SATYANARAYANAf AND ZOHEL KHALILt

Abstract. A combinatorial invariant called the parity of a graph is introduced. An earlier concept of
signed domination of a graph, relevant to computing certain reliability measures on an undirected graph,
is a special case of this parity. A generalization of the signed domination theorem is presented. The results
of this paper also provide some insight into the nature of the coefficient of the reliability polynomial.

Key words, network reliability, domination of a graph, reliability polynomial, factoring theorem

1. Introduction. A recent combinatorial invariant, called the domination of a
graph, has played an important role in network reliability analysis [1], [2], [4], [5],
[7]-[10]. Let G (V, E) be an undirected graph and K

_
V be any subset of vertices

such that IKI--> a. A K-tree is a tree of G covering all vertices of K and whose pendant
vertices are all in K. Alternatively, a K-tree is a minimal connected subgraph of G
containing all vertices of K; it is minimal in the sense that deletion of any edge
disconnects a pair of vertices in K. Any edge of G is relevant if it is in at least one
K-tree of G. A K-graph is a graph in which all edges are relevant. Given that the edges
of G may fail with known probabilities, the K-terminal reliability of G, denoted by
Rr(G), is the probability that G contains a K-tree in which all edges are working. A
formation U is a set of K-trees of G whose union yields G. U is odd or even depending
upon whether U contains odd or even number of trees respectively. The signed
domination of G, with respect to some K, denoted by dr(G), is the number of odd
minus the number of even formations of G. The absolute value, Id(G)l, has been
used in [9] as a measure of complexity for computing Rr(G). Another application of
dr(G) is in the topological formula of Rr(G) where the dominations of the
K-subgraphs of G determine the coefficients of the terms in the formula [7], [8], 10].

In this paper, we introduce the concept of parity of a graph. Specifically, if Si
denotes the set of all subgraphs of G such that each subgraph in Si has exactly edges
of G, then the /-parity of G, denoted by Pi(G), is equal to Yjs, dk(G). Clearly,
dK (G) PIEI(G) and the concept of domination is a special case of the/-parity of G.

In [9], the following theorem has been proved.
THEOgEM 1 (Satyanarayana and Chang). Let G be a K-graph with respect to some

K. If G-e and Ge are the graphs obtained by deleting and contracting, respectively, an
edge e in G, then dr (G) dr (Ge) dr G e).

Set S can be partitioned into two subsets S and S- such that S contains all
graphs of S having a specific edge e and S- contains the remaining graphs of Si. Let
P’+(G) ]js dr(Gj). We show that P+(G) ai-l(Ge) Pi-I(G e). When --IEI,
Theorem 1 becomes a special case of this result. Further, an immediate consequence
of this result is that P(G)=Pi(G-e)+P_I(Ge)-P_I(G-e).

Suppose that the vertices of G do not fail and all the edges have equal working
probabilities, say p. Ifthe edge failure events are assumed to be statistically independent,
then Rr(G) can be expressed as a polynomial in p of at most degree IEI. An example
graph and its reliability polynomial are shown in Fig. 1. We show that the coefficient

* Received by the editors November 7, 1984, and in final revised form June 6, 1985. This research was
partially supported by the Natural Science and Engineering Research Council of Canada under grant A9095.

" Department of Computer Science, Stevens Institute of Technology, Hoboken, New Jersey 07030.
t Department of Mathematics, Concordia University, Montreal, Quebec, Canada H3G 1M8.
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Rr(G) p2 + 2p3 4p5 + 2p6

FIG. 1. An example graph and its reliability polynomial. Darkened vertices are K-vertices.

of the ith degree term in the polynomial is equal to Pi(G), thus providing some insight
on the composition of the coefficients in the polynomial.

2. Preliminaries. Graph theoretic terminology used here generally follows Bondy
and Murty [3]. We are only concerned with undirected graphs.

Consider a graph G= (V, E) with vertex set V= {vl, v2,’", vn} and edge set
E ={el, e2,’’’, eb}. Let K be a specified subset of V with IKl_>-2. A K-tree is a tree
of G covering all vertices of K such that its pendant vertices are in K. For the two
special cases of IKI and IKI vI, a K-tree is a simple path and a spanning tree
respectively. A graph G, with respect to some K, is a K-graph if every edge of G is
in some K-tree. A formation U of a graph G is a set of K-trees of G whose union
yields the graph G. U is odd (even) depending upon whether the number of trees in
U is odd (even) respectively. The signed domination, denoted by dr(G), of a graph
G is the number of odd minus the number of even formations of G. Let Si=
{G, G2,’", Gin} be the set of all subgraphs of G such that each subgraph Gi S
has exactly edges. The parity of G, denoted by P(G), is the sum of the signed
dominations of all subgraphs in S. In other words, P(G)= Y-c,s, dr (G).

Relative to any specific edge e in G, the set Si can be partioned into two subsets
S and S-, such that S contains all graphs of S having e and S- contains all those
without e. Let

P’/(G)= E dr(Gj) and P-(G)= Y. dr(G).

Note that P(G) P/(G) + P-(G).
If i= [E[, then the only element in S is G itself. Thus P(G)= dr(G) and also

P+ G) dr G).
The following proposition is relevant to our discussion; this has been proved in

the context of signed domination in [9].
POPOSITION 1. For any graph G with a specified K, dr G) 0 if and only if G is

a K-graph.
In view of Proposition 1, without loss of generality, the set S can be redefined

as the one constituting all K-subgraphs of G with edges.
If e is an edge with end veices u and v in G, then G-e is a subgraph of G

obtained by deleting e from G. Deletion of an edge does not imply deletion of its end
veices. In G, contracting edge e involves deleting e and merging veices u and v
into a supeeex, such that every edge that was incident on either u or v or both is
incident on the supeeex. The graph obtained from G by contracting e is denoted
by Ge.



A GRAPH INVARIANT AND RELIABILITY POLYNOMIAL 401

3. A theorem on parity. We first show that Pi =Pi-(Ge)-P-I(G-e). Since

ell(G)=dr(G), ell_(Ge)=dr(Ge) and ell_(G-e)=dr(G-e), this result
embodies an important generalization of Theorem 1 [9]. Furthermore, a direct con-
sequence of this result, as will be shown in Corollary 1, is a recursive formula for
computing P(G).

THEOREM 2. Let G be graph with a specified K. If G-e and Ge are the graphs
obtained by deleting and contracting, respectively an edge e in G, then

P+(G) Pi-I(Ge) Pi-I(G- e).

Proof Suppose S- { G1, G2," Gin}, is the set of all K subgraphs of G contain-
ing e. From any Gj S, we can obtain two graphs Gj.e and G-e by contracting and
deleting e respectively. Define X_ {G,e, G2,e," , G,,.e} the set of graphs obtained
from S by contracting e. Similarly, oX,_={(G-e), (G_-e),.. ",(Gm-e)} is the
set of graphs obtained by deleting e. Every graph in XT_ is a subgraph of Ge. However,
it is not necessary that all K-subgraphs of Ge are in XT_. Therefore, let Y_
{H, HE,’’’, Hh} constitute all the K-subgraphs having i-1 edges of Ge that are not
in XT_. By definition

(1) P,-,(Ge) E dK(Gj,e)+ E dr(t-I).
Gj,eXCi-I Hj- Yi-I

Applying Theorem 1 on each of the graphs in S-, we get

(2) P+(G) . dK(Gj,e)- ,
Gj, XCi-I Gj-e)eX

dr(G- e).

From (1) and (2),

(3) P+(G)- Pi_l(Ge)-(
Now wc need only to show that

(4) E dr (Gi e) + E

dr(Gj-e)+ E dr(I’Ii)).Hje Yi-I

dr(Hi) P,_l(G- e).
Gj-eeXi-1 Hje Yi-I

Suppose v and vE are the end vertices of edge e. Every K-subgraph of G-e
having i- 1 edges and containing both v and vE is in xD_. Every K-subgraph of G-e
having i-1 edges and not containing at least one of v or vE is in Y_. Thus the LHS
of (4) contains all the K-subgraphs of G-e having i- 1 edges. However, it is possible
that the LHS of (4) may contain some nonK-subgraphs, but it can be easily shown
that every K-subgraph in the LHS is also a K-subgraph of G-e. Hence, we have (4)
and substituting (4) in (3), we have the theorem, l-]

COROLLARY 1. Let G be any graph with a specified K and e be any edge in G. Then

P,(G) P,(G- e) + P,_(Ge) P,-I(G- e).

Proof. This follows from the facts, P(G) PT/(G) + P-(G), P-(G- e)
Pi(G-e), and by Theorem 2. l-]

4. Coefficients of the reliability polynomial. Suppose {q, tE,’", tin} is the set of
K-trees of G with respect to a given K. Then by the inclusion-exclusion principle we
have,

Rr(G)=, Pr {t,}- E Pr {tiCI ti}+ E Pr {ti["l tjN tk}
i<j i<j<k
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In (5), an event of the form {ti f’) tj fq... fq tk} is an event that all the elements in the
K-subgraph (ti tj [,J... [.J tk) of G are operative.

The number of terms in (5) is 2"-1. Indeed every term in (5) corresponds to
some formation of a K-subgraph of G. Specifically, define an i-formation Ui> as a set
of K-trees of G whose union yields any K-subgraph having exactly edges of G. U)

is odd (even) depending upon whether Ui) contains odd (even) number of trees. It
can be easily seen that there exists a one-to-one correspondence between the terms in
(5) and all possible formations of Kosubgraphs of G.

Any Ui) yields exactly one K-subgraph of G. However, it is possible that two
/-formations U) and U2) might either yield the same K-subgraph or two different
K-subgraphs having edges of G. Let 0 be the set of 2"-1 possible /-formations.

Partition 0 {01, 02,’" ", Oh} such that any /-formation U) 0g, j-1,..., h, yields
the K-subgraph Gg of G. Thus the set {G1, G2,’’’, Gh} constitute all possible
K-subgraphs of G and

h

(6) R:(G) (dr(G) Pr (G)),
j=l

where Pr (Gg) is the probability that all edges in Gg are working [7]. Note that the
number of terms in (6) is far less than those in (5) and the coefficient associated with
any term in (6) is the signed domination of the corresponding K-subgraph.

In the case of directed graphs, it has been shown that, if Gj is acyclic then
dr(G)=(-1)-v+, where E and V are respectively the number of edges and the
number of vertices in the K-subgraph G; for all cyclic graphs dr(G) =0 [8], [10].
In our case, where G is undirected, dr (G) 0 and is always an integer not necessarily
equal to +1.

If all the edges of G have equal reliabilities, say p, and the edge failures are
statistically independent, then (6) reduces to:

(7) RK(G)=P,(G)p’.

The right-hand side of (7) is a polynomial in p containing at most IEI terms. The
coefficients of the ith degree term in (7) is given by the/-parity of G.

Corollary 1 provides a topological interpretation and provides some insight into
the composition of the coefficients of (7). Furthermore, using Corollary 1 and (7) we
have

RK(G) E (P,(G- e))p d- p E (Pi-( Ge))Pi- -P (Pi-I(G- e))p i-1

pgl(Ge) + (1 -p)gr(G- e),

which is the well-known factoring theorem [6], [9].
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WEIGHTED AVERAGES OF RADON TRANSFORMS ON Zzk*
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Abstract. Weighted averages of Radon transforms on the group of binary k-tuples under modulo 2
addition, which arise in applied statistics, are investigated. The inversion formula is derived by means of
(discrete) Fourier transforms, and also by means of an expansion in terms of Krawtchouk polynomials.
Alternate explicit representations are obtained for the coefficients in the inversion formula in several particular
cases. Moreover, when the Radon transform is over the subset of Hamming distance 2, the asymptotic
behavior of these coefficients is investigated when k is large (and not the square of an integer).

Key words. Gelfand pairs, Krawtchouk polynomials, spherical functions
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1. Introduction. Recently, Diaconis and Graham 1] have investigated the Radon
transform on Z2k, the group of binary k-tuples under modulo 2 addition. Discrete
Radon transforms of this type arise in applied statistics, and many examples have been
discussed by Diaconis [2], [3]. For a functionf: Z2k -> R, and a nonempty subset S c Z2k,
the Radon transform is defined as

(1.1) f(y) , f(x).
xS+y

The Fourier transform of the indicator function of the set S is

(1.2) s(Y) (- 1)’Y.

Diaconis and Graham showed that the transform f->f is one-to-one if and only if
s(y)O for any yZk2, and they derived the inverse with the help of Fourier
transforms. Let H(x, y) denote Hamming distance, the number of coordinates where
x and y disagree, and let H(x)= H(x, 0). Then, as examples, they considered S- Sr-
{X zk2: H(X) r} and S Sr+ {X ZEk: H(x) <-- r}, i.e., averages of f over all points
of distance equal to r, and averages over all points of distance less than or equal to r.
In particular, they obtained simple inversion formulas when k is odd and S S1, and
when k is even and S S-.

In this paper we consider the more general transform, involving weighted averages
of the Radon transform on Z2k for the sets Sr,

k

(1.3) f(Y) X Olr X f(x)
r=0 H(x,y)=r

where at, r 0,’’ ", k are real constants, not all of which are zero. In 2, following
Diaconis and Graham [1], we derive the inversion formula by means of Fourier
transforms. The coefficients in the formula

k

(1.4) f(O)= ., Cw f(z)
w=0 H(z)=w

are given explicitly in terms of Krawtchouk polynomials [4, p. 130]. In 3 alternate
explicit representations are obtained for these coefficients in several particular cases,
including S $1, S, $2, $3 and Sg in (1.1). The results are shown to reduce to those

* Received by the editors April 29, 1985.
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found by Diaconis and Graham [1 when S $1 and S S-. In 4 we consider the
case S $2 in (1.1), for which c2t+ 0 in (1.4), and investigate the asymptotic behavior
of the coefficients c2 when k is large (and not the square of an integer). The asymptotic
approximations are derived separately for (i) O(1), (ii) k 21 O(1), and (iii)
21 k sin2 0 where 0 < 0 < 7r/2, and x/ 0 >> 1 and x/(r/2- 0) >> 1. It is shown that the
approximation corresponding to (iii) matches with the other two approximations for
suitably small 0, and (r/2-0), respectively. The approximations indicate that, for
k >> 1, the coefficient with the largest magnitude is either Co or C2tk/2J. Finally, in 5,
we give an alternative derivation of the inversion formula, by means of an expansion
in terms of Krawtchouk polynomials.

2. Inversion formula. We follow Diaconis and Graham [ 1 ] and write the transform
(1.3) as a convolution

k

(2.1) f(y)= Olr f(y- z) f*x(y),
r=0 H(z)=r

where

k

(2.2) X(z)= ot,.X,.(z),

and Xr(Z) is the indicator function of the set S,.= {z e zk2" H(z)= r}. For a function
F: Z2k--> R we have the Fourier transform, and inverse,

(2.3) /(Y) E (-1)XrF(x),

Hence, from (2.1)-(2.3), we obtain

(2.4) f(z) f(z),(z),

Also, as shown in 1 ],

(2.5)

F(x)= (-1)X’yF(y).
y

k

E
r=0

,(z) =p(H(z)),
where, for 9, r 0,..., k, pk(u) is the Krawtchouk polynomial [4, p. 130]

(2.6, pk(,,
j--o

We remark that the kernel X(z) is a spherical function, since the indicator functions
Xr(Z) are invariant under the natural action of the permutation group IIk on Zk. The
group IIk X Z2k, where (r, z)x ,n’x + z, and its subgroup Ilk is an example of a Gelfand
pair (see Letac [6] for this and other examples).

We will assume that

k

(2.7) P(9) E arPk(’) # 0, v 0," , k,
r--0

so that )(z)# 0. Then, from (2.3) and (2.4), it follows that

1 ,x.yf(Y) 1 f(z-x)
(2.8) f(x) =-y (-1) -i-2k (-1)y’z

(y)y

It will suffice to determine f(0), since an expression for f(x) may then be obtained by
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shifting everything by x. But, from (2.4), (2.5), (2.7) and (2.8), we obtain

(2.9) f(0) E Z (-1)y’zf(g)
=o H(y)= w=o/-/(z)=w P(v)"

As in 1 ], we define

(2.10) (w)= Y’. f(z).
H(z)=w

Hence
k

(2.11) f(O) E c’g(w),
w=0

where, counting the number of times for which y. z u when H(y) u, H(z) w and
z is fixed,

1 (-1,U(uW)(k-uw) 1 pk(w)
(2.12) Cw

,,:o ,=o P(u) ’ - ,,=o P(u)

The above expression for the coefficients Cw in the inversion formulaf(0) is explicit,
in view of (2.6) and (2.7). However, Diaconis and Graham 1 obtained simple formulas
for Cw corresponding to the Radon transform (1.1) when S= $1 {xZk2: H(x)= 1}
and k is odd, and when S= S- {x zk2" H(x)<= 1} and k is even. They did this by
defining

(2.13) g(u)= ., f(x),
H(x)=u

and considering the transform g--> , where is defined by (2.10). In the two cases

mentioned they were able to solve the recurrence relations to obtain the coefficients
of (w), w=0,..., k, in the expression for g(0) =f(0). We will show how to obtain
their results directly from (2.12), which may be written in the form

(2.14)
1 k" (_1)

Cw=fo,=oe(u+s) s

3. Particular cases. We first consider the case S S in (1.1), corresponding to

al 1, and ar=O for r 1, in (1.3). Then, from (2.6) and (2.7), we have P(v)= k-2v
and k 2m + 1 is odd. We make use of the representation

1 1 1 ei(2m+l_2,)t(3.1)
P() (2m + 1 2u) 2zri

dt.

But,

2m+l--w

(3.2) .
=0 =0

,2,,,+1-2,-2)t (eit_ e-it)W(eit + e-it)2m+l-w.

Hence, from (2.14), (3.1) and (3.2), we obtain

(3.3) Cw 27/"
sin COS

2m+l-w dt.
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It follows that c21--0 and

(3.4)
C21+1 (-Trl) IO sin2+ COS

2m-2/ dt

r/2

(- 1) sin2+l COS
2m-2! dt,

dO

where we have changed to (Tr-t) in the interval (7r/2, 7r). Therefore [5, p. 8]

(3.5) c2t+1
(-1)’l!F(m-l+1/2)

2F(m+)
(-1)’l!F(m-l+1/2)
(2m + 1)r(m +1/2)

as found in 1 ].
We now consider the case S S- in (1.1), corresponding to ao a 1, and ar 0

for r->2, in (1.3). Then, from (2.6) and (2.7), we have P(v)=k+l-2v and k=2m
is even, so that P(v) is given by (3.1). But,

2m--w

(3.6)
u=0 s=O (_l)U(uW)(2ms-w) e’(2m+l--u-2s)’ e"(e" e-i’)W(e"+ e-")2’’-w.

Hence, from (2.14), (3.1) and (3.6), we obtain

(3.7) Cw

It follows that

27/"

(3.8) c2t C21+

e i’ sin COS
2m-w dt.

(-Trl)t Io sin2t+1 COS
2m-2/ dt.

Moreover, c2t/1 is given by (3.5), in view of (3.4). This agrees with the result obtained
in [1].

Next we consider the case S $2 in (1.1), corresponding to a2 1, and ar 0 for
r# 2, in (1.3). Then, from (2.6) and (2.7), we have P(v)=1/2[(k-2v)2-k], and k# m2,
where m is an integer. Hence,

(3.9) P(v)-x/ (k-x/-2v) (k+x/-2v)
We define

(3.10)
=o s=o (k+A-2u-2s) s

for h # +m. Then, from (2.14), we obtain

1
(3.11) c dk(--/) dkw(x/)].

But,

(3.12) ei(k+x-2v)’ dt
2(--1)k sin (Ar)
(k+A-2,)
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Hence, from (3.10), if h # +m, it follows that

(-1)ki I et sin COS
k-w dt.(3.13) dk(A)

2 sin (Ar)

Therefore

(3.14)

and

d2kl(A)__ (--1) k+l Iosn (Ar)
cos (At) sin2 COS

k-21 dt,

(3.15) d2k,+,(A) (--1)k+’+’ Iosn r-" sin (At)sin2’+’ cos-2’-’ tat.

Hence, from (3.11), we obtain c2+ =0 and

2(--1)k++l fo(3.16) c2 V sin ) cos( t) sin 2 cosk-2’ dt.

Since

d k-1"-{cos t[sin ( t) cos t-q cos (,f t) sin t]}

x/ (k- 1) cos (x/ t) sin2 cosk-2t,

it follows that c2 1/(g), as it should.
We may obtain an alternate representation for d kw(h) as follows. If we make use

of (3.12) in (3.10), and sum only on u, we obtain

(-1)kiw k- k- w
sin e"k+"--2’ dr.(3.17) d(I )= 2k--;in (Ar)

But [5, p. 8],

rw! exp (iflr/2)
(3.18) sin dt

2r(1 + w/2+/2)F(1 + w/2-/2)’

and [5, p. 2]

(3.19) F(z)F( 1 z) r cosec (rz).

It is found, from (3.17)-(3.19), that

W[ kw(k--w) 1
(3.20) dk(A)-

2k+ =0 s (s- k/2- A/2)w+l’

where

(3.21) (a)w+l=a(a+l).. .(a+w), w=O, 1,. ...
In terms of the hypergeometric function [5, p. 39],

-w’ ( k A k A )F-k+w,-- 2
l+w 1(3.22) dkw(A) 2k/(--k/2 -A/2)/ ---;

2 2’

It is clear that, in general, we may obtain an alternate representation for the
coefficients c in the inversion formula (2.11), by expanding the reciprocal of P(u) in
(2.14) in partial fractions. We proceed to give the results for some other particular cases.
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(i) S= S3. This corresponds to O3--" 1, and Or’-’0 for r# 3, in (1.3). Then, from
(2.6) and (2.7), we obtain

(3.23) P(v) -(k 2v)[(k 2v)2 3k + 21,

and k 2m / 1 is odd, with 3k 2 6m / 1 # n2, where n is an integer. It is found that
c2 0 and

2m+l6
d21+l (/6m + 1)(3.24) c2t+ (6m + 1) (-1)’l!F(m-l+1/2)](2m+l)F(m+1/2)

(ii) S S4. This corresponds to O4 1, and at 0 for r # 4, in (1.3). Then, from
(2.6) and (2.7), we obtain

(3.25) P(v) [(k 2v)4- 2(3k -4)(k- 2v)2 + 3k(k 2)1.

We let

(3.26) t =[(3k-4)+(6kE-18k+16)’/2] 1/2, tr= [(3k-4)-(6k2-18k + 16)1/2] ’/2,

and note that K and tr are positive, since k-4. Then

(3.27) P(v) 4[(k 2v)2
K 2][(k 2v)2 tr2].

If r and tr are not integers, it is found that c2/+1 0 and

(3.28) c2, (t2-_-- or2) dt(cr)--d,(<)
<

(iii) ao a, al =/3, a2 1, ar 0, r >_- 3. In this case, from (2.6) and (2.7), we obtain

(3.29) P(v) 1/2[(k +/3 2,)2-/x2], I k +2 2a 1/2.

If # O, then

1
(3.30) Cw --[d k(fl I. d kw(fl + Ix)].

Expressions for dkw(A) are given by (3.13) and by (3.20). However, the integral in
(3.13) is zero if A -+(k /p), where p is a positive integer. The integral is also zero if
A k-2n / 1, n 1,. , k. In these cases the limiting value must be taken in (3.13),
since sin (ATr)-0 also. On the other hand, the expression for dkw(A) in (3.20) is valid
in these cases. The integral in (3.13) is generally not zero if A -2v-k, v=0,..., k.
However, by assumption (k //3 2v)2 #/x 2, i.e./3 +/z # 2v k, v 0, , k. The result
for/z 0 may be obtained from the limit/z-> 0.

4. S = $2 and k large. We here consider the Radon transform over the subset of
Hamming distance 2, i.e. S $2, and investigate the asymptotic behavior of the
coefficients in the inversion formula (2.11), when k is large (and not the square of an
integer). We have shown that c2/1=0, and that c2 is given by (3.16) for l=
0,. ., lk/2J. The asymptotic approximations of c2 will be derived separately for (i)

O(1), (ii) k-21 O(1), and (iii) 21 k sin2 0 where 0< 0 < 7r/2, and x/ 0 >> 1 and
v/-(r/2 0)>> 1. It will also be shown that the approximation corresponding to (iii)
matches with the other two approximations for suitably small 0, and (7r/2-0),
respectively.
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(i) l-O(1). In this case the main contributions to the integral in (3.16) occur
near the endpoints, and we write

(4.1)
o

cos (x/ t) sin2t cosk-21 dt

{cos (,/’ t) + (-1) cos [/-(r- t)]} sin cos- dr.
dO

But, for r O(1) and O(1),

sin2 (r/x/) (rE/k) 1,(4.2)

We define

cosk-El (r//)--- e-12 for k >> 1.

(4.3) A, r e-2/2 cos r dr, B, r e-2/2 sin r dr.

It follows, from (3.16) and (4.1)-(4.3), that

2(-1)+ {[cs (x/r)+(-1)k]AE+BE}, l= O(1).(4.4) C2t kt+-’--i’- sin (,/-
It may be shown, by integrating by parts, that A2 0 and B2 1, so that c2 2/k2, as
it should.

(ii) k-El=O(1). In this case the main contribution to the integral in (3.16)
occurs near the midpoint, and with k-21 rn we write

cos (x/- t) sink-m COS dt

(4.5)
{cos{/-(-/2-t)]+(-1)’cos[/(./2+t)]}cos-’tsin"tdt.

dO

If we let t= r and proceed as before, we find from (3.16), (4.3) and (4.5), with
m 2q+ k-2[k/2], that

2(-1) t/l-q+
c(t/-q"kq+ sin (/ r)

[1 +(-1)] cos (,/- r/2)Aq
(4.6)

[1 -(-1)k]
x/ sin (x/ 7r/2)BEq+l,

for q= O(1).
Now, from (4.3) and [5, p. 402], we have Ao-Bl-(r/Ee)/2. It follows from

(4.4) and (4.6) that, for [k/EJ =p >> 1,

c__zo f(-1)P[cos (p, r)+(2e/r)/EBosin (x//2 7r)] if k= 2p,
(4.7)

CEp (-1)P’p[sin (x//2 r)-(Ee/r)l/EBocos (/-p/2 r)] if k=Ep/l.

(iii) 21 k sinE 0. In this case we assume that

(4.8) 0< 0 < 7r/2, x/ 0 >> 1, v/(Tr/2 0) >> 1.

Now sin2 cosk-Et attains a maximum at 0, since

d cosk_21 cosk-21-1(4.9) -(sin21 t) sin2t- t[21 cos2 (k- 2/) sinE t],
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and k-21 k cos2 0. Also, from (4.1), we have

cos (v/ t) dtsin21 COS
k-2/

(/9_-o)

(4.10) {COS[V/-(t+O)]+(--1)kcos[v/-(Tr--t--O)]}

sin2 + 0) cosk-2 (t + O) dr.

But, for -= O(1) and 21 k sin2 0, subject to (4.8), it is found that

(4.11) sin2 (0 + ’/x/) cosk-2 (0 + z/x/-) sin210 cosk-2 0 e-2 for k >> 1.

Also [5, p. 402],

(4.12) e-’2 sin z dz 0, e cos " dr x/ e-1/4.

If we let x/ z in (4.10), it follows from (3.16), (4.8), (4.11) and (4.12) that

c2 k sin (v/- r)
e-1/4 1

(4.13)
{cos [x/(r- 0)]+ (-1)k cos (/- 0)}.

We will now show that this expression for c2t matches with that in (4.4) if l/x/- << 1,
corresponding to x/ 02<< 1. We note that if 0 O(k-1/3), then x/ O O(k1/6) >> 1 and
l/x/ O(k-/6) << 1. Thus,

(4.14) 1 e- if -<< 1.

Also,

(4.15) x/ sin 0--- 0, if v/ 03<< 1.

Hence, if x//>> 1 and l/v/-<< 1, we find from (4.13) that

(4.16) c k sin()
e-(+/4[cos( )+(-1) cos ()].

The asymptotic behavior of A and B for >> 1 may be obtained by substituting
+x in (4.3), with r= 21, and using (4.12). It is found that

(4.17) A(2/) e-(+’/4 cos (), B(2/) e-(+/ sin (),
for l>> 1. This shows that (4.4) is consistent with (4.16).

Similarly, it may be shown that the expression (4.13) for c matches with that in
(4.6) if [k/2] q where >> and q/<< 1. Under these conditions it is found that

C2([k/2J-q) k sin()

(4.18) e-(q+l/4){[1 +(-1)k] cos ( /2) cos ()
-[1--(--1)k]42q/k sin( /2) sin (2q + 1)}.

We have made use of the fact that

(4.19) (2q + 1)q+/2 e-(q+/2) (2q)q+l/2 e-q for q >> 1.



412 J.A. MORRISON

In summary, the asymptotic behavior of the coefficients C21 l--0,. ., /k/2J, in
the inversion formula (2.11) is given by (4.4) for l= O(1), by (4.6) for l= [k/2J-q
and q-O(1), and by (4.13) for 2/= k sin2 0 where 0< 0< r/2, and x/ 0>> 1 and
v/(cr/2- 0) >> 1. In addition, c2t+l 0. The results indicate that, for k >> 1, the coefficient
with the largest magnitude is either Co or CEp where p- [k/2J. The asymptotic ratio
of Co to cEp is given by (4.7).

5. Alternate derivation of the inversion formula. We will now give an alternate
derivation of the expression (2.12) for the coefficients Cw in the inversion formula
(2.11), by considering the transform g g,. It follows from (1.3) and (2.10) that

k

(5.1) (w)= , at ., , f(x).
r=0 H(z) H(x,z)

If we use (2.13), and count the number of times that H(z) w, H(x) w+ r-2s and
H(x, z) r, we obtain

k

(5.2) (w)= otrArw(g),
r=0

where

(5.3) g(w+r-2s),
s=o r-s s

and g(1) 0 if < 0 or > k.
Now, from (2.6), the generating function for the Krawtchouk polynomials is

k

(5.4) Y’. p(v)st= (1 + sc)k-(1 )’, v =0, , k.
/=0

We define

(5.5) g,(l) fpt( b’), l= 0,..., k,
0 otherwise.

Then, from (5.3), if we let r= s+j and w= l+ s-j, we obtain

k k

rw
k k-j min(k,k+j-s)s+jl+s--j( ..l)(k-s 1)(5.6) Y, E Ar(g)r/ =E Y, E p(v).

r=O w=O j=O s=O /=max (O,j-s) J

But, if j> then (J)=O for O<-_l<j-s, and if s>j then (;-) =0 for k+j-s<l<-k.
Hence we may take 0_-< l-< k in the sum, and it then follows that

k k

Z Z Arw(g,)’rlr
r=O w--0

(5.7)
=o =o =0 S

k

/=0

from (5.4). Consequently, we have the fundamental result

(5.8) Ar(g)=pkr(v)p(’), r, w=O,’’’, k.
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We now let

a,p( v), O, k,
(5.9) g(/) =o

otherwise,

where the eoefticients a, v=0,..., k, are to be determined. From (2.7), (5.2), (5.5)
and (5.8), since A is a linear operator, we obtain

k

(5.10) (w) E a,,V(v)p(v), w=0,..-, k.
,=0

But, from (5.4), it follows that

k k k

(5.11) E . Pk(w)pk(v)Cs "= ., pkw(V)(l+)k-’(1--sC)w=2k""u=0 w=0 w=0

This implies the orthogonality relations [4, p. 152, Corollary 18]
k

(5.12)
w-’0

where 8 is the Kronecker symbol. Hence, from (5.10), we find that

k

(5.13) E Pk(w)g(w) 2ka,P(u)
w=:0

Since pko(v)--= 1, from (2.6), it follows from (5.9) and (5.13) that

(5.14) g(O)=
=o V(v) =oE p(w)(w).

Since g(0)=f(O), from (2.13), this establishes the expression (2.12) for the coefficients
c in the inversion formula (2.11).

Acknowledgments. The author is grateful to R. L. Graham for bringing this problem
to his attention, to C. L. Mallows for useful discussions, and to P. Diaconis for
comments on the first draft of this paper.
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ON THE SMALLEST POSITIVE SINGULAR VALUE OF A SINGULAR M-
MATRIX WITH APPLICATIONS TO ERGODIC MARKOV CHAINS*

JESSE L. BARLOW"

Abstract. Let A be a singular n x n M-matrix of rank n and let B be an (n 1) x (n 1) nonsingular
matrix that results from deleting row j and column k from A. An open question discussed by Harrod and
Plemmons [SIAM J. Sci. Stat. Comput., 5 (1984), pp. 453-469] is whether there is a choice of j and k such

_(B)_ is the smallest singularthat r,_1-(A) vn_I’(B) where ’n-l"’(A) is the smallest positive singular value of A and
value of B. In this paper, we resolve this conjecture by showing that there is always such a choice.

This conjecture is important when finding the stationary distribution of an ergodic Markov chain. This
can be posed as the problem of finding the n x vector p such that Ap =0 and erp where e (1,. , 1) r.
Here A I-Qr where Q is a row stochastic matrix and p is the stationary distribution vector of the chain.
This problem can be reduced to the problem of solving a system of linear equations with coefficient matrix
B. If Vn_l’r(A) Vn_l,rr(B) then this system of linear equations is about as well conditioned as the original problem.

Key words. M-matrix, singular value decomposition, Markov chains

AMS (MOS) subject classification numbers. 65F, 65G

1. Introduction. In this paper, we consider the condition of the problem of solving
the homogeneous system of linear equations

(1.1a) Ap =0

subject to the constraint

(1.1b) erp= l

where e (1, , 1)r, A is a singular irreducible n x n M-matrix with rank n- 1, and
p is an n x 1 vector.

The problem (1.1) arises in the context of finding the stationary distribution of
an ergodic Markov chain. This is the problem of finding an n x 1 vector p such that

(1.2) Qrp =p
where Q is an n x n row stochastic matrix. Since Q is an irreducible nonnegative
matrix, according to the Perron-Frobenius theory (cf. [27, p. 30], [2, p. 27]), p is the
unique positive vector satisfying

(1.3) Pi 1.
i=1

This problem has attracted a great deal of interest from a variety of perspectives [18],
[12], [22], [20], [25], [26], [16], [17]. The stationary distribution vector p is important
in many applications, including queueing networks [17], input-output economic
models [2, Chap. 9], [3], and in compartmental analysis tracer models [24], [7]. Such
a computation is also related to the discrete Neumann problem in partial differential
equations [23].

* Received by the editors May 20, 1985, and in revised form August 6, 1985. This research was supported
by the National Science Foundation under contract DCR-8402363 and by the Office of Naval Research
under contract N0014-80-0517.

" Department of Computer Science, The Pennsylvania State University, University Park, Pennsylvania
16802.
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Let

(1.4) A=I-Qr

and e (1,..., 1)r; and the problem (1.2) can be characterized as that of solving
(1.1). If A is as in (1.4), then it is a rank n- 1 singular M-matrix which satisfies

(1.5) eTA=O.
The condition of the problem (1.2) has been examined from several points of view
concerning the matrix A in (1.4). One common point of view has been through the
use of A#, the group inverse of A (cf. [20], [21], [10]). Another has been to consider
the eigenvalue of A of second smallest magnitude (cf. [5]). The approach that we will
examine will be to use the second smallest singular value of A (cf. [15], [14]).

We consider the matrix A in the form

B y)p(1.6) A=P zT Olnn

where P exchanges rows j and n and P exchanges columns k and n. We assume
that A has rank n 1 and thus we can guarantee that B is an (n 1) x (n 1) nonsingular
matrix (cf. [15], [10]). The procedure given below as Algorithm 1.1 for solving (1.1)
uses the partitioning (1.6).

ALGORITHM 1.1.
1. Find the row and column permutation matrices P and P.
2. Solve B---y by LU decomposition or QR decomposition.
3. Let x Pk(’).
4. Set p x/(i= xi).

The key question that is resolved in this paper is whether there are permutation matrices

P and P such that

(B) ,_,.(A)(1.7) or,_, ’n-1

(A) is the smallest positive singular(B) is the smallest singular value of B and crn_lwhere or,_
value of A. This conjecture is given in 14] and 10]. If the conjecture is true, then the
above procedure yields a system that is about as well conditioned as the original
problem (1.2).

We resolve this conjecture in this paper and two related problems: 1) the relation-
ship between nrr(A)_l and the condition of the problem (1.1)’, 2) The choice of the
permutation matrices P and P. The problem 1) is resolved in 2 and the problem
2) is resolved along with the conjecture (1.7) in 3. A procedure for solving (1.1) that
uses these results is given in 3. This procedure is a modification of Algorithm 1.1.

Throughout this paper we will use the vector norms

[[X[I1--" [Xil, [[XII2"-’xTx, X llx max [xi l,
i=1 lin

and the associated induced matrix norms. Unless stated otherwise, the theorems and
lemmas in this paper concern singular M-matrices ofrank n 1 which do not necessarily
satisfy the condition (1.5).

2. The condition of the ergodic Markov chain problem. Suppose that we have
obtained an approximate solution p to (1.1) by some numerical method. Using the
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techniques of backward error analysis given in [30], we have that/5 satisfies

(2.1a) A= r,

(2.1b) eT/ l+e

where r and e are the residual errors in computation. The perturbation e on the right
side of (2.1b) can always be made approximately equal to the machine unit and does
not greatly affect the analysis. We include it for completeness. Although A is singular,
(2.1a) is clearly consistent. Thus if we let Ap =/-p then

(2.2a) AAp 1,

(2.2b) eTAp e

is consistent. The following theorem gives a bound on Ap in terms of r.
THEOREM 2.1. Let A be a singular n x n M-matrix of rank n- 1. If Ap satisfies

(2.2), then

(2.3) IIAplI=<--leI+(1
where cr,_l is the smallest positive singular value of A.

Proof Let

be the singular value decomposition of A where U and V are orthogonal, and
E diag (o-1,. , o",_1) is an (n 1) x (n 1) diagonal matrix where trl _-> tr2 =>" =>
o’,_1 > 0 are the positive singular values of A. Also define

(2.5a) Aq Vrap,
(2.5b) s Urr,
(2.5e) d Vre.
The problem (2.2) becomes

(2.6a)

(2.6b)

By consistency of (2.2) we have

drAq=e.

where sl is an (n- 1)x 1 vector. Thus if

where Zq is an (n- 1)x 1 vector and 0 is a scalar, then

Ilaq, I1- --< :-’s, I1_ -<- :-’ I111,, I1_ s, IIU,.-, -II ,’IIU o-._,.
The remaining problem is to bound the scalar p in (2.7). Let
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where dl is an (n- 1)x I vector and 6 is a scalar. By definition
T6 Vre),, v,, e

where v. is the singular vector of A such that

Av. O.

By the orthogonality of V we have

(2.8) v, I]2 1.

Since the linear space of solutions to (1.1a) has dimension one, v, =rp where is a
constant and p is the solution to (1.1). Thus v, can be chosen to a vector with only
positive components which implies that

(2.9)

Combining (2.8) and (2.9) gives us

From the condition (2.6b) we have

d rAq= dAql+6, p e.

Solving for p and taking norms we get

I1
<--I1 / ;ffll aq, I1= <--I1 /,/-fill rll=/

Thus by the orthogonality of V

IIAplI=-IIAqll=<--Iol/ IIAq, ll=<-- Il/ ( /,/-ff)ll rll=/.-,. Q.E.D.

We have shown that the condition of the problem (1.1) depends upon the smallest
positive singular value of A. This is equivalent to its dependence on the condition
number IIAII=IIA+II= ,/._, where A+ is the Moore-Penrose inverse of A and r is
its largest singular value.

3. Submatrices of dimension n-1. Algorithm 1.1 performs the steps

(3.1a) B -y

(3.1b) p- Px/llxll
where x= (, 1) r. It has been shown (cf. [28], [8], [6], [15]) that LU decomposition
of an M-matrix without pivoting is a stable process. The step (3.1a), in effect, solves
the problem

(3.2a) Ax O,

(3.2b) x. .
Again using classical backward error analysis (cf. [30]) the computed solution to

(3.2) using some computational procedure would satisfy

(3.3a) A r,

(3.3b) ,=1.
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Thus if Ax -x then it solves

(3.4a) AAx r,

(3.4b) Ax, =0.

We now consider the solution of (3.4).
LEMMA 3.1. Let A and r be as in Theorem 2.1, and let

,= WAP
where Pk is the permutation matrix that exchanges rows k and n and W is an orthogonal
matrix. Let v, (Vl,,. v,,) be the singular vector ofA such that

Av =0,

if
(3.5a)

(3.5b)

then

(3.6)

/Ax r,

Ax, 0

Ilaxll <= (1 + 1/Iv,<.l) rllU o.-,
and for some choice of k we have

(3.7) Ilaxll= (1 +4-) rlld<.-1
where tr,_ is the smallest positive singular value ofA.

Proof Let A have the singular value decomposition given in (2.4). The singular
value decomposition of , is given by

Define

= uw,
Az= VPax,
f= vrp[e,,

where e, (0,. ., 0, 1)r is the last column of the identity matrix. The problem (3.7)
can now be rewritten as

frA =0.(3.8b)

By consistency

where s is an (n- 1)x 1 vector. Therefore if

(3.9) Az=

" ]
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where AZl is an (n- 1)x 1 vector and " is a scalar, then

(3.10) IImZl[[2 IIsII=/.-- IISlI=/.-,- r ]12/ tr,-1.
The remaining problem is to bound the scalar sr in (3.9). Let

Here

3’ (VrP[e,), (Vrek), Vk,

where V=(v0) is the orthogonal left singular vector matrix in (2.4). Here
(vl,," ", Vk,," ", V,,)7" is the nth singular vector of A from the hypothesis and thus
the nth column of V. The condition (3.8b) gives us that

fTAZ =flTAz1 + T" " 0.

If we solve for " and take norms we obtain

(3 11) I1<_-IIf’ll=liAz’ll=< IIAz’ll=< 1-

Combining (3.9), (3.10), and (3.11) we obtain

IIAxll= Ilazll=_-< I1 + Ilaz, ll=_-< (1 + lllv,<,,I)llrlllo,,-,.
If we choose k so that

I,ol max I,.1 I1.11

then

which implies

1

Ilaxll<_-(1 +,/-if) rlld <’.-,. Q.E.D.

In (3.6), it is important to avoid permutations P where Vk, is small in magnitude.
We can detect this only by solving (1.1a).

We shall need the following result concerning M-matrices.
LEMMA 3.2. Let A be a singular n x n matrix. Then there is a positive n x 1 vector

c such that

crA 0.

For the particular instance of the M-matrices arising out of ergodic Markov chains
we have c e (1,..., 1)r. The above lemma can be found in [8] and [28].

Theorem 3.1 resolves the open question surrounding (1.7) and is the main theorem
of this paper.

THEOREM 3.1. Let A be a singular M-matrix of rank n- 1 and let

A PAP[
where

A
zT Olnn



420 JESSE L. BARLOW

and B is an n 1) x n 1) nonsingular M-matrix. Here P is a permutation matrix which
exchanges rows j and n and P is a permutation matrix which exchanges columns k and

(A) be the smallest positiven. Let tr(B),-1 be the smallest singular value of B, and let o’_
singular value of A. Then, for some choice ofj and k, we have

(3.12)
o.(A)n- < (B)_ <
+ 1

Proof. The upper bound in (3.12) is proven in [15, p. 459] using the Courant-
Fischer minimax theorem (cf. [13, p. 269], [30, pp. 103-104]). Thus we must simply
prove the lower bound.

Let A:I be the (n- 1)x 1 vector that solves

BA r
for some (n- 1)x I vector rl. By the singular value decomposition theorem, we can
always choose rl so that

If we now let

be an n x I vector, then

(B)_Ila ,ll r, ll /

AAx r
P,

Let c be the positive vector from Lemma 3.2 such that

crA =0.

Then we have

(3.13)

where

Equation (3.13) implies that

’fiAx= crr=O

n--1

(3.14) t.p E c’p,,
i=1

where r (O, 0,""", O,)r. We can always choose j so that

(3.15) , max IciI

and therefore

(3.16) I,o,,I -< I,o,I- IIr, ll,.
i=1 Cn

A bound on the norm of r is thus given by

(3.17) Ilrll _<-IIr, ll=+ll,’,ll,<-(l+4-ff)ll,’,ll,_.
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Since P is an orthogonal matrix, from Lemma 3.1 we can choose k so that

Hence

which implies

o’,,_,
(1 +d)2" Q.E.D.

In an informal sense, this theorem states that the problem (1.1) where A is any
M-matrix is ill-conditioned if and only if every (n 1) x (n- 1) submatrix of A is also
ill-conditioned. This leaves open the method of choosing the row and column pivot
indices j and k in Theorem 3.1 in order to solve (1.1) using the strategy in 1. For
the Markov chain problem c- r= (1,..., 1)T; thus, for that case, the choice of j is
arbitrary as is stated in the following corollary.

COROLLARY 3.1. Let A be as in Theorem 3.1 with the condition (1.5). Let A, P,
P[B, ,,,-1,

’’(A) and ,,-1
"(n) be as in Theorem 3.1. Then for some choice of k and any choice

ofj= 1, 2,..., n we have (3.12).
Proof. Simply follow the proof ofTheorem 3.1 up until equation (3.13). The vector

c e (1, , 1) T thus for the vector

the statement (3.15) is true for any choice ofj- 1, 2,..., n. The remaining statements
in the proof of Theorem 3.1 follow. Hence (3.12). Q.E.D.

The last corollary gives a perturbation bound for any arbitrary column permutation
for the solution of (3.1).

COROLLARY 3.2. Let A, , Pj, P, tr,_,(A)- and O’(nB_)l be as in Corollary 3.1. Let
v, (vl,, v,,)r be as in Lemma 3.1. Then for any choice ofj and k

cr a)
n-1 < (B)_< (A)

(1/Iv.l + 1)(vf-+ 1) ’n-I O’"--1"

Proof. From Lemma 3.1 we have

IIAxll  (1 + 1/l   l)llrll# .
where r is as in the hypothesis of that lemma. Let

be an n x 1 vector and choose r- (,) so that

II  ,ll -IIr,

From Corollary 3.1 we have (3.17); thus

r,}l= < (1 + 1/Iv, .l)llrll=< (1 + 1/]v.l)(1 rl
(.)_=(Tn-1 ’n-1 ’n-1
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We therefore have

n-I < (B). < ,.(A)o’,-, ,-1. Q.E.D.+ +
From [14, p. 43], the vector v,=(v,,..., V,,)T=y where y=(y,... ,y,) y

is the kth principal minor of A, and is a constant. In [14, p. 45], an expression for
the condition of (1.1a) as an eigenvalue problem is given in terms of the vector y.

Corollary 3.2 yields a stable strategy for solving (1.1) when the condition (1.5)
holds as in the ergodic Markov chain problem. We give the strategy using the LU
decomposition of B, but a similar strategy can be used with the ohogonal decomposi-
tion of B. The strategy is a modification of Algorithm 1.1 and given as Algorithm 3.1.

ALGORITHM 3.1.
1. Compute the factorization

B
LU=B whereA= zT y)O

where L is lower triangular and U is upper triangular. From 14], this can be
done without pivoting.

2. Let z =-L-y.
3. Solve U:(1) z.
4. If II;(1)11 < tol where tol_-> 1, but tol is not much greater than one, then set

X(1) (3(11)) 1 xl)and p

and quit. Otherwise proceed to step 5.
5. Let X(1)-- (Xl,""" Xn)T from step 4 where x, 1. Let k be an index such that

Let / be U with the kth column u (k) deleted and let H [ z]. Note that H
is upper Hessenberg.

6. Solve H:(2)=u(k) using Gaussian elimination with partial pivoting (or
equivalently pairwise pivoting). Then

X(2) Pk(9(12)) --XIIxII1 (2)and p-,,A(2),,1
where p is the solution to (1.1).

Pivoting is necessary in step 6 since H is not, in general, an M-matrix, nor is it
generalized diagonally dominant. However, the factorization ofH by Gaussian elimina-
tion with partial pivoting is unconditionally stable [29].

The factorization developed by Algorithm 3.1 is stable. Essentially, we are factoring
/ where

T P"A=
Og

using the factorization

LH

where //is the LU factorization of H with partial pivoting. Since L comes from
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Gaussian elimination on a diagonally dominant matrix, and/is the LU factorization
of a Hessenberg matrix with partial pivoting, from [29] we have

and therefore

//2

Thus there is little enlargement in the elements of B which implies stability [1], [4].
Steps 4 and 6 ofAlgorithm 3.1 make use of Corollary 3.2. Since xn 1 and v. II -- 1,

we have [Ix(1)l[ is large only if the last component of vn is small, and thus the lower
bound on r()n_l is small. Steps 5 and 6 of Algorithm 3.1 are to insure that ][x(2)[l 1

(6)_ (the smallest singular valueor is as close as possible to one, thus insuring that tr,_l

of B) satisfies the lower bound in equation (3.12).
The same strategy as in Algorithm 3.1 could be used with QR decomposition of

/ except that no pivoting would be necessary in step 6. Also symmetric row and
column pivoting can be performed on A before step one to preserve sparsity without
disturbing the M-matrix property [2]. Similar procedures to Algorithm 3.1 for deleting
and inserting a column into the LU factorization of an M-matrix are discussed in [9].

Acknowledgments. The author would like to thank Professor Robert J. Plemmons
with whom he corresponded on this problem. Professor Plemmons also brought the
conjecture resolved in Theorem 3.1 to the author’s attention and made several sugges-
tions which improved the presentation of this paper.
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CURVES ON Sn- THAT LEAD TO EIGENVALUES OR
THEIR MEANS OF A MATRIX*

MOODY T. CHUrl

Abstract. This paper discusses two dynamical systems on the unit sphere Sn-t in R" space, each defined
in terms of a real square matrix M. The solutions of these systems are found to converge to points which
provide essential information about eigenvalues of the matrix M. It is shown, in particular, how the dynamics
of the second flow is analogous to that of the Rayleigh quotient iterations.

Key words, dynamical systems, Lyapunov’s theorem, Rayleigh quotient iterations, stability

1. Introduction. Consider the following autonomous differential system:

(1 1) dy= F(y)
dt

where y(t) Rn, F is continuous wherever it is defined and satisfies

(1.2) F(y)= Ilyll" F(y/IlYII) (11" means the 2-norm)

for every y # 0. For any nonzero solution y(t) of (1.1) if we define

(1.3) u(t) y( t)/II Y(t)ll,

then u(t) is a smooth flow on S"-1 and satisfies the system

du
(1.4) d--- F(u)-(u, F(u)) u.

Since the unit sphere S-1 is a compact set in the space R", we expect the global
dynamics ofthe vector field (1.4) on this unit sphere to have some kinds of convergence
properties. We are particularly interested in the case when

(1.5) F(y)= t(y) y

where At(y) is a square matrix satisfying

(1.6) JA(y) t(y/llyll).

More specifically, given a constant matrix M in R, we shall use M to construct a
mapping t satisfying (1.6) and to study the resulting dynamics. It turns out that all
our constructions of ff generate curves leading to points which give information about
eigenvalues of M.

Our presentation is organized as follows. In 2 we discuss the simplest possible
choice of (1.6) and show that the dynamics of the resulting system is closely related
to that of the classical power method. In 3, the major part of this paper, we first
construct a nontrivial mapping At(y). It is shown that the flow of the corresponding
system of (1.4) satisfies a nice monotone residue property. Using this property, we are
able to analyze the global dynamics of the system which turns out to be very analogous
to that of the Rayleigh quotient iteration method. The paper is concluded with some
remarks in 4.

* Received by the editors May 24, 1985, and in revised form August 6, 1985.
f Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27695-8205.
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2. Continuous power method. In this section we first consider the mapping M(y)---
M. The system

du
(2.1) M" u-(u, M" u)" u

dt

has equilibrium points only at eigenvectors of M. It is also clear from (1.3) that the
exact solution of (2.1) is given by

(2.2) u (t) eM.,. Uo/II eM". Uo II,

To analyze the global behavior of the flow (2.2), we decompose M into its Jordan
canonical form, i.e., M S. J. S-1, where

k=l

and Jnk(,k) is the nk nk Jordan block associated with the eigenvalue /k"
DEFINITION 2.1. We shall say that Ai dominates Aj if and only if Re Ai >_-Re Aj.
Partition the matrix S as

S [S(1), S(m)]

where each S(k) is an n nk submatrix of S, and suppose S(k)

be rewritten as
[s)]. Then (2.2) can

(2.3) u(t)= S. e’t. S-. uo/lls, e:’t" S-" Uoll.
Note that the components of to S- Uo are the coordinates of the initial vector Uo
in terms of column vectors of S. Let to be partitioned as

AT
Uo [a o’), .,

where each /(0k) is a 1 nk row vector We shall assume the "generic" condition on
the initial vector Uo, i.e.

(2.4) <o) O.

Since

(2.5)

tnk-i

(rig--l)!
1

the ith component ui(t) of the solution u(t) is given by

(2.6) u,(t)= eAk’ s)P<k).:
k=l j=l i=1

(.k)p(k)(t)eAkt so
k=l j=l

2}1/2
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P(k)t is the jth component of the vectorwhere,

e-Xkt, e,k(x). (0k)T,
and thus is a polynomial in with degree not higher than nk--j. From (2.6), we are
able to make the following observations [4].

THEOREM 2.1. (1) If the matrix M has a real eigenvalue, say A, which dominates
any other eigenvalues, then under the assumption (2.4), the solution flow u(t) of (2.1)
converges to the corresponding eigenvector of h.

(2) Ifh is complex-valued, then the solution flow u( t) is attracted to and oscillating
around the 2-dimensional circleformed by the intersection ofSn- and the 2-dimensional
subspace spanned by the real and the imaginary parts of the corresponding eigenvector
of X.

Remark. It is worth noting that the convergence property in (1) is independent
of the order of the corresponding elementary divisor.

Suppose now that M is nonsingular and we choose At(y)--In M, the logarithm
of M. Then (2.2) becomes

(2.7) u(t)= M. Uo/l[M. Uo{{,

where by M’ we mean the matrix exponential e ’0n m. It is dear that the evaluations
of (2.7) at integer times correspond to the classical power method [7] applied to the
matrix M. It is for this reason that the system (2.1) is called "the continuous power
method."

3. Continuous analogue of Rayleigh quotient iterations. In this section we define
At to be the mapping

(3.1) At(y)=[(M-p(y)) r. (M-p(y))]-,
where p(y) is the Rayleigh quotient of y with respect to M, i.e.,

(3.2) p(y) (y, My)/(y, y),

M p(y) represents the matrix algebra M p(y) I and M p(y)) is the transpose
of M-p(y). Let or(M) denote the spectrum of M. Apparently the system

du
(3.3) At(u)" u-(u, At(u)" u)" u

dt

becomes singular at any point of F if

r {u sn-’., p(u) (M)}.

Henceforth, we shall consider (3.3) only in the domain D= Sn--F which is open
with respect to the induced topology on S-. Let us define the residue function

(3.4) r(t)= [l(M-p(u(t))" u(t)[[

along any solution flow u(t) of (3.3). The following interesting monotone residue
property is found to be important in later analysis.

THEOREM 3.1. Along any solution u(t) of (3.3), the residue function r(t) satisfies
dr/dt <- O, i.e., r(t) is nonincreasing. The equality holds ifand only ifu(t) is an eigenvector
of t, i.e., u(t) is an equilibrium point of (3.3).
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Proof From (3.4), we know

dr d
2 r--tt -tt u, dg u

=--;,-u + u,---f[(M-p)+(M-O)r]u+t-du

(since(u, (M-p)u)=O and is symmetric)

2(d4u -(u, u)u, A-’u)

2{1 -(u, l/lu}(u, -u)}.

Since is always positive definite so long as u (t) exists, by the well-known Kantorovich
inequality [6],

(3.5) 1 U, ,/[/lU U, ,/[ u

we obtain the result dr/dt<=O. It is also known from [6], that the equality of (3.5)
holds if and only if u is an eigenvector of (u). Hence the theorem is proved.

Let E be the collection of equilibrium points of (3.3), i.e.

E {u* D; u* is an eigenvector of (u*)}.

With the residue function r(t) on hand, we may apply Lyapunov’s theorem to investigate
the global behavior of u(t) in D.

THEOREM 3.2. Given an arbitrary matrix M in R"", let u( t) be the solution of the
corresponding system (3.3) with initial value Uo D. Then u( t) S"-. Furthermore, for
>= O, the following three mutually exclusive cases are the only possible manners in which

the trajectory of u(t) can behave.
(1) u approaches the singular set F in finite time.
(2) u( t) converges to an eigenvector ofM as goes to infinity.
(3) u( t) has its to-limit set contained in E.
Proof It is clear from (1.4) and (3.3) that u(t) S"-. If the closure of the positive

semiorbit of u(t) is properly contained in D, then u(t) has nonempty to-limit set fl
in D. By Theorem 3.1, fl can contain only points of E.

It is obvious that if either of the first two cases of the above theorem happens,
then the corresponding p(t) approaches an eigenvalue of M. The following two
theorems explain, respectively, how the last case should be interpreted for real sym-
metric and normal matrices.

THEOREM 3.3. Suppose that the matrix M is symmetric and that its spectrum
is simple. Then

(1) The set E consists of all bisections of pairs of eigenvectors of M. In each
2-dimensional subspace spanned by a pair ofeigenvectors, there are onlyfour such points.

(2) If the last case of Theorem 3.2 happens, then p( t) converges to the mean of the
pair ofeigenvalues whose corresponding eigenvectors are bisected by that equilibrium point.

(3) Points in E are unstable. In fact, they are saddles.
Proof It is not difficult to see that the vector field (3.3) is invariant under orthogonal

transformation. So, without loss of generality, we may assume that M is a diagonal
matrix. Obvious can not be defined at any of the standard unit vectors.

If at a point u* E the diagonal matrix (u*) has an eigenvector other than any
of the standard unit vectors, then it must be that (u*) has equal diagonal elements
(eigenvalues) so that an entire 2-dimensional coordinate plane becomes an eigenspace.
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This is possible only if M- p(u*) has equal module but opposite sign eigenvalues. In
other words, p(u*) must be the midpoint of a pair of diagonal elements of M and u*
must be the bisector of the corresponding coordinate axes. There are exactly four such
points in each coordinate plane.

To examine the stability of these equilibrium points, we linearize system (3.3) at
an equilibrium point, say u- (0,. ., 0, 1/x/, 0,. , 0, 1/x/, 0,. , 0). Suppose
M diag (0.1,""" 0.n). Then a tedious but straightforward calculation shows that the
coefficient matrix Of/Ou of the variation equation is given by

(3.6)

"20trt-40.
(r,- r,)2

if (i,j)=(s, t),

120.s + 40.t

(0"t 0.s)

0

if (i, j) (s, s),

if (i,j) (t, t),

if (i,j)=(t, s),

otherwise.

This matrix has eigenvalues 16/(0"-0",)2, -8/(0",-0.,)2 and 4{1/(2m-0.,-m)2-
1/(0.s 0.,)2} for # s or t. Therefore, in the invariant (s, t)-coordinate plane the
equilibrium point u**, is a saddle point. Furthermore, since the unstable eigenvector
[0,. ., 0, 1//, 0,..., 0,-1/x/, 0,. ., 0] r is always tangential to the sphere Sn-l,
u**, is an unstable point on Sn-1.

THEOREM 3.4. Suppose that the matrix M R"" is normal and that its spectrum is

hd: iA2, ha,"" ", An where all hi’s are real, h, A3,"" ", An are distinct and A2#0. Then
(1) Points in E can be classified into three categories denoted as set A, B, and C

respectively, where

A {point which bisects a pair of real eigenvectors of M};
B {u* D; there exists at least one real eigenvalue of M, say hi, such that IAI/ ih-

p u*)l hi P (u*), and p(u*) lies between h and hi};
C {point which is in the intersection of Sn-1 and the 2-dimensional subspace spanned

by the real and the imaginary parts of the eigenvector associated with the eigenvalue
A + iA2}.

(2) The stability properties ofpoints in E are described as follows.
(a) Points in A are isolated and are always unstable.
(b) The set B may be empty. If it is not empty, then points in B are not isolated and are

always unstable.
(c) The circular set C may or may not be stable depending on the position of h +/A2

relative to other real eigenvalues.
Proof. Again, without loss of generality, we may assume that M is of the form

A1, A2, 0

-A2, A1,
M= Ay

0 h,
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Therefore, for any u D the matrix (u) is always a diagonal matrix with diagonal
elements

1/[AI-p(u))E+A], 1/[A1-p(u))2+A22], 1/((A3-p(u))2, ..., 1/(A,,-p(u)).
Apparently, points in C are in D and are eigenveetors of and, hence, are in E. The
fact that points in A are also in E follows from the same arguments as in Theorem
3.3(1). If the system (3.3) has any equilibrium point u* other than those in A or C,
then it must be such that (Al-p(u*))2+AE=(Ai-p(u*))2 for some (but at least one)
i_>- 3. In other words, p(u*)l must be equidistance from A1 + iA2 and Ai. This is a
necessary condition for u* B.

The isolation and stability properties ofpoints in A follow from the same arguments
as in Theorem 3.3(3). To see (2b), we first realize that the matrix M is invariant under
(1, 2)-plane rotations. Therefore, dynamics of (3.3) in the (1,/)-plane determine the
entire dynamics in the (1, 2,/)-space just by plane rotations. Since in the (1,/)-plane
we have

dt- (Al-p(u)):-A-(Ai-p(u)) u,u,,

(3.7)

du___i=[1 1 ]u2u,dt (A,- p(u))2 (,l p(U))2-] ,
with

(3.8) p(u)=AlU+Au=(A1-A)u21+A,,

it is clearthat u* S-l VI (1,/)-plane is an equilibrium point if and only if

(3.9) (A1-p(tl*))2+A22--(Ai-p(tl*))2 and o<P(U*)-Ai<=l.

It is plain to see from (3.8) that (3.9) is possible if and only if

(3.10) IA1- A,I->_ IA=I.
In this case, for any point u D near u*, dUl/dt, ul > 0 if and only if lull > lu,*l. Thus
we have proved (2b) that every point in B is unstable. We have also shown that if
(3.10) holds for all i>-3, then the circular set C is a stable center manifold. Finally,
if IA1 A,} < Ix _l then dul/dr, u < 0 and du,/dr, u, > 0. In this case, the circular set C
is unstable.

Remark. We now explain the analogy between the system (3.3) and the classical
Rayleigh quotient iterations. First, recall that the Rayleigh quotient iterations generates
a sequence of unit vectors {Xk} from a given unit vector Xo as follows:

#z p(x),
(3.11)

z,<+, (M-,,.,,,<)-’ x, x,<+, z,<+,lllz,<+,ll, k=0, 1,. .
If the system (3.3) is defined piecewise in the way that for all k, k + 1 ],

(3.12) (u(t)) In [(M pk)]-1

where Pk =p(u(k)) and u(t) is the solution of the corresponding system (3.3), it can
be shown that

(3.13) u(k+ 1)=(M--Ok)-1. u(k)/ll(M-Ok)-" u(k)ll.
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In other words, the solution u(t) of (3.3), with 5/defined by (3.12), is a "continuous"
generalization of the sequence {Xk} of (3.8), provided Xo u(0). In practice, however,
it is unadvisable to compute the matrix logarithm. So we want to replace (3.12) by a
"similar" but much "easier-to-handle" alternative. Toward the end, we recall that the
major theme in Rayleigh quotient iterations is to speed up the convergence, and that
this theme is carried out by making M--k "nearly singular" so that (M--/Zk)-1 has
a most dominant eigenvalue (see Definition 2.1). Consider now that generally we may
suppose that M is diagonalizable, say

(3.14) M= S. D. S-I,
where D diag {dl, ", dn}. Thus

(3.15)
In [/x -pk)-1] S" In [(D-pg)-l]. S-1

S. diag {ln [(dl--Pk)-l], ,In [(dn--pk)-]} S-1.

Observe that the "qualitative behavior" of the two scalar functions In [(z-c]-] and
(z-c)-2 are very "similar" near the singular point c. (Quantitatively, however, the
latter blows up faster than the former.) So our first thought is to replace In [(M-pk)-]
by (M-pk)-:z. After deliberations upon other concerns, such as the applicability of
the Kantorovich inequality (3.5) and the continuity of (3.2), we finally decide to replace
ln[(M--pk)]- by [(M-p(u(t))) 7". (M-p(u(t)))]-. The feasibility of this substitu-
tion is evidenced by the fact that most of the theorems concerning the dynamics of
the system (3.3) are almost parallel with those of the classical Rayleigh quotient
iterations. Interested readers can refer to [7] and [8] to compare these properties.

4. More remarks.
(1) Suppose, instead of (3.1), one chooses

(4.1) ./R(y) (M- p(y))-1.

Then Theorem 3.1 no longer holds. However, if M is symmetric, then we have the
surprising but nice feature that t9(t) is monotone increasing along any solution flow
u(t) on sn-lo Indeed,

(4.2) dP--2.
dt

This can be seen from

dt -d-’ Mu 2(u-(u, u)u, Mu)

2(u, Mu -(u, Mu)u)= 2(d//u, J//--lu) 2.

What this suggests for symmetric eigenvalue problems is that if one starts randomly
on S"-1 and follows carefully the curve determined by (3.3) with defined by (4.1),
then one is guaranteed that the corresponding p(t) approaches the eigenvalue which
is immediately next to the right of the Rayleigh quotient of the starting value. By a
suitable deflation technique or by restarting, we may find all eigenvalues.

(2) Note that both Theorem 3.1 and Theorem 3.2 are true for general real matrices.
Hence the global convergence of the flow u(t) is always expected. The troublesome
set E always has measure zero in R" except for trivial M. Moreover, unless under very
special circumstances, (e.g. I/l--/i[ 1,21 for all i->3) we have seen that points in E
are often unstable (a proof for a general matrix is needed!). All of these observations
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seem to suggest that if one starts randomly on S"-1, then with probability one the
corresponding p(t) of the solution of the system (3.3) approaches an eigenvalue.

(3) In [1] and [3], we have pointed out that the system (2.1) alone determines
the entire dynamics of the so called Toda lattice

dx
(4.3)

dt
IX, IIoX] X. IIoX -IIoX. X

where X is an n x n square matrix and IIoX X--(X-)T with X- the strictly lower
triangular part of X. It has also been pointed out that the Toda flow is closely related
to the unshifted QR-algorithm. See, for example, [2], [5], and [9]. Unfortunately, it
is not at all clear how (4.3) should be modified to model the shifted QR-algorithm.
While it has been observed but no proofhas yet been given that the shifted QR-algorithm
converges almost always for nonnormal matrices, a proof of (almost) global conver-
gence of Rayleigh quotient iterations is required. We hope that the similarity between
properties ofthe system discussed in this paper and those of Rayleigh quotient iterations
will stimulate further efforts in that direction.

Acknowledgment. The author thanks his colleague, Professor Larry Norris, for
making many helpful comments.
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CONVEXITY IN GRAPHS AND HYPERGRAPHS*
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Abstract. We study several notions of abstract convexity in graphs and hypergraphs. In each case, we
obtain analogues of several classical results, including the Minkowski-Krein-Milman theorem,
Caratheodory’s theorem and Tietze’s convexity theorem. In addition, our results yield new characterizations
of the classes of chordal gaphs, strongly chordal graphs, Ptolemaic graphs and totally balanced hypergraphs.

Key words, convex geometry, geodesic convexity, chordal graphs, totally balanced hypergraphs
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1. Introduction. An alignment on a finite set X is a family of subsets of X (to
be considered convex sets), which is closed under intersection and which contains
both X and the empty set. The pair (X, .) is called an aligned space. The smallest
member of containing a set S X is the hull of S, denoted (S). An element p of
a set Y is an extreme point of Y if Y\{p} . A convex geometry (antimatroid
[19]) on a finite set is an aligned space satisfying the following additional property:

MINKOWSKI-KREIN-MILMAN PROPERTY. Every convex set is the hull ofits extreme

points.
Equivalently, a convex geometry is an aligned space satisfying:
ANTIEXCHANGE PROPERTY. For any convex set K and two distinct points x, y = K,

x (K {y}) implies y : (K U {x}).
The following fundamental result follows immediately from [9, Lemma 3.2], or

[19, Thm. 1].
THEOREM 1.1. If (X, ) is a convex geometry, then K ’ if and only if there is

an ordering Pl, P2,"" ,Pro of X\K such that Pi is an extreme point of
{P,, P,+I, ",Pro}, for i= 1, 2,’’’, m.

Numerous classes of graphs (e.g., forests, chordal graphs and strongly chordal
graphs) can be characterized in the following general way:

G is a member of r if there is an ordering v, /-)2," ", /)n of V(G) such that
satisfies property in the subgraph induced by {v, v+, , v,}.

For example, if property is "has degree 0 or 1", then is the class of forests, and
if property is "is simplicial" then Lr is the class of chordal graphs [7], [27]. Theorem
1.1. suggests that such classes of graphs might be related to convex geometries. Indeed,
if property is maintained by vertices under taking induced subgraphs, and (G) is
the collection of subsets of V(G) obtainable from V(G) by sequentially deleting
vertices satisfying property., then (V(G), (G)) is a convex geometry if and only if
G ’. In such cases, it is natural to ask for internal descriptions of convex sets and
hulls of arbitrary sets. For example, if property is "has degree 0 or 1" and G is a
tree, then a set S

_
V(G) is convex if and only if it induces a connected subgraph.
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On the other hand, given a collection of subsets of V(G), one can ask when
(V(G), &e) is a convex geometry. For example, if is the collection of subsets of
V(G) which induce connected subgraphs, then (V(G), &) is a convex geometry if
and only if G is a connected block graph [20].

In this paper, we investigate several alignments on graphs and hypergraphs. For
each of the alignments that we study, we prove analogues of several classical results,
namely, the Minkowski-Krein-Milman theorem, Caratheodory’s theorem, Tietze’s

convexity theorem, and the local convexity of the space (cf. [23], [30]). In addition,
our results yield new characterizations ofthe classes of chordal graphs, strongly chordal
graphs, Ptolemaic graphs and totally balanced hypergraphs.

The results in this paper are of a structural nature and, with one exception described

below, have no direct applications of which we are aware. Rather, they exploit and

highlight the similarities between several classes of graphs and hypergraphs which
arise in applications by studying them in the framework of convex geometries. For
example, chordal graphs arise in the study of Gaussian elimination with no fill-in [27].
Moreover, they comprise a class of graphs for which simple linear time algorithms
exist for several very difficult combinatorial problems, e.g., clique covering, maximum
clique, chromatic number, independence number [14], and independent domination
number [10]. Strongly chordal graphs are among the very few classes of graphs for
which polynomial algorithms are known for the weighted domination, weighted
independent domination, connected domination, and cardinality Steiner tree problems
[12], [31]. (We note that the results in 3 were used in [31] to establish a simple
polynomial transformation between the connected domination problem and cardinality
Steiner tree problem in chordal graphs and strongly chordal graphs. The existence of
a polynomial algorithm for the connected domination problem in strongly chordal
graphs then followed from the existence of a polynomial algorithm for the cardinality
Steiner tree problem in strongly chordal graphs.) Totally balanced hypergraphs find

applications in facility location problems [24], in the study of "greedy" linear program-
ming [12], [15], and, as an example of so-called acyclic hypergraphs, in the study of
relational database schemes [2].

Some of these results were announced in [21]. Other work related to convex

geometries and convexity in graphs can be found in [8], [9], [17], [18]-[22], [25].

2. Preliminaries. If H (X, ’) is a hypergraph and Y
_
X, then the neighborhood

of Y, denoted N(Y), is the union of Y and all edges that meet Y. If H is a graph,
then N(Y) is the usual closed neighborhood of Y. For every j> 1, NJ(Y)
N(NJ-I(Y)), where, of course, N(Y) N(Y).

The distance between two vertices, u and v, will be denoted d(u, v). If H is

connected, then the eccentricity of a vertex v, denoted e(v), is max {d(u, v): u V}.
The subhypergraph of H induced (generated) by Y will be denoted HI Y]. We

say that Y is connected if HI Y] is connected.
If H is a graph and P is a path or cycle in H, then a chord of P is an edge of H

joining nonconsecutive vertices of P. A chord is odd (respectively even) if it joins
vertices of odd (respectively even) distance from each other in P.

All graphs considered in this paper are assumed to be finite, undirected, simple,
and loopless. We refer the reader to [5] ([3]) for graph (hypergraph) theoretic notation
and terminology not defined here.
The Caratheodory number of an aligned space (X, ) is the minimum integer k

such that, for all Y X, (Y) is the union of the hulls of all subsets A of Y such
that AI-<_ k.
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3. Chordal graphs and the monophonic alignment. A graph is chordal if it contains
no cycle of length greater than 3 as an induced subgraph. A vertex is simplicial if its
neighborhood induces a complete subgraph. The following theorem summarizes several
well-known characterizations of chordal graphs.

THEOREM 3.1 [7], [27]. Let G be a graph. Then the following are equivalent:
(a) G is chordal.
(b) Every minimal cutset of every induced subgraph ofG induces a complete graph.
(c) Every induced subgraph of G has a simplicial vertex.
A set K of vertices of a graph G is monophonically convex [21] (m-convex) if K

contains every vertex on every chordless path between vertices in K. It is not difficult
to see that the family of m-convex sets is closed under intersection. Observe that v is
an extreme point of an m-convex set K if and only if v is simplicial in G[K]. Hence,
the monophonic alignment of a graph G is a convex geometry only if G is chordal.
We will show that this necessary condition is also sufficient.

THEOREM 3.2. In a chordal graph, every nonsimplicial vertex lies on a chordless
path between two simplicial vertices.

We note that this result can be deduced from Dirac’s proof that condition (b) of
Theorem 3.1 implies condition (c). For completeness, we include a simple direct proof
which is a modification of Frank’s proof of the same implication [13]. We note that
this proof does not assume the existence of simplicial vertices.

Proof of Theorem 3.2. We prove this by induction on the number of vertices in
the graph, the base case being trivial.

Let G (V, E) be a chordal graph on n vertices and suppose that the theorem is
valid for every chordal graph on fewer than n vertices. Suppose that v is a nonsimplicial
vertex of G. Then v has two nonadjacent neighbors, say ul and HE. Let C be a minimal
set of vertices of V\{u, /’/2} which meets all U --//2 paths. Clearly v C. For 1, 2,
let W be the vertex set of the component of G-C which contains u, and let
Gi G[ V [_J C]. Then C is a minimal outset of G[ W1 t.J W t_J C], and so G[ C] is a
complete graph, by Theorem 3.1. By the inductive hypothesis, either u is simplicial
in G or u lies on a chordless path between simplicial vertices of G. In either case,
G has a simplicial vertex, say z, in W, for i= 1, 2, since G[ C] is a complete graph.
Observe that z is also simplicial in G. Since C is a minimal outset in G[ W1 [.J W2 t.J C],
there is a chordless z-v path, say P1, in G[ W1 [_J {v}], and a chordless v-z2 path,
say P, in G[W [_J { v}]. Since C is a outset, P1 P2 (the path obtained by concatenating
P1 and P) is a chordless path in G joining simplicial vertices and containing v.

The validity of the theorem follows by induction.
From Theorem 3.2 we obtain an analogue of the Minkowski-Krein-Milman

theorem:
COROLLARY 3.3. If G is chordal, then the monophonic alignment of G is a convex

geometry.
We also obtain a Caratheodory theorem:
COROLLARY 3.4. The Caratheodory number of the monophonic alignment of a

chordal graph is at most 2.
Proof Let G V, E) be a chordal graph, let $ be a subset of V, and let rn-conv (S)

be the monophonic hull of S. Let x rn-conv (S). If x is simplicial in the subgraph
induced by rn-conv (S), then x S, since each extreme point of rn-conv (S) is in S, by
the definition of the hull of S. Otherwise, x lies on a chordless path between two
simplical vertices of the subgraph induced by rn-conv (S), by Theorem 3.2, i.e., x is
in the monophonic hull of two extreme points of rn-conv (S). Thus, x is in the
monophonic hull of two vertices in S.
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COROLLARY 3.5. In a chordal graph G (V, E), a subset K of vertices is m-convex

ifand only if there is an ordering vl, v2, , Vl of V\K such that, for each 1, 2,. , l,
vi is simplicial in G[K [.J {vi, Vi+l,""", vt}].

Proof. This follows immediately from Theorem 1.1, Corollary 3.3, and the relation-
ship between simplicial vertices and extreme points of m-convex sets. [3

A basic fact about convexity in R" is that every ball around every convex set is
convex. For m-convexity in chordal graphs we obtain a somewhat stronger result.

THEOREM 3.6. Suppose G- (V, E) is a chordal graph and K is a connected subset
of V. Then Nj K is m-convex for every j >= 1.

Proof. Notice that N(K) is also connected, and hence it suffices to show that
N(K) is m-convex. Suppose, to the contrary, that N(K) is not m-convex. Then there
is a chordless path P= UoUl...u,, n> 2, whose intersection with N(K) is exactly
{Uo, Un}. Hence {Uo, Un} is a minimal cutset in the chordal graph G[KU
{Uo, u,..., u,}], whence UoU, E, by Theorem 3.1, contradicting the fact that P is
chordless.

COROLLARY 3.7. Suppose G is a connected chordal graph and v is a vertex of G.
Then there is a simplicial vertex u such that d (u, v)= e(v).

Proof. Let j=e(v)-l. Then NJ(v) is m-convex. Hence u exists by Corollary
3.5. [3

We now obtain an analogue of Tietze’s convexity theorem:
TIaEOREM 3.8. Suppose that G (V, E) is a chordal graph and K is a connected

subset of V. Then K is m-convex if and only if N(v) f-I K is m-convex, for all v K.
Proof Necessity follows immediately from Theorem 3.6 and the fact that the

collection of m-convex sets is closed under intersection. Sufficiency follows from the
next proposition.

PROPOSIa’ION 3.9. Suppose K is a connected subset ofvertices ofa graph G V, E ).
Then K is m-convex if N(v) f’l K is m-convex, for all v K.

Proof Suppose K is not m-convex. Then there exists a pair ofnonadjacent vertices,
u and v, in K and a chordless u-v path P= uyly2""y,v such that Yl, Y2,’",Yn

V\K. Let P* uxx2. XkV be a shortext u v path in G[K]. If k 1, then N(x) f) K
is not m-convex. Otherwise, let P’ be a shortest u- x2 path in the subgraph induced
by {u, v, y, Y2, ",Yn, x2, x3, , Xk}. Then P’ contains some vertex in {Yl, Y2, ", Yk},
by the choice of P*. Moreover, P’ is a chordless path in G. Thus, again, N(xl)(q K
is not m-convex.

We note that if the graph G in the above proposition is chordal, then a stronger
conclusion can be drawn. Namely, if K is connected but not m-convex, then there
exists a pair of vertices u, v in K of distance two from each other in G[K], and a
chordless u-v path all of whose interior vertices are in V\K. This follows from the
proof of the above proposition by observing that if G is chordal, then so is the subgraph
H induced by P U P*. Thus NH(Xl) is m-convex in H, and so P’ N(Xl). But
N(x) fq {x3, x4," ", x,} , by the choice of P*.

We also note that, for an arbitrary graph G (V, E) and connected subset K of
vertices, if N(v)fq K is m-convex for all v s K, then K induces a chordal subgraph.
Indeed, if C is an induced cycle of length at least four in G[K], then N(v)f’)K is
not m-convex, for any v s C.

4. Ptolemaic graphs and the geodesic alignment. A graph is Ptolemaic if it is
connected and, for every four vertices u, v, w, y the following inequality holds.

d(u, v)d(w,y)<-d(u, w)d(v,y)+d(v, w)d(u,y).
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A set K of vertices of a graph G is geodesically convex (g-convex) if K contains
every vertex on every shortest path between vertices of K. Clearly, the collection of
g-convex sets in G is closed under intersection. It is easy to see that v is an extreme
point of a g-convex set K if and only if v is simplicial in G[K]. Hence the geodesic
alignment of G is a convex geometry only if G is chordal. The converse is false.
Consider, for example, the chordal graph in Fig. 1, which is called a 3-fan. The vertices
v2 and v3 clearly do not satisfy the required antiexchange property with respect to the
g-convex set {Vo, Vl, v4}. Notice that this graph is not Ptolemaic, since
d(vl, o3)d(v2, o4)> d(v, v2)d(v3, 04)+d(v, o4)d(o2, v3). We will show that the
geodesic alignment of G is a convex geometry if and only if G is a disjoint union of
Ptolemaic graphs.

V, Vz Vs V
FIG.

THEOREM 4.1. Let G (V, E) be a graph. Then the following are equivalent:
(a) G is a disjoint union of Ptolemaic graphs.
(b) G is chordal and every 5-cycle has at least 3 chords.
(c) G is chordal and contains no induced 3-fan.
(d) G is chordal and all chordless paths are shortest paths.
(e) The geodesic alignment of G is a convex geometry.
(f) G is chordal and the monophonic and geodesic alignment of G are identical.
Proof. The equivalence of (a), (c) and (d) is due to Howorka [16], and the

equivalence of (b) and (c) is trivial. We will establish 3 implications, namely, (d)
implies (e), (e) implies (f), and (f) implies (c).

The fact that condition (d) implies condition (e) follows immediately from Corol-
lary 3.3.

Suppose condition (e) holds. Since an extreme point of a g-convex set K is a
simplicial vertex in G[K], G must be chordal, by Theorem 3.1. Moreover, any g-convex
set must be m-convex, by Corollary 3.5. Clearly, any m-convex set is g-convex. Thus
condition (f) holds.

Finally, suppose G is chordal and contains a 3-fan, say U0UlUEU is a chordless
path and vui E for 0, 1, 2, 3. Observe that {Ul, u2} is contained in the monophonic
hull of {Uo, u3}. On the other hand, we claim that neither u nor u2 is in the geodesic
hull of {Uo, u3}. Let A be the set of vertices lying on shortest Uo-u3 paths. Observe
that u, u2:A. Since d(uo, u3)=2, A\{uo, u3} is a minimal cutset in G[A]. Hence,
A\\{Uo, u3} induces a complete subgraph, by Theorem 3.1. It follows that A is g-convex.
Hence, condition (f) implies condition (c). [3
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We note that after this paper was originally submitted for publication, we learned
that the equivalence of conditions (c), (d) and (e) was announced by V. P. Soltan in
[29]. We have included this proof for two reasons. First, [29] does not contain a proof,
and second, our proof is very simple, and highlights the relation between this result
and the material in 3.

5. Totally balanced hypergraphs and the simple path alignment. A path in a hyper-
graph is a sequence xl EIx2E2 xn_En_lX, where the xi’s are pairwise distinct vertices,
the Ei’s are pairwise distinct edges, and xi, Xi+l E, for each 1, 2,..., n-1. A
circuit is defined in the same way as a path, except x xn. We say that vertex x is on
the path (circuit) x1E1x2E2" Xn_lEn_lXn if x {x, X2," Xn. (Thus, some E may
contain vertices which are not on the path or circuit.) The path (circuit) is simple if

Ei fq {x, x2," x,} {xi, xi+} for 1, 2,. n 1.
A hypergraph is totally balanced if it contains no simple circuit of length greater

than 2, i.e., if each partial subhypergraph which is a graph is, in fact, a forest. Observe
that every partial subhypergraph of a totally balanced hypergraph is totally balanced.
A vertex of a hypergraph is a nest vertex (simple vertex 1 ]) if the edges containing it
form a nested family of sets. The following theorem parallels part of Theorem 3.1.

THEOREM 5.1 [1], [6]. A hypergraph H is totally balanced if and only if every
subhypergraph ofH has a nest vertex.

If H =(X, ’) is a totally balanced hypergraph and (H) is the collection of
subsets of X obtainable from X by sequentially deleting nest vertices, then (X, (H))
is a convex geometry, since the property of being a nest vertex is maintained under
taking subhypergraphs. Alan Hottman posed the problem of finding an internal descrip-
tion ofthe convex sets in this convex geometry. In light ofthe similarity in the definitions
of chordal graphs and totally balanced hypergraphs, it is reasonable to expect that the
description of the associated convex sets will also be similar. Indeed, it is only necessary
to replace the word "chordless" by "simple".

In the simple path alignment of a hypergraph H (X, ), a set K of vertices is
s.p. convex if K contains every vertex on every simple path between vertices of K. It
is not difficult to see that the collection of s.p. convex sets in H is closed under
intersection. Further, if K is s.p. convex in H, then x is an extreme point of K if and
only if x is a nest vertex in H[K]. Thus, by Theorem 5.1, the s.p. alignment of H is
a convex geometry only if H is totally balanced. We will show that this necessary
condition is also sufficient.

Remark 5.2. In a totally balanced hypergraph H (X, ), a set K of vertices is
s.p. convex if and only if H’= (X, U {K}) is totally balanced.

LEMMA 5.3. In a totally balanced hypergraph every minimal cutset is s.p. convex.

Proof. Let H (X, ’) be a connected hypergraph. Suppose Z is a minimal cutset
in H which is not s.p. convex. Then there exists a simple path uoEouE un_E,_u,,
n->2, with Uo, u, Z and Hi, u2,’’ ", U,_l Z. Clearly, Ul, u2,"" ", u-i lie together
in some component, H1, of H- Z. Let H2 be another component of H- Z, and let H’
be the partial hypergraph of H generated by those edges which meet H2. Since Z is
a minimal cutset, there is a simple Uo-u, path, say uoFly2F2’’’ykFkUn, in H’, all of
whose interior vertices lie in H2 (possibly k 1). Since Z is a cutset, none of Eo,
El,’" ",E, meets H2 and none of Fo, F1," ",Fk meets H1. Thus,
uoEoUlEl’’" Un-lEn-ltlnFkYk-l’’" F2Y2FltlO is a simple circuit of length n+ k(->-3).
Hence, H is not totally balanced. [q

The following lemma, which we state without proof, is due independently to Berge
[4] and Ryser [28].
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LEMMA 5.4. Suppose H (X, ) is a hypergraph which does not contain a 3-cycle
as a partial subhypergraph. Let K

_
X. If every pair of vertices in K lies in an edge, then

there is some edge containing K.
The main theorem of this section follows.
THEOREM 5.5. In a totally balanced hypergraph every nonnest vertex lies on a simple

path between nest vertices.

Proof. We prove this by induction on the number of vertices, the base case being
trivial. We may, of course, assume that the hypergraph is connected. Thus, let H-
(X, ) be a connected totally balanced hypergraph on n vertices, n > 1, and assume
that the theorem is valid for every totally balanced hypergraph on fewer than n vertices.
If X , then each nest vertex (simple path) in the partial hypergraph (X, \{X}) is
a nest vertex (simple path) in H. Thus, we may assume that X . By Lemma 5.4,
there exist x, y X such that {x, y} is contained in no edge, and hence there is a cutset.
Let Z be a minimal cutset, and let W1 and W2 be the vertex sets of any two components
of H- Z. By Lemma 5.3, Z is s.p. convex. Let Hi- H[ W [_J Z] for i= 1, 2, and let
w W1. If w is a nest vertex of H1, then it is a nest vertex of H, because Z is a cutset.
Otherwise, w lies on a simple path P-uoEoUlEl’’’ Uk-IEk-lUk (say w- Hi) between
nest vertices of HI, by the inductive hypothesis. If Uo, Uk -Z then Uo and Uk are nest
vertices of H. Otherwise, we may assume that Uk Z. Let j min {l: ut Z and > i}.
If Up Z for some p< i, then upEpUp+lEp+l’’’Uj_lEj_lUj is a simple path between
vertices of Z which contains w Hi, contradicting the fact that Z is s.p. convex. Thus,
Uo, u,. , uj_ Z’Z. In particular, Uo is a nest vertex of H. Thus, in any case, there is
a nest vertex of H lying in W1. By symmetry, there is a nest vertex of H, say y, lying
in WE. Let uFoYl ytFty be a simple uj-y path, all of whose interior vertices lie in
WE. (Such a path exists because Z is a minimal cutset.) Then none of the edges
Eo, El," ", E_I meets WE and none of the edges Fo, F1," ", Ft meets W1, because Z
is a cutset. Hence uoEoUEl’’’Us_lE_lUsFoYlF’’’ ytFty is a simple path between
nest vertices of H which contains w.

Since w was an arbitrary vertex of V\Z, it only remains to show that each vertex
of Z lies on a simple path between nest vertices. Let z Z. Let P1 be a simple path
from some nest vertex in W1 to z, all of whose interior vertices are in W1, and let P2
be a simple path from z to some nest vertex in WE, all of whose interior vertices are
in W2. (P1 and P2 exist since Z is a minimal cutset). Then PI" P2 is a simple path
between nest vertices which contains z.

The validity of the theorem follows by induction. F1

We note that in the above proof we did not assume the existence of nest vertices.
This proof has some similarity to the proof of the existence of nest vertices appearing
in [6] (cf. [26]), as well as obvious similarities to the proof of Theorem 3.2.

COROLLARY 5.6. The simple path alignment ofa hypergraph H is a convex geometry

if and only ifH is totally balanced.
Proof We have already observed the necessity ofthis condition. Sufficiency follows

immediately from Theorem 5.5. D
COROLLARY 5.7. The Caratheodory number ofthe simple path alignment ofa totally

balanced hypergraph is at most 2.
The proof of this corollary is similar to that of Corollary 3.4, and is omitted.
COROLLARY 5.8. In a totally balanced hypergraph H (X, ) a set K of vertices

is s.p. convex if and only if there is an ordering Vl, v2,’", Vm of V\K such that, for
1, 2, , m, vi is a nest vertex in the subhypergraph induced by K [.J {v, Vi+l, , Vm}.
THEOREM 5.9. Suppose H-(X, ’) is a totally balanced hypergraph and K is a

connected subset of X. Then N(K) is s.p. convex for every j >-_ 1.
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Proof. Similar to that of Theorem 3.6. Appeal to Lemma 5.3 rather than Theorem
3.1. [3

COROLLARY 5.10. Suppose v is a vertex of a connected totally balanced hypergraph
H. Then H has a nest vertex u such that d(u, v)= e(v).

Proof. Let j=e(v)-1. Then NJ(v) is s.p. convex. Hence u exists by Corollary
5.8.

THEOREM 5.11. Suppose H (X, ) is a totally balanced hypergraph and K is a
connected subset of X. Then K is s.p. convex if and only if N( v) VI K is s.p. convex, for
each v K.

Proof. Necessity follows immediately from Theorem 5.9 and the fact that the
family of s.p. convex sets with closed under intersection. Sufficiency follows from the
next proposition. I-1

PROPOSITION 5.12. Suppose K is a connected set of vertices of a hypergraph H
(V, ). Then K is s.p. convex if N(v)f’lK is s.p. convex for all v K.

Proof. The proof is similar to that of Proposition 3.9, except"
(i) Edges, as well as vertices, must be specified.
(ii) The vertices u and v may lie together in some edge, in which case N(v)f’l K

is not s.p. convex.
As with Proposition 3.9, a stronger conclusion can be drawn ifH is totally balanced.

Namely, if K is connected but not m-convex, then there exist two vertices of K of
distance at most two from each other in K which are joined by a simple path of length
at least two, all of those interior vertices are in V\K. The proof is again similar to the
corresponding proof for chordal graphs.

Unlike the situation for chordal graphs, if H is not totally balanced, then K need
not induce a totally balanced subhypergraph if K is connected and N(v)fq K is s.p.
convex for all v K. For example, let H be the complete graph on three vertices, and
let K consist of all three vertices.

6. Strongly chordal graphs and the strong alignment. A graph is strongly chordal
11 if it is chordal and, in addition, every even cycle oflength at least 6 has an odd chord.

A vertex of a graph is simple if the neighborhoods of its neighbors form a nested
family of sets. Notice that a simple vertex must be simplicial, but not conversely. The
neighborhood hypergraph,
V}). Observe that v is simple in G if and only if it is a nest vertex of V(G). The
following theorem summarizes several characeterizations of strongly chordal graphs.

THEOREM 6.1 [11]. Let G be a graph. Then the following are equivalent:
(a) G is strongly chordal.
(b) Every induced subgraph of G has a simple vertex.
(c) r(G) is totally balanced.
Given a strongly chordal graph G (V, E), the collection of subsets of V obtain-

able from V by sequentially deleting simple vertices defines a convex geometry on V,
since the property of being a simple vertex is maintained under taking induced
subgraphs. In light of the results in the previous sections, one might suspect that this
convex geometry can be defined in terms of closure under certain paths. As we show
below, this is indeed the case. In view of Corollary 5.6 and Theorem 6.1, one might
suspect that this convex geometry is nothing other than the simple path alignment of
V(G). The latter suspicion is incorrect. For example, in the graph depicted in Fig. 2,
{1, 7} can be obtained by deleting 2, 6, 4, 3, and then 5, each of which is simple when
it is deleted, and yet {1, 7} is not s.p. convex in the neighborhood hypergraph.

Let G (V, E) be a graph. We say that a path P UoUlU2" u, is even-chorded
if it has no odd chords and, in addition, neither Uo nor un lies on a chord of P. A set
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FIG. 2

K of vertices is strongly convex (s-convex) if K contains every vertex on every
even-chorded path whose endpoints are in K. It is not difficult to see that the collection
of s-convex sets is an alignment of G, which we call the strong alignment. Since
chordless paths are even-chorded, an extreme point of an s-convex set K must be
simplicial in G[K]. Hence, the strong alignment of G is not a convex geometry unless
G is chordal. In the case that G is chordal, it is not difficult to see that v is an extreme
point of an s-convex set K if and only if v is simple in G[K ]. Thus the strong alignment
of G is a convex geometry only if G is strongly chordal. We will show that this
necessary condition is also sufficient.

LEMMA 6.2. Let P UoUU2 u, be a path in a chordal graph. Then P has an odd
chord ifand only ifP has a pair ofconsecutive chords, i.e., a pair ofchords u,uj and u,uj+l.

Proof If uuj and uiuj/l are chords of P, then one of them is an odd chord.
Suppose P has an odd chord but has no pair of consecutive chords. Choose an

odd chord uu with i<j and j-i as small as possible. Consider the cycle C
uu/l"" uu,. By assumption, uuj_l is not a chord, and hence u lies on some chord
of C. Let UkU be that chord of C which minimizes k. By assumption, k # + 1. Thus,
UUk is also a chord of C. Hence, either UUk or UkUj is an odd chord of P, contradicting
the choice of uuj.

THEOREM 6.3. In a strongly chordal graph, every nonsimple vertex lies on an
even-chorded path between simple vertices.

Proof Let G (V, E) be a strongly chordal graph and suppose that v V is not
simple. Then v is not a nest vertex in (G). Thus, in (G), v lies on a simple path
P voN(Vl)V2N(v3) N(v2n-1)v2n between nest vertices (say v v2,), by Theorems
5.5 and 6.1. Now, Vo and v2, are simple in G. Notice that v, v+ is possible, but
vi vj if i-jl > 1. Also, if we consider the sequence VoVV2"" v2, without repetition,
we obtain a path P*=XoX’’’Xk in G.

We claim that P* has no odd chords. By Lemma 6.2, it suffices to show that P*
has no consecutive chords. Suppose, to the contrary, that xx and xx+ are both chords
of P*. If x V2k for some k, then either xj or xj+ is 1)2/+1 for some { k, k- 1 }. Thus
V2k N(v2+I), contradicting the fact that P is a simple path. A similar contradiction
is obtained under the assumption that x V2k/l, for some k, proving the claim.

If Xo and Xk lie on no chords of P*, then P* is even-chorded, and we are done.
Thus, suppose Xo lies on a chord, say XoXi E. Then x vi, for some i’>=i >- 2. Since
P is a simple path in N(G) and Vo Xo e N(v,), i’ must be even. Since Vo is a simple
vertex and v,,, vl N(vo), we have v,e N(vl). Since P is a simple path and i’ is even,
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we have i’= 2, and so i= 2. In that case, XoX2X3"’Xn is a path containing v D2t
(since we only deleted Vl) which has no odd chords and in which Xo lies on no chord.
By a similar argument, if Xk lies on a chord of P, then that chord is Xk-2Xk. Thus, by
deleting xl and/or Xk-, if necessary, we obtain an even-chorded path between simple
vertices of G which contains v.

COROLLARY 6.4. The strong alignment of a graph G is a convex geometry if and
only if G is strongly chordal.

COROLLARY 6.5. The Caratheodory number of the strong alignment of a strongly
chordal graph G is at most 2.

COROLLARY 6.6. In a strongly chordal graph G (V, E) a set K of vertices is
s-convex if and only if there is an ordering vl, v2," ", v,, of V\K such that, for each
i= 1, 2,..., m, vi is simple in G[K (_J {vi, Vi+l,’", v,,}].

In light of this corollary and the example at the beginning of this section, we find
that a set which is s-convex in the strongly chordal graph G need not be s.p. convex
in c(G). On the other hand, we have the following result.

PROPOSITION 6.7. IfG V, E) is a strongly chordal graph and K
_
V is s.p. convex

in (G), then K is s-convex in G.
Proof Suppose K is s.p. convex in (G). Then, by Theorem 6.1 and Corollary

5.8, there is an ordering vl, v2,’", Vm of V\K such that, for i-- 1, 2,. ., m, v is a
nest vertex in the subhypergraph of (G) induced by K {vi, vi+, , v,,}. It follows
that v is simple in G[K t.J {v, V+l, , v,,}], for each i. Thus K is s-convex in G, by
Corollary 6.6.

THEOREM 6.8. Suppose G (V, E) is strongly chordal and K is a connected subset
of V. Then N (K) is s-convex for all j >-_ 2. Moreover, N(v) is s-convex for all v V.

Proof Observe that N(K) is also connected. Thus, to prove the first claim, it
suffices to show that NE(K) is s-convex. Observe that K induces a connected subhyper-
graph of (G) and that NE(K) is precisely the neighborhood of K in (G). Thus
NE(K) is s.p. convex in (G), by Theorems 5.9 and 6.1. Hence, NE(K) is s-convex
in G, by Proposition 6.7.

Since N(v) is an edge of (G), it is s.p. convex in (G), by Remark 5.2 and
Theorem 6.1. Hence N(v) is s-convex in G, by Proposition 6.7.

We note that N(K) may not be s-convex even if K is s-convex. For example, in
the graph depicted in Fig. 2, N({1, 7}) is not s-convex.

COROLLARY 6.9. Suppose v is a vertex of a connected strongly chordal graph G.
Then G has a simple vertex u such that d(u, v)= e(v).

LEMMA 6.10. Suppose P uoulu2 un is an even-chordedpath in a strongly chordal
graph (3, and uiuj is a chord of P, with <j. Then {u, Hi+z, u+4,’’ ", u} induces a
complete graph and {U+l, Hi+a,""", U-l} is independent.

Proof We prove this by induction on j- i, the case j- 2 being trivial. Suppose
that the lemma holds for j’-i’<k and that j-i=k. Consider the cycle C--

uu+l...uu. Since P is even-chorded, uu_l is not a chord of C, and hence uj lies
on some chord of C. Let uu be that chord of C which minimizes I. Then l- i+ 2, for
otherwise uiu+l...uuu is an even cycle of length at least 6 with no odd chords,
contradicting the fact that G is strongly chordal. By symmetry, uu_2 is also a chord.
Bythe inductive hypothesis, {u, u+2, , u_2} and {Hi+E, u+4, , uj} induce complete
graphs and {ui+, u+3, , u_3} and {u+3, u+5, , U_l} are independent. Since uiuj
E(G), it only remains to show that u+U_lC_E(G). If U+lUj_lE(G), then either

uu+lU_uui is an induced 4-cycle of G, or P has an odd chord, contradicting the
hypothesis.

The validity of the lemma follows by induction.
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THEOREM 6.11. Suppose G (V, E) is strongly chordal and K is a connected subset
of V. Then K is s-convex if and only if N2(v) f-) K is s-convex, for all v E K.

Proof. Necessity follows immediately from Theorem 6.8 and the fact that the
family of s-convex sets is closed under intersection.

Suppose K is not s-convex. If K is not m-convex, then it contains a vertex v such
that N(v)tq K is not m-convex, by Theorem 3.8. Since N(v) is m-convex, and the
family of m-convex sets is closed under intersection it follows that NE(v)["1 K is not
m-convex. Hence, NE(v)("I K is not s-convex. Thus, suppose K is m-convex. Let
P uoul’’’u, be a shortest even-chorded path between vertices of K which meets
V\K. We will show that Ul E K and ulu,-l E, and hence that NE(ul)I")K is not
s-convex.

Observe that u lies on a chordless path between Uo and u,. Hence, u K since
K is m-convex. Letj =max {i: ului E}. Ifj n- 1 we are done. So, supposej < n- 1.
By the choice of P, the even-chorded path ulujuj+.., u, does not meet V\K. Thus,
j > 2, since P meets V\K. Let min{ i: uiu.i/ E}. Then, 2 <- <-j. Again, by the choice
of P, the even-chorded path UoU’"UlU.+ does not meet V\K. In particular, u2 E K.
Consequently, u2 lies on some chord of P, for otherwise u.u3"" u,, would contradict
the choice of P. Thus, u:zu4 E, by Lemma 6.10. On the other hand, {u2, u4, u6," , Uj_l}
is independent, again by Lemma 6.10, since UlU E. Hence j 3, whence P does not
meet V\K, contradicting the choice of P. [q

We note that, by Theorem 6.8, if G (V, E) is strongly chordal and K V is
s-convex then K fq N(v) is s-convex for each v K. However, the converse is false.
The set {1, 2, 3, 5, 6, 7} in the graph in Fig. 2 is a counterexample.

We also note that, as with Theorems 3.8 and 5.11, the sufficiency of Theorem 6.11
holds for all graphs. However, in this case, while the "form" of Teitze’s theorem is
true, the "substance" is not. To be precise, it is possible for a graph to contain a
connected set of vertices K which is not s-convex, but which has the property that
the hull of N2(v)(q K lies entirely in K, for all v K. (In the language of Valentine
[30], a connected, strongly locally convex set is convex, but a connected, weakly locally
convex set need not be convex.) For example, consider the graph (3 in Fig. 3. Let K
consist of all vertices except v8. It is straightforward to verify that the only even chorded
path between vertices of K containing v8 is VlV2V3VaV5 V15. Since d(Vl, V15 --5 and
v and v5 have degree 1, we deduce that the hull of N2(v) K is contained in K for
all v E K. On the other hand, N2(Vl) f’) K is not s-convex, since, e.g., V3V5V6 is a chordless
path between vertices of N2(vl)fq K which is not contained in N2(v)f3 K.

/ COMPLETE -! \

Vl \ V V5 V7 V9 Vli Vl]5 / V15

/
COMPLETE

FIG. 3
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Hoitman, who suggested the problem of finding an internal description of the convex
sets of a totally balanced hypergraph.
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RELATIONSHIPS BETWEEN METRICS ON RANKINGS:
THE CASE OF TIES*

WADE D. COOKer AND MOSHE KRESSt

Abstract. This paper provides a direct extension to the space ofweak orderings of previous work [SIAM
J. Appl. Math., 44 (1984), pp. 209-220] on linear rankings. We extend the model of Blin to this larger space
and show how to develop position and object based consensus measures which are equivalent to the Cook
and Seiford [Management Sci., 24 (1978), pp. 1721-1732] and Kemeny and Snell [in Mathematics Models
in the Social Sciences, Ginn, New York, 1962, pp. 9-23] models respectively. One result of this development
is a characterization of the KS model as an integer quadratic programming problem.

Key words, rankings, consensus, preferences, distance measures

1. Introduction. In a recent paper [6] it was shown that for the restricted case of
linear orderings, the ranking model of Blin [3] can be used as a core from which to
generate representations which will allow for degree of disagreement between voter
preferences. It was demonstrated that if the Blin model is modified to take into
consideration the number of pairs of preferences where voters disagree, the vector
model of Cook and Seiford [7] (CS) results. Consideration of pairs of objects where
disagreement is present leads to the representation of Kemeny and Snell [10] (KS).
The latter is shown to be a quadratic assignment problem.

In reference to the above it must be pointed out that many different types of
ranking problems have been examined in the literature, some of which take the form
of quadratic assignment models. Blin and Whinston [4], for example, have shown that
the simple majority rule consensus can be derived by solving such a model. Huber
and Schultz [9] demonstrate that the maximum likelihood paired-comparison ranking
of a set of objects can be determined through the use of such a quadratic model.
Similar problems have been looked at by Slater 11], de Cani [8] and others. Barthelemy
and Monjardet [2] survey a wide range of consensus ranking literature and discuss
mathematical programming model aspects. This literature, however, relates to the
probems discussed in [6] and herein only in the sense that both examine ranking (and
consensus to some extent). The problems which we deal with herein, in particular that
involving the representation of ties in the KS framework through the use of quadratic
programming models, have not (to the best of the authors’ knowledge) been discussed
elsewhere.

In the present paper the results of [6] are extended to the space of weak orderings
(linear and tied preferences). Specifically, we show that by beginning with a generalized
version of the Blin model, the Cook and Seiford vector model and the Kemeny and
Snell matrix model can be derived as natural extensions of that model. Section 2
presents the generalization of the Blin Model to the space of weak orderings. Sections
3 and 4 develop position and object based measures of voter disagreement which are
shown to be equivalent to the CS and KS models respectively.

2. A binary preference representation for weak orderings. In [6] it was shown that
the simple binary model of Blin [3 can act as a basis or core for other more sophisticated
representations ofvoter preference. Blin represents preferences via a binary permutation

* Received by the editors March 30, 1984, and in revised form September 1, 1985. This research was
supported in part by the Natural Sciences and Engineering Research Council of Canada under grant A8966.

" Faculty of Administrative Studies, York University, Toronto, Ontario, Canada M3J 2R6.
CEMA, P.O. Box 2250, Haifa, Israel.
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matrix a (aij) where aij 1 if object has rank j, and is 0 otherwise. He then defines
a distance measure on the space of all linear orderings by do(A, B)=ij laij-/30[,
where a and/3 are the matrix representations of orderings A and B. By introducing
two different measures of degree of disagreement into the Blin structure (position-based
and object-based disagreement) we arrive at the Cook and Seiford distance [7] and
the Kemeny and Snell distance [10] respectively.

In order to extend the results of [6] to the larger space of weak orderings, it is
necessary to modify the Blin structure. In the case where A is a weak ordering we
define a by

1 if object has rank j, 1, 2, , n, j 1, 1.5, 2, 2.5,
0 otherwise.

The rationale for using the values j-- 1, 1.5,. as rank positions has been discussed
elsewhere (see e.g. [7]). For example, the a-matrix for the ranking in which object b
is ranked in first place and a and c are tied in second place (i.e. A (a,bc)) is

a

Rank

1 1.5 2 2.5 3

0 0 0 1 0
1 0 0 0 0
0 0 0 1 0

For two rankings A, B (with matrix representations a and /3), we define the
extended Blin distance

(2.2) dB(A, B)
2,

i=1 j=2

For a set of weak orderings {AI}"=I, the consensus problem (following along in the
same line as in Blin [3]) is to find a ranking X (xi) which minimizes

i,j/2 Xi,j/2]"
/=1 i=1 j=2

Defining @: =/= (1-a), it is seen that this problem is equivalent to the minimal
disagreement problem

(2.3) Minimize ,/2x,,/2
X=(xo) i= j=a

2n

(2.4) subject to E x,/= 1, i= 1, 2,..., n,
j=2

(2.) E x,./ D/, j , 3,. ., 2n
i=1

(2.6) x,/a {0, 1},

where the (2n- 1)-dimensional vector of D/a must constitute a valid ranking.
Armstrong et al. 1] have shown that if one defines

j-1

(2.7)
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where

1 if ranks r ands are combined to yield a tie at position (r+ s)/2,
otherwise,

2nthen {Dj/2}j=2 will constitute a ranking for any {Zrs} satisfying the conditions

(2.8) Zj_s,s-Zj_s_l,s+l--O,

(2.9) Zs-Z=O,

(2.10)
r=l s=l

(2.11) Zr 6 {0, 1}.

The extended Blin consensus problem is, therefore, a 0-1 integer programming
problem (2.3)-(2.11).

In the following sections we begin with this binary disagreement model, and show
how to construct position and object based models which account for degree of
disagreement. This development (1) serves to provide a direct extension of previous
results in [6] to the larger space of weak orderings, and (2) provides a mechanism for
deriving a mathematical programming formulation of the KS model.

3. Position based distance. Following the terminology of [6], define the forward
indicator vectors

l if object k is ranked lower (worse) than rankj/2,

(3.1) (P+(j/2))k j= 2, 3,’’’, 2n,

0 otherwise,

and backward indicator vectors

1 if object k is ranked higher (better) than rankj/2,

(3.2) (P-(j/2))k j 2, 3,’’’, 2n,

0 otherwise,

Property 3.1.

2n 2j-1

P+(j/2)= Y’. Ol.,t/2, P-(j/2)= Ol.,t/2.
=2j+l t=2

Property 3.2 (orthogonality).

(P+(j/2), P-(j/2)) 0.

In [6] the position-based distance between two linear rankings A, B was defined
to be

dp(A, B)= n(n- 1)- [(PI(j), P(j))+(P,(j), P(j))]
j=l

which is the number of situations in which for a rank position j and object k, that the
object does not lie on the same side (above or below) of j in both A and B. It was
shown that the maximum agreement between A and B when they are identical, is
equal to n (n 1).
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THEOREM 3.1. IfA and B are identical

2n 2n., (P+A(j/2), P(j/2))= E (P,(j/2), P(j/2))= n(n- 1).

Proof. See Appendix.
It is noted that the maximum achievable agreement is twice what it is for the case

of the space of strict linear orderings.
DEFINITION 3.1. The position based distance dp(A, B) in the space of weak

orderings is given by
2n

dp(A, B)= 2n(n- 1)- [(P+A(j/2), P(j/2))+(P,(j/2), P(j/2))].
j=2

The proof of the following theorem is similar to that given in [6] for strict linear
orderings, and is, therefore, omitted.

THEOREM 3.2. The position based distance between any two weak orderings A and
B is twice the CS distance, i.e.,

dp(A,B)=2dcs(A,B).

Consensus formation.
DEFINITION 3.2. The consensus ranking X for the position based distance is that

ranking (extended Blin matrix (xo)) which minimizes

I 2n ]2 dp(At, X)=t21 2n(n-1)- 2 [(P-f(J/2),X+(j/2))+(P-f(J/2),X-(j/2))]
!=1 j=2

This problem, and hence the CS consensus problem, is equivalent to the 0-1 linear
integer programming model

Maximize i,t/2 Xi,t/2 -F Ol i,t/2
, Xi, t/2

I=1 i=1 2 t=j+l t=j+l

subject to constraints (2.4)-(2.11).

Hence, we have shown that building on an extended version of Blin’s model for
weak orderings and accounting for agreement as to pairs of ranks, one can derive a
consensus model equivalent to that of Cook and Seiford [7].

We now examine object based agreement.

4. Object based distance. One of the principal results established in [6] was the
characterization of the KS consensus model as a quadratic assignment problem. As
indicated in the introduction, a number of other ranking or consensus models (e.g.
the majority rule consensus and the maximum likelihood paired-comparison ranking)
can also be viewed in terms of such quadratic models. In order to derive the appropriate
model in the space of weak orderings it is necessary to deal properly with tied
preferences. Let us define

1 if object is preferred to object k,
Q(i)

0 otherwise,

if object k is preferred to object i,

otherwise,

if objects and k are tied,
otherwise.
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Letting ji be the rank of (i.e. ai,j, 1), we have
Property 4.1.

2n 2ji-1
Q+( i) E a.,,/2, Q-( i) E a.,,/2, QO( il a.,j,.

t=2ji+ t=2

In order to proceed from the Blin model to that of Kemeny and Snell, we define
object based distance as follows:

DEFINITION 4.1. The object based distance do(A B) in the space ofweak orderings
is given by

do(A B)= n(n- 1)- [(Q(i), Q(i))+(Q(i), Q(i))+1/2(QA(i), Q(i))].
i=1

The proof of the following theorem is similar to that given in [6] for linear
orderings, and is therefore omitted.

THEOREM 4.1. In the space of weak orderings do(A B)= dKs(A, B), where dKs is
the Kemeny-Snell distance.

From this theorem it is clear why it is necessary to use a multiplier of 1/2 in the do
term corresponding to ties in A and B.

Consensus formation.
DEFINITION 4.2. The consensus ranking X for the object based distance is that

ranking which minimizes

d(At, X)=,,I n(n-1)- [(Q+A,(i),X+(i))+(Q,,(i),X-(i))+1/2(QA,(i),X)]
/=1 i=1

This problem, and hence the KS problem, can be written in the form (from
Property 4.1)

Maximize 2 x,,s/2(a i.k(l) Xk,,12
1=1 i=1 k=l lj=2 t=j+l

+ tC,,k(l) Xk,tl2+ ak.S,l)12 Xk,s,)12
t=2

subject to constraints (2.4)-(2.11) where j =j(l) is such that a i,j/2 1,

2n ji(/)_l
+

Ot k( l) E oilk,,/2 and a,k(l)= Ck,t/2.
t=ji(l)+l /=2

This integer quadratic programming problem is a generalized version of the
quadratic assignment problem of [6] for linear orderings. The constraint set has been
modified (expanded) to permit more than a single object to be ranked at a given
position, and there is a linear term in the objective function to account for tied
preferences.

5. Summary and conclusions. This paper has directly extended the results of
previous work [6] to the space of all weak orderings, and has provided a framework
for comparing three well-known consensus methods in that space. The development
herein has also provided a vehicle for characterizing the mathematical programming
structure of the KS consensus model.
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Appendix.
Proofof Theorem 3.1. Let A, and B, be weak orderings with n objects. If A, B,,

then

2n 2n

E (P.(j/2),P.(j/2))= E IIPXo(J/2)II.
j=2 j=2

We proceed by induction. For n 1, the result is trivial. For n 2,
2n

Y IIP+A.(j/2)II=-O+O+2 n(n-1)

if the two objects are tied, and equals 0+ 1 + 1 n(n-1) if the ordering is linear.
Assume the result is true for n objects and consider the case for n + 1. Let r be number
of objects ranked first at position (r+ 1)/2 (note" if r= 1, there is a unique object in
first place.) Then

2n+2 2r+l 2n+2
p+ p+ +E A.+,(J/2)I{= a.+,(J/2)l[+ IlPao+,(j/2)ll/ Y P+

j=2 j=2 j=r+l j=2r+2

2n

--(r-1)(n+l)+(r+l)(n-r+l)+ P+Ao/’(j/2)II.
j=2r+2

The last term above corresponds to the ranking A,,+I after the first ranked r objects
are omitted. Hence, this is a ranking of n + 1-r objects. Since the Blin representation
is invariant in the labelling of the columns, it follows that

2n+2 2n-2r

A.+,(J/2)II-- 2 [IPx ,(j/2)ll
j=2r+2 j=2

where An-r+I is the n- r + 1 object ranking obtained from A,+ after deleting the first
r objects.

According to the induction assumption we get

2n+2

E IIPX.+,(j/2)II (n- r+ 1)(n r).
=2r+2

Hence,
2n+2, IlP,.+,(j/2)[[=(r-1)(n+l)+(r+l)(n-r+l)+(n-r+l)(n-r)
j=2

n(n-1). Q.E.D.

REFERENCES

1] RONALD D. ARMSTRONG, WADE D. COOK AND LAWRENCE M. SEIFORD, Priority ranking and
consensus formation: the case of ties, Management Sci., 28, 6 (1982), pp. 638-648.

[2] J. P. BARTHELEMY AND B. MONJARDET, The median procedure in cluster analysis and social choice
theory, Mathematical Social Sciences, (1981), pp. 235-267.

[3] J. M. BLIN, A linear assignment formulation of the multiattribute decision problem, Revue Franqaise
d’Automatique, Informatique et Recherche Operationnelle, 10 (1976), pp. 21-32.

[4] J. M. BLIN AND A. B. WHINSTON, A note on majority rule under transitivity constraints, Management
Sci., 20 (1974), pp. 1439-1440.

[5] ., Discriminant functions and majority voting, Management Sci., 21 (1975), pp. 557-566.
[6] WADE D. COOK AND MOSHE KRESS, Relationships between 11 metrics on linear ranking spaces, SIAM

J. Appl. Math., 44 (1984), pp. 209-220.



RELATIONSHIPS BETWEEN METRICS ON RANKINGS 451

[7] WADE D. COOK AND LAWRENCE M. SEIFORD, Priority ranking and consensusformation, Management
Sci., 24 (1978), pp. 1721-1732.

[8] J. S. DE CANI, Maximum likelihood paired comparison ranking by linear programming, Biometrika, 56
(1969), pp. 537-545.

[9] L. HUBER AND J. SCHULTZ, Maximum likelihood paired-comparison ranking and quadratic assignment,
Biometrika, 62 (1975), pp. 655-659.

10] J. G. KEMENY AND L. J. SNELL, Preference ranking: an axiomatic approach, in Mathematical Models
in the Social Sciences, Ginn, New York, 1962, pp. 9-23.

11] P. SLATER, Inconsistencies in a schedule ofpaired comparisons, Biometrika, 48 (1961), pp. 303-312.



SIAM J. ALG. DISC. METH.
Vol. 7, No. 3, July 1986

(C) 1986 Society for Industrial and Applied Mathematics
014

A SHORT PROOF OF THE RECTILINEAR ART GALLERY THEOREM*

ERVIN GYORI

Abstract. A short proof is given for the theorem that in a rectilinear, simply connected art gallery, n/4]
watchmen are sufficient, where n is the number of the corners, in order for at least one to have a view of
each internal point.

Key words, polyominoes, cutting polygons
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In this note, we give a simple proof of the theorem of Kahn, Klawe and Kleitman
[1] (proved subsequently also by O’Rourke [2]) that in a rectilinear, simply connected
art gallery, n/4] watchmen are sufficient, where n is the number of the vertices of the
boundary polygon, for at least one to be in sight of each interior point. In geometrical
formulation, we consider rectilinear polygons in the plane, i.e., polygons, the sides of
which are parallel to the orthogonal axes. The angles of a rectilinear polygon are all
of 90 or 270 degrees. The corresponding vertices are called convex and concave
respectively. We will prove

THEOREM 1 [1], [2]. If P is a rectilinear polygon of n vertices then there exists a
set S of [n/4] points in the interior ofP such that all the interior ofP can be seen from
S, i.e., any point of P can be connected to an element of S by a line segment that does
not intersect the boundary of P.

Actually, we will prove the stronger
THEOREM 2. IfP is a rectilinear polygon of n vertices then P can be partitioned into

at most [n/4] rectilinear polygons of 4 or 6 vertices.
This theorem implies Theorem 1 since Theorem 1 obviously holds for rectilinear

polygons of 4 or 6 vertices. Note that the form of polygons of 4 or 6 vertices is unique,
being rectangular or in the shape of a capital L, respectively.

Proof of Theorem 2. We prove the theorem by induction on n. We have nothing
to prove if n 4 or n 6. Notice that the sides of a rectilinear polygon are alternatively
horizontal and vertical so that the number of the sides and the number n of the vertices
are even. Let n be at least 8.

PROPOSITION 1. We may assume that there are no two vertices of P that can be
connected by a horizontal or vertical segment without crossing the boundary of P.

Proof of Proposition 1. If we can connect two vertices of P by a horizontal or
vertical segment in the interior of P, then cutting P along this segment, we obtain
polygons P and P2 of/11 and /12 vertices, respectively, such that n +/I2 --/1 and we
are done by the induction hypothesis.

If n 4k for some integer k, then we take a concave vertex V of the polygon P
and cut P horizontally, say through to the boundary of P. We will then obtain polygons
P1 and P2 of n and n2 vertices, respectively, such that n -F n2 t/+ 2 and are done by
the induction hypothesis because/1i,/12 </1, and

* Received by the editors November 28, 1984, and in revised form September 1, 1985.

" Mathematical Institute of the Hungarian Academy of Sciences, Budapest, Hungary.
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Thus, we are reduced to the case in which n =4k+ 2 for some integer k. The
polygon P has 2k + 3 convex and 2k-1 concave vertices since the sum of its interior
angles is 4kr. Thus, there exists two neighbouring convex vertices in P which we call
X and Y. If we move the side XY orthogonally through the interior of P as far as
P’s boundary, let X1 and Y1 denote the images of X and Y, respectively, under the
translation. First, suppose that upon our cutting the rectangle XYYX out of P, we
obtain two polygons. Using Proposition 1, we can easily see that we need only concern
ourselves with the case in which there are one or two polygons, and if two, then X1 Y1
intersects only one side UV of P. There are possible relations between this side UV
and the segment X1 Y1 as illustrated in Fig. 1.

X

X

Y X Y

Y X Y

X

U-
X

Y

k7 -- Y1

Case i. Case ii. Case iii.

FIG.

Case i. X Y contains UV.
Case ii. UV contains X1 Y.
Case iii. X Y and UV are overlapping, e.g. V int X Y1, X int UV.

In each case, we may cut P along the thick segment a or b in Fig. 1. One or the
other of these cuts yields polygons P and P2 of n and n2 vertices, respectively, with

nl 4k + 2, n2 4k2 + 2, k + k2 k and we are done by the induction hypothesis.
If omission ofthe rectangle XYYX leaves only one polygon, then we may assume

that XX is a side of P and X U. We distinguish two cases as illustrated in Fig. 2.
Case 1. XI Y contains the side X1V and YY contains the side YZ of P.

X X Y X Y

XI U X U X U

Y

Case

Z

Y V

Case 2al Case 2a2

X Y

Xt= U
Case 2a3

X Y

V X U Y
Case 2a4

FIG. 2

V X=U

X Y

Case 2b
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Case 2. E.g. X Y1 is contained in X V and YY1 contains the side YZ of P.
(V Y1 by Proposition 1.)

In Case 1, we cut P along the segments a and b obtaining polygons P1 and P2 of
6 and 4k- 2 vertices, respectively, in Fig. 2, and are done by the induction hypothesis.

In Case 2, we cut off an L shaped piece by cutting vertically on segment a through
the first vertex. We encounter to the right of ZY, in Fig. 2, and are done by the induction
hypothesis unless this cut slices P into three or more pieces. If it does so (Case 2b)
one of the two possible horizontal cuts through the two interior vertices that we
encountered will cut P into polygons P and P2 of 4k1+2 and 4k2+2 vertices,
respectively such that k + k2 k and we are done by the induction hypothesis.

Acknowledgment. The author is very grateful to Jeff Kahn for suggesting the
problem and for fruitful discussions, and to the referee for editorial help.
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A VARIABLE-COMPLEXITY NORM MAXIMIZATION PROBLEM*

O. L. MANGASARIAN" AND T.-H. SHIAU*

Abstract. The decision problem associated with the problem of finding a point with largest norm in a
bounded polyhedral set is shown to have a considerable range of complexity depending on the norm

employed. For a p-norm with integer p => 1, the problem is shown to be NP-complete. For the -norm, the
problem can be solved in polynomial time. The problem of finding an upper bound to the largest norm for
any pc[l, ] can be solved in polynomial time by solving a single linear program.

Key words, optimization, maximum norm, complex theory, NP-complete
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1. Introduction. The problem of obtaining bounds for polyhedral sets has received
considerable attention in mathematical programming [14], [15], [16], [12], [8], [9].
Part of the significance of this problem stems from the fact that the solution set to a
linear program [4], [10] and to a monotone linear complementarity problem [2] is
such a polyhedral set. Bounding the solution set to such problems when possible is
then of practical interest. In this work we shall consider the polyhedral set X in R
defined by

(1.1) X := {x]x R", Ax >= b}
where A is a given rn n rational matrix and b is a given rn 1 rational vector. We
assume throughout this work that X is bounded. It is easy to show that a necessary
and sufficient condition for X to be bounded is that

(1.2) Y= {yly R", ay>-_O, y # 0} .
The problem we wish to consider here is

(1.3) max x II,
xX

where I1" II, denotes the p-norm on R", 1-< p integer <, defined by

Ilxll,- Ix, I" and Ilxll- max Ix, I,
i=1 l<=i<-n

We will show that while (1.3) can be solved in polynomial time for p , the
decision problem associated with it is NP-complete [6], [11] for integer p -> 1. Since it
is widely believed that no NP-complete problem can be solved in polynomial time
(the famous conjecture P NP in computational complexity theory), the difference in
the difficulty between p and all other integer p-> 1 is enormous. (The standard
complexity theory terms used here are defined in 4.) In fact we can summarize the
complexity situation for our problem (1.3) as shown in Table 1.
We note in passing that the minimization problem minxx Ilxllp is by contrast a much

simpler convex programming problem for p 1, o]. In fact for p 1 and o it can be
solved by standard linear programming techniques [4], [10] or by a polynomial time

* Received by the editors December 26, 1984, and in revised form September 1, 1985. This work was
sponsored by the U.S. Army under contract DAAG29-80-C-0041. This material is based upon work supported
by the National Science Foundation under grants MCS-8200632 and DMS-8210950, Mod. 1.

t Computer Sciences Department, University of Wisconsin, Madison, Wisconsin 53706.
t Department of Computer Science, University of Missouri-Columbia, Columbia, Missouri 65211.
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algorithm e.g. [7]. For p 2 the problem is a convex quadratic program which can be
solved by standard techniques e.g. [2] or by a polynomial time algorithm [3].

In the following sections of this paper we will show how each of the problems of
Table 1 is solved and its complexity. Section 2 deals with finding an upper bound to
(1.3) for p 1, co]. Section 3 deals with problem (1.3) for p 1 and co while 4 deals
with the cases of integer p->_ 1.

TABLE
Complexity of maXxx Ilxll d method of solution.

Problem Complexity Known method of solution

1. Find an upper bound to max,,x
for any poll,

4. max,x Ilxll Integer p >= 2

P Single linear program
(Deterministic
polynomial time)

P 2n linear programs
NP-complete 2" linear programs

(Nondeterministic
polynomial time)

NP-complete Vertex enumeration

2. Bounding max,,x Ilxll. It is useful to know that for any pc [1, co], p not
necessarily an integer, an upper bound to the solution of the nonconvex problem
maxxx Ilxll, can be obtained by solving a single linear program (Theorem 2.1 below).
This is a useful result since we show ( 4) that the problems maxxx [IX[[p for integer
p _>-1 are intractable NP-complete problems. When X is contained in the nonnegative
orthant R := {xlx R", x->0} it is evident that a solution to the 1-norm problem
max,x Ilxll is easily obtained by the single linear program

(2.1) max ex
X f’l R_

where e is a vector of ones. However when x R, as may be the case here, solution
of maxxx IlXlll may take 2" linear programs, as shown in 3. In fact we will show in
{} 4 that the problem maxxx IlxUl is NP-complete. However, merely obtaining an upper
bound to max,,x ]]xll p for any p [1, co] will take at most a single linear program as
shown by the following result.

THEOREM 2.1. Let X be nonempty and bounded, let

(2.2) B := (ATA)-IAT, d := Bb

and let B.j denote the jth column of B. Then for any p 1, co] and any x X

(2.3) Ilxllg max {lldllg, IIn.+ dllg}
_--<j=<

where y is the maximum value of the following solvable linear program

(2.4) ),:=max {eylx e R", y e R’, Ax-y= b, y_>-0}.

Proofi Note first that the boundedness condition (1.2) implies the linear indepen-
dence of the columns of A and hence the nonsingularity of ArA. In addition the
nonemptiness and boundedness of X implies the solvability of the linear program
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(2.3). Hence

max x max {11 x p Ix R n, y R’, Ax y b, y >- 0}
X x,y

=max {llxlllx= By+d, (AB-I)(y+b)=O, y>=O, ey<= y}

-< max {llxll Ix By + d, y >- O, ey <= y}

max {llBy + dll lY e 0, ey I
Y

max {lldll, IlyB.+

where the last equality follows from the fact that the maximum of a convex function
on a bounded polyhedral set is attained at a vertex [13, Cor. 32.3.4]. D
Note that if a lower bound to maxxx Ilxllp is also desired, then we have the following.
COROLLARY 2.2. Under the assumptions of Theorem 2.1 we have that

By + d I1 --< max x I1,

where fi is a solution of the linear program (2.4).
Since by Khachian’s result [7] a linear program is solvable in polynomial time in

the size of the problem, and since the algebraic operations prescribed in (2.3) can all
be performed in polynomial time, the following holds.

COROLLARY 2.3. The bound (2.3) can be computed in time which is polynomial in
the size ofA and b.

We note that the bound (2.3) of Theorem 2.1 may be sharp as evidenced by the
following example.

Example 2.4.

A= 5 b -10

1 -2]

For this example it is easy to verify that

max Ilxll 10 for p 1, 2 and eo, y 42,
xX

1.0909_
.0519 .0649 -.2208]’ -.7273]"

Computing the bound (2.3) of Theorem 2.1 gives for p 1, 2 and oe

max {lldll, yB. + dllt 10.
l_<--j--<_3

3. maxxx Ilxll for p oo and 1. It is rather obvious that the problem maxxx
can be solved by maximizing the absolute value of each component of x separately
subject to x in X. This leads to the following.

PROPOSIXION 3.1. The problem maxxx Ilxllo can be solved by solving the 2n linear
programs

(3.1) max max {+xi[x R", Ax >= b}.
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Since each linear program can be solved in polynomial time [7] we have the
following.

COROLLARY 3.2. The problem maxxx Ilxlloo can be solved in time which is poly-
nomial in the size ofA and b.

Since the problem maxxx IlXlll is equivalent to maxx i=1 Ix, I, its solution can
be obtained by solving 2" linear programs as follows.

PROPOSITION 3.3. The problem maxx Ilxll can be solved by solving the 2" linear
programs

(3.2) max max { vx x c R", Ax >- b}
vV

where V is the set of 2" vertices of the cube in R" defined by

(3.3) {v]vcR",-e<=v<=e},
where e is a vector of ones.

While 2n linear programs can be solved in a reasonable amount of time for
intermediate-sized problems, solving 2" linear programs is intractable even for n as
small as 15. It is even worse for general p c (1, o) if we try to enumerate the vertices
of X for finding the maximal p-norm, for the number of vertices can be as much as
(,’) which, by Stirling’s formula, is bounded below by an exponential in n for m->
(.1 + e)n for any constant positive e. One may try to find other algorithms that are
computationally effective. Unfortunately, as shown in the next section, problem (1.3)
with p s c is no easier than the partition problem (see (4.1) below) which is inherently
intractable.

4. The intractibility of the norm maximization problem for p . We begin this
section with some basic concepts of complexity theory [6], [11]. Problem A reduces
(in polynomial time) to problem B, denoted by A oc B, iff the following holds: If there
is a polynomial time algorithm for B, then one can construct a polynomial time
algorithm for A using the algorithm for B as a subroutine. Problems A and B are
polynomially equivalent iff A oc B and B oc A. An NP-complete problem is one which is
polynomially equivalent to any one of the standard intractable problems such as the
satisfiability, partition, or travelling salesman problems [6], [11]. These problems are
considered intractable because any known algorithm which solves any one of them
requires, in the worst case, an amount of time which is not bounded above by any
polynomial in problem size. An NP-hard problem is any problem such that all problems
in NP reduce to it in polynomial time. For details see [6, Chap. 5]. Thus an NP-hard
problem is at least as difficult as an NP-complete problem. We will now show that our
norm maximization problem (1.3) is NP-hard for p by reducing the following
NP-complete partition problem to it:

(4.1) Given integers cl, c2, , c,, is there a set S c { 1, 2, , n} such that

c= y c ?
jS jS

THEOREM 4.1. The norm maximization problem (1.3) is NP-hard for pc [1, ).
Proof. We will show this by reducing (4.1) to (1.3). Let poll, ). We first reduce

(4.1) to the following problem:

(4.2) Given integers cl, c2," ", c,, is there an x c R" such that"

c,x,=O, -1-<x,<=l, l<-i<-_n, Ilxll _->n ?
i=1
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It is easy to see that (4.1) has a solution S iff (4.2) has a solution x with [xil 1 for
1-<_i<_-n and xi 1 for i S and x--1 for i S. Now it is easy to see that (4.2) can
be reduced to an instance of problem (1.3) by defining

-e

-00eA:= cT b:=

_T
and answering the question"

(4.3) Is max {llxlllx R", Ax>_ b}>= n

Hence if we can solve (1.3) in polynomial time we can solve each of (4.3), (4.2) and
(4.1) in polynomial time. Hence (4.1)oc(1.3) and (1.3) is NP-hard.

We go on to show now that our norm maximization problem (1.3) is in fact
NP-complete for integer p oo. In order to do this, we introduce additional concepts
from complexity theory. A nondeterministic algorithm is an algorithm which at each
step has a finite number of moves from which to choose (instead of only one for
deterministic algorithms) and it solves a problem in a finite sequence of choices leading
to a correct answer. NP is the class ofproblems solvable by a nondeterministic algorithm
in polynomial time, including (4.1) and all other NP-complete problems. In fact
NP-complete problems are the class of most difficult problems in NP in the sense that
each problem in NP reduces in polynomial time to each NP-complete problem. By
Cook’s theorem 1 ], [6], 11 ], all we need to show for (1.3) to be NP-complete is that
it is NP-hard (which we already have done in Theorem 4.1) and that it is in the class
NP, which we proceed to do now. In order to do that, we introduce the following
decision problem related to our optimization problem (1.3):

(4.4) Given A, b with rational entries satisfying (1.2), and nonzero integers r, s, p,
is there a vector x in R" such that

Ax>-b, IlxllN>- ?
S

Note that in the proof of Theorem 4.1 we have already established that the decision
problem (4.4) is NP-hard, because we reduced the partition problem (4.1) to (4.2)
which is an instance of (4.4). We will now first show that (4.4) is in NP and hence it
is NP-complete. Then we will show that an optimization problem (1.3) is polynomially
equivalent to the NP-complete decision problem (4.4). Note that condition (1.2) which
is imposed on problem (4.4) which is a necessary and sufficient condition for the
boundedness of X, plays an essential role in Proposition 4.2 below which establishes
that (4.4) is in NP.

PROPOSITION 4.2. Problem (4.4) is in NP for integer p >-_ 1.
Proof. It follows by the convexity of the norm and the boundedness of X by (1.2)

[13], that IIxlIN>_- r/s for some x X iff Ilvll;_-> r/s for some ve ex of X. Moreover,
v is a vertex iff there is a J c {1, 2,..., m}, [J[ n such that v is the unique solution
of Ax b, J, and Ajx >- bj for j J. Consequently we can prescribe the following
nondeterministic algorithm for solving (4.4).

ALGORITHM 4.3.
(i) choose J, a subset of {1, 2,. ., m} with cardinality n.
(ii) Solve Ax bi, e J for one x, or conclude that the system is inconsistent.
(iii) if solution x found and AjX >- bj for j J and Ilxllg--> r/s then print x; success;

else failure; endif.
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Step (ii) can be performed in polynomial time (e.g. by Gaussian elimination). Since
we have assumed that p is an integer, Ilxll can be evaluated in polynomial time. Hence
Algorithm 4.3. is a polynomial time algorithm and (4.4) is in NP.

In standard terminology, the terms NP and NP-complete refer to decision problems
only but not to optimization problems. Now we show that the NP-complete decision
problem (4.4) and our optimization problem (1.3) are polynomially equivalent. First
it is obvious that if one can solve the optimization problem (1.3), then one can answer
the decision problem (4.4). The reverse is usually done by a binary search technique
showing that the optimization problem can be solved by a polynomial number of
decision problems. This is all rather obvious for discrete combinatorial problems, but
not for our continuous problem (1.3). To do this here, we shall use arguments similar
to those of Khachian [7]. Define

L := ’. log2 (IA01 + 1) +E log2 (I b,I + 1) + log2 (rim + 1) + log2 (p + 1).
id

L is the total length ofbinary digits representing the input A, b, n, m, p of problem (1.3).
TI-IEOREM 4.4. For any integer p >= 1, problem (1.3) is polynomially equivalent to

the NP-complete decision problem (4.4).
Proof. Since an optimal solution of (1.3) is at a vertex of X 13], such a vertex

can be written by Cramer’s rule as (D1/D, D2/D,. ., D,/D), where D and Di are
determinants of submatrices of [A b]. Hence

(i) For any vertex v=(D1/D, ,D,/D) r, IDI<2, ID, <2, Ilvll <2 (See
[5] for details.)

(ii) For any two distinct vertices Ilvll  llwll , w-
(BI/B,. ., B,/B) T it follows that

IB,I / ./lnl 1
_> > 2-2Pt.
IDllBI

Hence we can reduce (1.3) to (4.4) by binary search on the interval [0, 2pL] until the
range is less than 2-2L. Since each iteration reduces range by half, 3pL iterations will
do that by the following:

ALGORITHM 4.5
(i) l0, u2.
(ii) for 1 to 3pL do
(iii) solve the decision problem (4.4) for input A, b, r s 1/2(l + u)
(iv) if answer is yes then r/s else u r/s endif
(v) end for

If (iii) can be done in polynomial time, then (i) to (v) can be done in polynomial time.
After (v), we know that there exists an x X such that l= u- 2-2p , Ilxll > l, whereas
there is no x X such that Ilxll -> u. Hence if we use Algorithm 4.3 with input r s l,
A and b, the x printed in step (iii) of Algorithm 4.3 is an exact vertex solution of (1.3)
obtained in polynomial time. Hence (1.3) reduces to (4.4). I-1
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Abstract. The paper studies factorizations a(A b(A )- c(A of n x n matrix polynomials, with emphasis
on linear b(A). It is assumed that det a(A) factorizes into scalar polynomials of degree 1. The tool is the
concept of Keldysh chains (generalized Jordan chains). In Theorem the linear independence of eigenvectors
of a matrix is generalized to Keldysh chains.

It is known that there is an nm x nm matrix polynomial Kt(m, a(A)) such that the Keldysh chains of
length -<_m with respect to an "eigenvalue" to (det a(to)=0) may be identified with the nonzero vectors in
the nullspace of Kt(m, a(to)). The main technique of the paper is to exploit the multiplicative property
Kt(m, a(A )) Kt(m, b(A)). Kt(m, c(A)) together with the mentioned generalization. Improved factorization
results are obtained when det a(A) has more than (n 1). deg a(A different zeros. Also a number of known
facts are derived in a simpler way than before.

Key words, matrix polynomials, Keldysh chains, Jordan chains
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Introduction. Consider an n x n matrix polynomial
p

(0.1) a(A)= E ailp-i, ai Mn(K), ao#O
i=O

where Mn(K) is the ring of n x n matrices over a field K and the indeterminate A
commutes with the matrices of M,(K). We are concerned with factorizations

a(h) b(h). c(h) where b(h) 2 biAq-i, c(A) ciA
r--i

i=l i=l

(0.2)
and hi, ci M,, K ), bo # O, Co O.

We assume q + r p, which is certainly the case if bo or Co is nonsingular. If ao is
singular, it may happen that the scalar polynomial det a(A) is constant. We deal only
with cases where det a(A) has positive degree.

As described in [3, p. 4], factorizations of matrix polynomials play a role in many
contexts. Most familiar is perhaps the replacement of a system of differential equations,
a(D)x= u, by two systems of lower order, b(D)y= u and c(D)x= y. The notion of
complete sets (pairs) of linear factors (Remark 5.12) is used to discuss the solutions
of 2. Order systems in [3, pp. 75-79], and to develop a generalization of the Lagrange
interpolation formula in 1].

Factorizations of shift operator polynomials may be used to remove (almost)
nonstationarities from multivariate time series [4]. Other situations mentioned in
[3, p. 4] as requiring such factorizations are decouplings in systems theory, and the
study of Toeplitz matrices and Wiener-Hopf equations.

The observation that (0.2) implies

(0.3) det a(A) det b(A). det c(A)

is a natural starting point for investigations. To exploit (0.3) we assume that K is big
enough to split det a(A), i.e. that

(0.4) det a(A) K. II (A to,) u,
i=1

* Received by the editors March 11, 1985.

" Norges HandelshOyskole, 5035 Bergen, Norway.
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where K, toi K, toi toj if iS j, and u > 0. If ao is nonsingular, then K det ao and
Z ui=np

1. The Keldysh chains. With a(A) as in (0.1) we define arkS(A) for all integers k by

(1.1) atkl(A)= (p--i)=o k aiAP-k-i

where, by convention, (;)=0 if y{0, 1,... ,x}. atk(h) is related to the formal
derivative a(k)(h) by

(1.2) ak(A k!. atkJ(A)

if k _-> 0. For an arbitrary positive integer m, the partitioned nm x nm matrix Kt(m, a(h))
is defined by its i, j) -block:

Kt(m, a(A))j ati-(A),

(1.3)
Kt(m,a(A))=

l_-<i-<m, l_-<j<_-m, i.e.,

a(A) 0 0

a[1](A) a(A) 0

a A) atm-2(A) a(A)

These matrices have appeared previously, e.g. in [3, p. 25]. Their multiplicative property
seems, however, to have been largely overlooked.

LEMMA 1. Kt(m, b(A). c(A)) Kt(m, b(A)).Kt(m, c(A)).
Proof. With a(A)- b(A). c(A), this matrix equation is equivalent to

k

(1.4) arkS(A) E bt(A)’ctk-(A)
j=O

Let first K have characteristic 0. Then (1.2) shows that (1.4) is a consequence of the
product rule of formal derivation. Substituting a- Y. bci_ in a[k](A) and comparing
terms on each side of (1.4), one gets the (well-known) identity

j=o k- k

This identity, in turn, implies (1.4) for an arbitrary field K. I-]

Let mg(A) InAg with In the n x n identity matrix. For arbitrary positive integers
d, e, the partitioned nd x ne matrix V(d, e, A) is defined by its i, j) -block:

(1.5)

V(d, e, A )i m/_-’](A ),

V(d, e,Z)=

0 0

l <=i<=d, l <-j<=e, i.e.,

2 ,e-1

2A (e- 1)A e-2

d 1
A3-d Ae-d

d 1

The nd x n matrix R(d, e, A is defined as the right-hand block column of V(d, e + 1, A ),
i.e.

(1.6) V(d, e+ l,A)=[V(d, e,X)lR(d, e, A)].
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Consider a finite sequence 61,’", 6e of vectors in K", and for convenience write
6i 0 if <- 0. Let m >-/. With the sequence we associate a partitioned x nm matrix F
defined by its i, j) -block:

(1.7) F=

(1.8)

(1.9)

(1.10)

Fu=6_+, 1-<j_<-l, 1-<_j-<m, i.e.,

61 0 0 0 0

62 81 0 0 0

6t 6_ 61 0 0

LEMMA 2. With to K, the following four statements are pairwise equivalent:

i-1

E 6,-katk](to) 0 for 1 <= <= l,
k=0

(at, 6,_,,.’’, 61,0,’’’, 0)" Kt(m, a(to))=0,

(1.11)

F. Kt(m, a(to)) 0,

[F. V(m,p, to)]I aa.p I =-F" R(m. p, to) ao.

Proof. The equivalences (1.8):> (1.9):> (1.10) are immediate by the definitions
(1.3) and (1.7). Using the definitions and rearranging terms, we now rewrite (1.8)
successively as follows:

6i_k P- k-t p--

k=0 t=0 k attoP- 6i_k top-k at O,
t=0 i. k=O k

p i- P- p-k-t at 6i-k Wp-kaO,
t=l k=0 k k=0

U- 1 wu_k_i-k ap+l_u i-k P-kao
=1 k=o k

u=l kO kO

The last equations (1-<i -< l) may be written in matrix form as (1.11). [q

DEFINITION 1.12. The pair ({6,..., 6t}, to) will be called a Keldysh chain for
a(A) if 61 0 and (1.8) holds.

Remark 1.13. The matrix formulations (1.9) and (1.10) are theoretically useful to
"test" whether a pair is a Keldysh chain by means of the "Keldysh test matrix"
Kt(m, a(A)). The message of (1.11) is that a knowledge of Keldysh chains for a(A)
means a knowledge of linear equations which the entries of the coefficient matrices
ao,"’, ap must satisfy. Since a(A) and a(A). z have the same Keldysh chains if
z M,(K) is nonsingular, a matrix polynomial is at most determined up to a nonsin-
gular right hand factor by its Keldysh chains.

Remark 1.14. If a(A) I,A A, A M,(K), then (1.8) is equivalent to 6A
to6 + 6i_, 1 <_- <-/. This means that 61, , 6 form a Jordan chain for A with respect
to the eigenvalue to (provided 6 0) [3, p. 24, 49].
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2. Keldysh chains and factorizations. Consider a monic matrix polynomial d (A)
diA q-i of degree q (i.e. die Mn(K) with do In). With a(A) as in (0.1), we may write

(2.1) a(A)=d(A), e(A) +f(A)

where f(A has degree < q or f(X) 0. The division algorithm for matrix polynomials
is discussed in [3, p. 89]; here, however, it is enough to check that (2.1) holds for
e(X) Y, eixP-q-i where the ei Mn(K) satisfy the recursion

i-1

e=ai- di_jej, O<-i<=p-q.
j=O

The next two results are consequences of Lemma 1:
LEMMA 3. If (0.2) holds, every Keldysh chain for b(A) is also a Keldysh chain for

a(X).
LEMMA 4. Assume that
(i) d (A) is uniquely determined among the monic n n matrix polynomials ofdegree

q by its Keldysh chains through (1.11)), and
(ii) all Keldysh chains for d (A) are also Keldysh chains for a(A).

Then a(A) d(A). e(A).
Proof Lemma 3 is immediate by Lemma 1. To see the partial converse result in

Lemma 4, we first rewrite (2.1) as

a(x) d(X )g(X)+ h(X)

h(A)=d(A)+f(A).

where g(h e(h )- I,,

By Lemma 1, (1.1) and (1.3), we have

(2.2) Kt(m, a(A)) Kt(m, d(A)) Kt(m, g(A)) + Kt(m, h(A)).

Now, if (,’. ", , 0,’.’, O)Kt(m, d(to)) =0, it follows by (ii) and Lemma 2 that
(,...,, O,...,O)Kt(m,a(to))=O. Therefore, by (2.2), (t,’",, 0,...,0).
Kt(m, h(to)) 0. Because of (i), d(A)= h(A), and f(A) =0.

Remark 2.3. Condition (i) is always satisfied, see e.g. [3, p. 58, Thm. 2.4] for the
complex case (K C). According to [3, p. 203, Cor. 7.11] the condition that d(A) is
monic may be removed, if the notion of Keldysh chains is properly generalized (to
infinite to).

3. Linear dependence among Keldysh chains. Let a (A) be as in (0.1) with det a (A)
of positive degree.

LEMMA 5. Assume p,. , Pt K and x,. , xt K -{0} satisfy the following
conditions:

(i) x,a(p,) O.
(ii) If pg Ph, then xg,. ., Xh are linearly independent.

Then, if V is a d-dimensional subspace of K", there are at most dp values of such that
xi V.

Proof. We argue by contradiction, and assume that x, , xd are linearly indepen-
dent, while

d

(3.1) xi toxj with ti K and l=<i_-<t=dp+l.
j=l
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Letting e(A) be the d x n matrix defined by

(3.2) e(A)= .a(A),
Xd

Assumption (i) may be written (using (3.1)) as

(3.3) (til," ",tid)" e(pi)--O, l<-i<-dp+l.

If pg Ph for r indices g,..., h, the vectors

(tgl,..., tgd), (the,’’’, thd)

are linearly independent in gd because of assumption (ii). Hence, by (3.3)

(3.4) e(pg) e(ph) has rank at most d r.

Since det a(A) 0, e(A) has rank d (over the extended field K(A)). We may therefore
pick a nonzero d x d minor determinant o(A) of e(A). o(A) is then a polynomial in
A of degree at most dp.

Writing o(A), 1 <-i-<_ d for column vector in o(A), we have

o(A) det [Ol(A),’’’,

The product rule of formal derivation implies

o’(A) det [o(A),..., Od(A)]+""" +det [Ol(A),..., o(A)].

If 0-< u<-r-1, o"(A) is therefore a sum of determinants each of which has at least
d-r+ 1 columns in common with e(A). Hence, by (3.4)

q"(pg) 0 for 1 <_- u _-< r- 1.

This means that o(A) is divisible by (A-pg). Consequently o(A) is divisible by
II(A- p), a polynomial of degree dp / 1, which is absurd.

Let ({, ., 8,}, p) be a Keldysh chain for a(A) and consider the l vectors

/=(8’,...,t,...,0,...,0)K "", l<-i<-t, l<__j<-l,

where m _-> l for all i.
THEOREM 1. Assume that ifpg Ph, then 8g, ., h are linearly indepen-

dent. If V is a d-dimensional subspace ofK, there are at most dp values of i, j) such
that ), V.

Proof. This follows by replacing x by % and a(A) by Kt(m, a(A)) in Lemma 5.
The assumption of the theorem clearly implies that the vectors /g, , ")thk are linearly
independent (1 <-j <- lg, ., 1 <-_ k <- lh ).

4. Linear b(A). An obvious plan for attacking the general factorization problem
(0.2) is to exploit Lemmas 3 and 4. This requires some knowledge of the Keldysh
chains. For a monic matrix polynomial the Keldysh chain structure is closely related
to the Jordan form of the companion matrix [3, p. 4, p. 40].

A purpose of the present paper, however, is to get factorization results without
any elaborate techniques. This is possible in the case of linear b(A) A B in (0.2), i.e.

(4.1) a(A) (A-B). c(A).

Comparison of coefficients shows that a(A) and B determine c(A) uniquely.
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THEOREM 2. If s=(n-1)p+u with l<-u<-p (s as in (0.4)), the pair (B, c(A))
may be chosen so that (4.1) holds and

(i) B has n different eigenvalues;
(ii) the equation det c(A)=0 has at least (n- 1)(p- 1)+(u- 1) different solutions.
The choice may be done in at least (n !)-1 i-ii:- (u + ip) different ways.
Proof. Let ({xi}, toi), 1 _<- i<-s, be (length 1) Keldysh chains for a(A), i.e. xa(to) =0

and x0. According to Lemma 5, a linearly independent ordered subset

{x(1),’’’, xi(n)} of {Xl,""", xs} may be chosen in at least

[(n-1)p+u]. [(n-2)p+u] [0. p+u]

different ways, since after the choice of Xi(1) Xi(j) at mostjp ofthe vectors Xl, X

have become ineligible.
Let B be the unique n x n matrix with (length 1) Jordan chains ({x()},

1 _-<j_-< n. By Remark 1.14 this means that h- B has (length 1) Keldysh chains ({x()},
to()). According to Lemma 4, (4.1) holds for suitable c(h). Since s-n=
(n- 1)(p- 1)+(u- 1), statement (ii) also holds.

5. The ease s np. We now consider the case u =p in Theorem 2. Then s =np
and (0.4) has np distinct zeros. This forces det ao 0. For eachj { 1, 2, , np} choose
xj K such that xj S0 and xja(wj)-0. The 1-spaces (xj) are uniquely determined,
because if y. a(toj)-0 and y K"-(xj), the set {Xl," ", X,p, y} would violate Lemma
5with V= K", t= np+l.

A more general case, where the companion matrix of a(h) has diagonal Jordan
form, is discussed in [3, p. l13, Thm. 3.21]. The following collection of results is
essentially a corollary of Theorem 2 and the preceding lemmas.

5.1 There exist factorizations a (h (h B) c(h ).
5.2. To each such factorization there exists a unique subset S <-{1, 2,..., np} with

IsI ,, and xjB to,xj forj S.
5.3. The set S determines B uniquely.
5.4. A given subset S <= { 1, 2,..., np} with Isl n determines a factor , B if and

only if the vectors xj, j S, are linearly independent.
5.5. If T

_
{ 1, 2,..., np} and TI-> dp / 1, then the dimension ofthe span (xjlj T)

is at least d + 1.
5.6. There exists a partitioning {1, 2,..., np} S1 t_J S Sp where [S,[ n

and the n vectors xj with j Si are linearly independent (1 <- <= p ).
5.7. IfN is the number offactorizations (5.1), then p" <- N <-_ ("f). The lower bound

is attained ifand only if the vectors xj, 1 <=j <-_ np, belong to n linearly independent spaces
ofdimension 1. The upper bound is attained ifand only if the Haar condition is satisfied,
i.e. for every subset S <-{1, 2,..., np} with Isl- n, the vectors xj with j S are linearly
independent.

5.8. IfK is infinite and i x, is a map {1, 2,. ., np} K" such that statement 5.5
holds, then there exists a monic n x n matrix polynomial a(h) of degree p and distinct
to, , to,p K such that x a(to) O, 1 <-_ <= np.

5.9. IfK is infinite, both bounds in (5.7) are attained.
Proof Results 5.1-5.5 are immediate by Theorem 2 and Lemmas 2, 3, 4 and 5.

Statements 5.5 and 5.6 are equivalent statements because of the following theorem due
to Jack Edmonds [2], valid in the more general context of matroids.

THEOREM (J. Edmonds). Consider a triple (q, X, V) where X is a set, V a vector
space offinite dimension matroid and q: X-> V. Let p be a natural number and r(U)
the dimension (rank) of a subspace U of V. The following two conditions on (p, X, V)
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are equivalent:
(i) For each subspace U of V, Iq-l( U)[-< p. r(U).
(ii) There exists a partitioning X X1 X2 [.J Xp such that I <x,)l Ix, and

q Xi is linearly independent, 1 <- <-_ p.
The statements on upper bounds in 5.7 follow from 5.2, 5.3, 5.4; the statements

on lower bounds follow from the counting argument in the proof of Theorem 2.
To prove 5.8, we have (by Lemma 2) to produce a(A) and to1," ", to,p such that

Xi[Intoi" to/P-l] -xitof, i.e.,

(5.10)

[Xi, toiXi tof--lxi] -toPi xi, 1 <-- <-- np.

al

Since we already know the equivalence 5.5 <:> 5.6, we may enumerate the xi’s and to’s
in such a way that the matrices

Gs- l <--j<--p,

are nonsingular. Letting Dj diag {to<j_l),+, , to,}, the requirement (5.10) may be
written as

(5.11)

l<--j<-_p, i.e.,

I,, G- DpGp G- Dpp- Gp al G- DGp

The determinant of the block Vandermonde matrix in (5.11) is a polynomial in
to, ., to,v. Considering the terms including the product

p--1 p--1
to(n--1)p+l tonp

and using induction on p, we see that the polynomial is not constant. By the infinity
of K, the to’s may be chosen distinct and such that the determinant is nonzero.

When K is infinite, the map in 5.8 may be defined so that the Haar condition
holds. Now 5.9 follows from 5.7 and 5.8.

Remark 5.12. To each S in result 5.6 there is a factorization a(A) (A B) ci(A).
In the terminology of [1], {B1,’"", Bp} is a "complete set of left solvents" for a(A).
The Keldysh chain approach combined with Edmonds’ theorem provide a different
proof for the existence of complete sets.

Remark 5.13. As a consequence of result 5.7 there are M factorizations a(A)
(A-C1)(A-C2),.. ",(A-Up) with CM,(K), l<-_i<-p, where

(p!)" <_ M <__ (np)! (nt) -p.
p--1The lower bound is an improvement on the number H=o (jn + 1) given in [3, p. 114,

Cor. 3.22].
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THE DISTRIBUTION OF PREFIX OVERLAP IN
CONSECUTIVE DICTIONARY ENTRIES*

RODICA SIMIONf AND HERBERT S. WILF$

Abstract. We consider the family A(m; M) of all dictionaries, over an alphabet ’, that have given
numbers m of words of each length i- 1, 2,-... We find the probability distribution of the length of the
maximal common prefix of two consecutive words in dictionaries A, and the asymptotic behavior of
the average length of those common prefixes. In the case of dictionaries of D words, all of the same length,
the size of the average prefix overlap is "near" logA D (A I]).

Key words, prefix, overlap, dictionary, compression

1. Introduction. Consider the following dictionary 9 of 8 words:

RUMMAGE
RUMOR
RUMPLE
RUNABOUT
RUSSET
RUST
RUSTIC
RYE

The overlap of two consecutive words in 9 is the length of their maximal common
prefix. The overlap fl(9) of the dictionary 9 is the sum of the overlaps of all pairs
of consecutive words in 9. In the example above we have 12(9)= 18.

One of the devices that is used to compress dictionaries is the suppression of
maximal common prefixes, and their replacement with some encoding of the length
of the suppressed string. Thus we could compress the dictionary above to

RUMMAGE, 3OR, 3PLE, 2NABOUT, 2SSET, 3T, 4IC, lYE

In this paper we will study the combinatorics and asymptotics of the distribution
of overlaps in dictionaries of given type. We will not be concerned here with algorithms
for retrieving the compressed information. An extensive discussion of such algorithms,
together with a number of results that are closely related to ours, appears in Knuth
1 ], particularly 6.

Let m= (m, m2,’" ") be a given sequence of nonnegative integers, only finitely
many of which are nonzero. Let M (a, b, c,...) be an alphabet of A letters. A
dictionary oftype m is a lexicographically ordered list of words over M, of which exactly
rni are of length i, for each i= 1, 2,. .. We will write Iml- mi D for the number
of words in such a dictionary.

Next we describe the probability space that is the setting for our study. Consider
the ensemble A(m) of all possible dictionaries of type m over M. Associated with each
9 A(m) and each integer -> 0 there is the probability p(>=l, , m) that two consecutive
words of 9 overlap in =>l initial letters. If we average p(>-l, 9, m) over all 9 A(m),

* Received by the editors February 19, 1985.
f Southern Illinois University, Carbondale, Illinois 62901 and Bryn Mawr College, Bryn Mawr, Penn-

sylvania 19010.
t Department of Mathematics, University of Pennsylvania, Philadelphia, Pennsylvania 19104. The work
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we get p(>-l, m), the probability that two consecutive words in a dictionary of type m
overlap in at least letters. Our first result is

THEOREM 1. If tWO consecutive words are chosen randomlyfrom a randomly chosen
dictionary of type m, then the probability that their maximal common prefix has length
>=l is

1
(1.1) p(>=l,m)-iI’m’- 1

for l-0, 1, 2,....

Y. mi A + A mt \ mt+l / m,,
i>=l A--- (An)ml] k ml+ / mr

The special case in which all words have the same length occurs frequently, and
is given by the following corollary of Theorem 1.

THEOREM 2. If tWO consecutive words are chosen randomlyfrom a randomly chosen
dictionary ofD words, all of r letters, then the probability that their maximal common
prefix has length >-l is

D-1
(1.2)

for 1=0, 1,2,..., r.

Ar-Ar-I

D_AI+A (i
In many applications it is the averages that are of the most interest. Exact formulas

foi these averages follow at once from (1.1), (1.2). We study the asymptotic behavior
of the average in the case where all words have the same length.

THEOREM 3. Let f(r, D, A) be the average size of the initial string overlap in
consecutive words of dictionaries with D words, all of length r. If r, D-> oo in such a way
that D= o(Ar/E) then f(r, D, A) UA,D/(D-- 1), where

(1.3) Urn,,: E mk-,k>__ 2

The asymptotic behavior of Um, has been determined by de Bruijn and Knuth
[1, Problem 5.2.2.50] to be

n(T- 1) n
--+nf_l(n)+O(1)(1.4) Um n log,,, n +
log m 2

where f-1 is a small, bounded function, and y is Euler’s constant.
Therefore, with the precise meaning that we have just described, we may say

roughly that the average overlap tends to be near lOgA D in a long dictionary oflong words.
Aside from the obvious applications to the compression of dictionaries in computer

memories, these results apply to combinatorial "dictionaries" also, i.e. to lexicographi-
cally ordered lists of combinatorial structures such as sets, subsets, permutations,
partitions, etc. An interpretation of the overlap, in these cases, is that it measures the
complexity per step of the lexicographic sequencing algorithms that list the structures
in question. We will present a number of special cases below.

2. The generating function for overlaps. In this section we will derive the generating
function for the number of dictionaries of given type that have given overlap properties.

Precisely, we will prove
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THEOREM 4. The number of dictionaries of given type m over an alphabet of A
letters in which exactly r pairs of consecutive words overlap on a prefix of at least letters
in which exactly r pairs of consecutive words overlap on a prefix of at least letters is the

trcoefficient of x’x’2...xn in the expansion of

’-I ( l(nII )}Al

(2.1) GI(X, t) (1% Xi)ai 1 +’ (1%" Xl+jt)aj- 1
i=1 \j=0

Proof. For any word w, let Iwl denote the number of letters in w. Then, to every
word w in a dictionary 9 we assign a weight, a(w), as follows: if Iwl<l or if w and
its successor have a common prefix of length less than l, then a (w) Xlwl, else a (w)
Xlwlt. Further, the weight of 9 is a(9)= I-Iw a(w). Note therefore that 9 has weight

trx’x2...x,, itt 9 is of type m, and 9 contains exactly r pairs of consecutive
words whose common prefix has length ->/.

Now partition the dictionary 9 as

9 9--U 91)1U )I) U U 91)AI
where 9-= {w E  llwl < l} and 9v is the subset of words of 9 whose prefix is v, and
finally, the words vi (i 1, ., At) are the /-letter words over the alphabet M. Note
that the words in each 9v, are lexicographically consecutive in 9 and that

() (-)(o,) (,.
Moreover,

2 a(9-) (1 + x1)A(1%" x2)a2", (1 + Xt_l) A’-’.

If IDo, di, then the exponent of in a(9,) is di-1 + gO.d,. Thus,

1
E a(9,) 1 +-[(1 + xtt)(1 + Xl.lt)A(1%" Xi.2t)A2 1],

since, for fixed v, a word in 9, is determined by the suffix that is to be appended to
v. There are A possible suffixes of length j (j 0, 1, 2, .), each of which produces
a word of length +j.

Since, in forming a dictionary 9, 9- and the 9v,’s are selected independently,
the generating functions can be multiplied, and the result (2.1) follows.

From Theorem 4, Theorems 1 and 2 follow at once by identifying the coefficients
of the monomials and dividing by the number of dictionaries of type m.

From Theorems 1 and 2 we can obtain formulas for the average overlaps by
summation. We quote here the result in the case where the words are all of length r.

THEOREM 5. Let f(r, D, A) denote the average length of the prefix overlap in two
consecutive words of dictionaries ofD words, all of length r. Then

(Ar-Ar-!

)1 DrD A(Ar-l) +(2.2) f(r,D,A)=D-il (A-1)(D 1) D l t=/" At {A
D

3. Asymptoties of average overlap. In this section we will study the order of
magnitude of the average prefix overlap in the case where the words in the dictionary
all have the same length.

We need first a few properties of the function

(3.1) qbo(x) (1 x) 1 + Ox.
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Specifically we require the inequalities

(3.2) 0< 6b(x) < D(D- 1)x

and

(0<x<l)

/D
(3.3) 0< dpo(x)<-2)x2 (0<x< 1).

To prove these, first write q(x) bb(x) D(D- 1)x. Then

q’= D(D-1){(1-x)-2-1}<O.
Hence q decreases, q(0) 0, whence q(x) < 0, proving the right member of (3.2). Since

4b= D{1-(1-x)-}>O
the inequality (3.2) is established, and (3.3) follows by integration.

Next let f(r, D, A) be the average size of the prefix overlap in dictionaries of D
r-letter words over an alphabet of A letters. We will prove that

1
(3.4) f(r, D, A) -<_

D- 1 UA’O

where U is given by (1.3).
To do this, we have from the exact formula (2.2),

rD A(Ar- 1) + A 1 r(3.5) f(r’D’A):D- (D-1)(A-1)(D- 1) 1=1 j=o 1-jA-

Now since

we have

f(r, D,A)<-
rD A(Ar- 1)
D-1 (D- 1)(A- 1)

1 At{dpo(A_l) + I_DA_I}
D-lt=

1 AldpD(A_l)
D-11=l

<-_ Atqbo(A-’)
D-1 =1

1
2 At Y (-1)jA-0

D- 1 i= j_->2 j

1
-D-1Ua,o

and (3.4) is proved.
Next we consider lower bounds. Define

(3.6) 6=D/A.
This is the ratio of the number of words in the dictionary to the maximum number
that might have been there. 6 is small in many applications of interest.
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Now for the product in (3.5) we have

1- _>_ 1-
=o 1 -jA 1 6

Consequently

f(r,D,A)>= A’ dpD i--6 +l-
D-1 (D-1)(A-1) D-1/=I

(3.7)
Dr 1 Ad

To estimate the sum, we write, say,

(A-l) { ( A-t ) }/=1 /=1 /=1

=Z+Z2
By the mean value theorem and (3.2)-(3.3),

121 al(a-l’ ( A-l)
6D A-
1- = 1-
D

As regards , we write

= 2 A’o(A-’)- Z A’o(A-I) UA,D--2 AID(A-’)
/=1 /=r+l l>r

If we substitute in (3.7), we find that

1 1
(3.8) f(r,D,A) > Uao-- E A6o(a-)+e

D- i D- 1 +
in which

(3.9)

r6D 6D2

/
(D- 1)(1 6) (D- 1)(1 ):

=O((r+D)6)

uniformly.
Combining (3.4), (3.8), we have

1 1
(3 10) 0 < Uao-f(r,D,A)< Atdpo(A-l)-el

D- 1 D- 1

together with the estimate (3.9) of el.
The sum on the right can be further estimated. From (3.3),

Atdo(A-l)< A-t=A,.(A 1)<Ar+-----l>=r+l lr+l
(A=> 2).
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Altogether this proves that

1
UA o f( r, D, A)(3.11)

D-1 (o2)O((r+D)6)+ 0 A,+,

uniformly. Theorem 3 is now proved, l-1

If, finally, we use the analysis (1.4) of the size of U, we find
THEOREM 6. We have the estimate

(3.12) (o2)f(r,D,A)=logaD+O((r+D)6)+O A,.+ +On(l)

in which the first two O’s are uniform and the third depends on A.

4. Some combinatorial examples. If we have some encoding of a family of com-
binatorial objects arranged lexicographically, then we can ask for the average prefix
overlap of the list. Here are some examples.

In the two-line form of the permutations of In I, two consecutive permutations
"agree except for their last e letters," on the average.

If all 2" subsets of Inl are encoded by their membership lists in ascending order,
the average overlap is ---n/2 elements. If encoded as bit strings, the average overlap
is n-5/2+ o(1).

If an ordered partition of n (= "composition of n") into positive parts is encoded
by the list of its parts, then two lexicographically consecutive compositions agree on
their first n/2-3/2+o(1) parts, on average.

If an (unordered) integer partition is represented as its list of parts in nondecreasing
order of size, then two consecutive "words" in the "dictionary" of partitions of n agree
except for at most the largest two "letters."

Acknowledgment. Jon Bentley, of Bell Laboratories, was kind enough to obtain
data from the UNIX dictionary which, together with the above theorems, convinced
us of the (unsurprising) fact that a dictionary of the English language is nowhere near
"average," in the sense of this paper. For those efforts, and for his enthusiasm for this
project, we thank him.
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THE DUAL VARIABLE METHOD FOR THE SOLUTION OF
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Abstract. Discretizations of the Navier-Stokes equations describing a compressible flow problem can

be viewed as systems defining flows on an associated network. This observation provides a means of
economizing on their numerical solution.

Key words. Navier-Stokes, networks, dual variable, compressible fluid
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1. Introduction. The dual variable method [1] is a means of economizing on the
cost of solving the linear or nonlinear systems that arise in certain discretizations of
the Navier-Stokes equations. A matrix transformation is introduced which significantly
reduces the size of the system which must be solved. For the finite difference discretiz-
ation of the two-dimensional, incompressible Navier-Stokes equations studied in [ 1 ],
[2] this reduction amounts to a factor of 3. A key element of the implementation of
this transformation is the construction of a cycle vector basis for an associated network.

In this paper we extend the dual variable method to compressible flow problems.
This again involves the use of network theory.

The system of partial differential equations in two spatial dimensions (x, y) and
time describing the compressible (barotropic) flow problem of concern is:

o_+ v. (q) o,(1)
Ot

(2) pOq+P(q’V)q+VPot -/x[V2q+V(V" q)] =F
where q (u, v) is the velocity vector, p is pressure,/x is viscosity, F is a vector that
includes elevation and wall friction effects, and the density p is determined by a state
equation

(3) p=p(p).

Equation (1) is referred to as the continuity equation and equation (2) as the momentum
equation.

We assume that appropriate boundary conditions and an initial condition are
specified so that (1)-(3) have a unique solution in a flow region f. Typical boundary
conditions are the specification of the pressure or velocity on each segment of the
boundary f.

In 2, we present details of a discretization of (1)-(3). The matrix transformations
involved in the dual variable method are given in 3, and a network or physical
interpretation of the dual variable transformation is given in 4. Section 5 contains
numerical results.

* Received by the editors April 8, 1985, and in revised form October 7, 1985. This work was supported
by the Air Force Office of Scientific Research under grant 84-0131.

? Institute for Computational Mathematics and Applications, Department of Mathematics and Statistics,
University of Pittsburgh, Pittsburgh, Pennsylvania 15260.

476



DUAL VARIABLE METHOD FOR FLUID FLOW 477

2. The finite difference equations. There are several consistent finite difference
discretizations that are available to approximate (1)-(2). We choose the following
scheme based on the MAC placement of variables [3] in which a pressure is associated
with the center of a control volume or mesh box and the component of velocity normal
to a control volume side is associated with the center of that side (Fig. 1). Let U, V,
P be the finite difference approximations to the mass velocities pu, pv, and pressure
p respectively. A superscript m designates the mth time level.

u(w)

V(N)
X

e(c)
U(E) l y

X
V(S)

FIG. 1. A control volume with MAC placement of variables and compass designations.

In the continuity equation, we expand the time derivative via the chain rule, and
use backward differencing and centered differencing on the temporal and divergence
terms respectively. The discrete equation is then of the form:

U+1 um+lw V+1 Vsm+l(4)
ZXx

+ y + (aP) (P’+ P’
At

O.

The momentum equations are discretized as in [1], [2] using upwind differences
for the convective terms (q. V)q, centered differences for the pressure gradient Vp and
the viscous terms [V:q/ 1/2V (V q)], and backward differences for the temporal derivative
aq/t. The finite difference system resulting from (4) and the discrete momentum
equations can be written as (N+ L) equations

(5) Avm+I+wm+l
p --0,

(6) Qmvm+l AtATp’+l b’.
Here the N x 1 vector pro/l, and L x 1 vector Wm/l contain the unknown pressures
and velocities respectively, V"+1= DWre+l, D a diagonal matrix with [D]ii Ax if
corresponds to N or S and [D1]. Ay if corresponds to E or W (note that Ax

(Ay) may vary from one column (row) of mesh boxes to the next),

(7) wm/l Qp,-+le ----At -S

where Q21 is the diagonal matrix

(8)
At- \PP/c

(9) [S] At cPc +boundary mass velocities.

The N x L matrix A contains O’s, l’s and -l’s and can be interpreted as an
incidence matrix of an associated network as described in [1], [4], [5]. The LxL
matrix Qm contains the finite difference coefficients of the discrete convective and
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viscous terms in the momentum equations as well as the temporal term. The L x 1
vector b contains boundary data as well as contributions of the body force and friction
terms.

If we let Zm+l-- IVm+l,W+1] and

(10) B=(AIIN),
where IN denotes the identity of order N, then the discrete continuity equation is of
the generic form

(11) BZm+l --0.

We may think of the vector W7/ as "pseudo mass flows." Equations (6) and (7) then
combine to give

m+l At pm+ +
0 Q22 Wp J IN -Q22Sm

or

(12) [QmOlzm+l--AtBTpm+l+km.0 Q::

Thus, it is required to solve the 2N+ L equations (11)-(12) for Zm/l and P"/. In the
next section we show how to obtain an equivalent system from which the pressure
vector P"+ has been eliminated.

3. The dual variable transformation. The dual variable method has been used
successfully in the treatment of certain finite difference and finite element discretizations
of the equations of incompressible flow [1], [2]. With regard to the current system
(11), (12) of compressible flow equations, the method consists of the following steps.

Step 1. Find a basis [C1, C2,’’’,Cd] for the null space of B and form the
(L+ N)x d matrix C with Ci as its ith column. Then

(13)

and

(14)

for some d x 1 vector Xm+l

Step 2. Substitute Z"+

(5)

BC =0

Zm+l CXm+l

as defined by (14) into (12) to obtain

[Qm 0 ]cxm+’=AtBTpm+l+km.0 Q22

Step 3. Multiply (15) by Car and use the orthogonality of Bar and C ar to obtain
the d x d system

(16) cT[Qm O]cxm+l--CTkm.0 Q

The matrix transformation in (16) is called the dual variable transformation and (16)
is called the dual variable system.

Step 4. Solve (16) for Xm+l and recover the velocities Vm+ and pseudo velocities
wm+l from (14)p
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Step 5. Recover the pressures from the pseudo velocities using (7), noting that
Q22 is diagonal.

The inherent advantage of the dual variable method is the reduction in the size
(L+ N to d) of the system to be solved at each time step. Efficient algorithms for
computing well conditioned sparse bases for null spaces have been studied by Berry,
Heath, Kaneko, Lawo, Plemmons and Ward [6]. This latter approach involves a matrix
factorization. As we now show, C can be constructed without the need to solve any
system of equations.

It is clear that the N x (N+ L) matrix in (10) is of rank N. We have then that the
dimension, d, of the null space of B is L, the number of columns minus the rank.
Moreover, a basis for this null space is immediately provided by the columns of the
matrix C defined as follows,

Substituting (17) into (16), we obtain the L x L system

(18) Q, + ATQ22A)Xm+ b’ + ArQ22Sm

as the dual variable system. But by (14) and (17), Vm+= X"+, and

(19) Wm+lP -AXm+l

Hence, the unknown velocities actually satisfy (18) and the pseudo flows that are
needed to recover the pressures via (7) are given by (19).

4. A network interpretation. As in the case of the discrete divergence matrix A,
the augmented matrix B can also be interpreted as the incidence matrix of a directed
network T. The geometric realization G(T) is constructed as follows:

The nodes of G(T) are the mesh box (control volume) centers and the interior
links connect nodes of contiguous mesh boxes. The boundary links of G(T) are links
normal to segments of the boundary of the flow region where a pressure is specified.
All links are oriented in the positive sense of the x or y axis, respectively. So far this
planar network is precisely the network used in the dual variable formulation of
incompressible flow problems [1], [4], [5], and A is its incidence matrix. However,
we now add links which emanate from each mesh box center (node) and terminate at
a fictitious node. These links are all directed toward this fictitious node. The N
unknowns [W/]i, 1, 2,. N in (7) are then thought of as pseudo-flows on these
latter links just as the L unknowns [vm/l]j,j 1, , L are flows on the links connecting
mesh box centers. The N x (N+ L) matrix B is the node-link incidence matrix for the
network so constructed. That is,

+l

[n]kl -1
0

if link is directed away from node k,
if link is directed toward node k,
otherwise.

Equation (11) then states that at each node the total "flow" is in balance. In Fig. 2
there are N= 14 unknown pressures (also 14 unknown pseudo flows) and L=22
unknown velocities. At each of the N 14 nodes the sum of the flows and pseudo
flows is forced to be zero.
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FIG. 2. Flow region decomposed into 14 flow cells showing associated network of N 14 nodes and
N+ L 36 links.

The 14 x 22 matrix A is given by

A

-1

-1

0 -1

0

0 0 0

0

0

0

0

4

0

0

-1

0 -1

0 0

0 0

0

0

-1

10 11 12 13

0 -1

0 0 0 0

0

0

0 0 0

0

-1 0

-1 0

-1

-1

14 15 16 17 18

0 -1 0

0 -1

-1

0 -1

0 0 -1

0

0 0 0

0

0 0

0 0

0

0

0 0

19 20 21

0 0

0

-I 0

0

0 -1

-1

o o

o o

22

0

0

0

10

-1 11

0 12

0 13

14

and the matrix B (AII14) is the 14 x 36 incidence matrix for the network shown in
Fig. 2.

As defined by (17) the matrix C may be interpreted as a fundamental cycle basis
(cf. [7]). Each column of C is a cycle vector for the network T. For example, for the
network of Fig. 2, the sixth column is

1, =6

-1, 28
(20) [Co16(C)],

1, i= 29
0

(link 6),
(L+ start node for link 6),
(L+ end node for link 6),

otherwise.

In general, if link j is not a boundary link and is incident from node to node k, then

1, i=j,k+L,

[Colj(C)], -1, i=l+L,
0 otherwise.

If link j is a boundary link, then this definition yields only two nonzero entries in the
jth column of C since one of the nodes or k does not exist.
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Finally, we can conveniently use the network concept to determine the sparsity
of the dual variable system (16). We observe that

(21 ATQ22A)jr (Q22) llAir (Q22)kkAkr
where j, k and are related as in Fig. 3. It follows that the right side of (21) is nonzero
only when r corresponds to cycles containing those interior and boundary links that
are incident to or from nodes k and I. Consequently, the jth equation of (18) is coupled
only to itself and the eight other equations corresponding to the cycles containing the
links shown in Fig. 4. That is, dual variable j associated with cycle j is coupled to at
most 8 other dual variables associated with the cycles (or equivalently links) illustrated.
Hence the coefficient matrix in (19) has at most 9 nonzero entries in each row, and,
with suitable ordering of the links, may be solved as a banded matrix.

+L k+L

FIG. 3. The jth cycle associated with link j. The fictitious node is labeled o.

0 ( ) 0

FIG. 4. Stencil for the dual variable system (19). Each link corresponds to a cycle and a dual variable.

The potential computational advantage of the dual variable method lies in the
reduction of the size of the discrete Navier-Stokes system from N+ L to L equations
and unknowns. Although the sparsity of the dual variable system (18) is less than that
of the primitive system (5)-(6), the decrease is slight. The maximum number of nonzero
couplings per equation increases from 7 in system (5)-(6) to 9 in system (18). Since
any implementation of the method depends strongly on such imponderables as solution
algorithm, data structure, computer architecture, etc., it is not possible to state unequivo-
cally that the dual variable method will always produce dramatic reductions in running
times. However, it is quite natural to expect that, "all other things being equal," the
slight increase in the complexity of the dual variable system is more than offset by its
decrease in size. Moreover, apart from any computational advantage the method may
have, it provides additional insight into the physics of compressible flow through a
novel interpretation of that phenomenon in terms of network concepts.

5. Example: aircraft cavity. Aircraft that are used for observation sometimes have
cavities or compartments that open directly to the atmosphere. Figure 5 illustrates a
two-dimensional model of such a cavity with dimensions as indicated. The blockage
in the cavity simulates instrumentation used during the observations. The spoiler ahead
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13.75’

FIG. 5. Flow region for aircraft cavity.

of the cavity opening is used to divert the air flow so as to stabilize the flow in front
of the instrumentation. We indicate a solid spoiler, although a porous spoiler may also
be used. We assume the aircraft is flying at mach 0.75 and an altitude of 37,000 feet.
The ambient pressure of 2.7 psi is specified at the downstream flow region boundary,
and upstream the inlet velocity profile is given by:

u=750{(Y/0.417)1/7, 0--< y--< 0.417,
1, y_-> 0.417,

where y is the distance from the aircraft skin. All walls are assumed to be no-slip walls.
The flow region was subdivided into N 1167 flow cells and there are N 1167

unknown pressures. The number of unknown velocities is L= 2206. The primitive
system (5)-(6) is of dimension L+ N 3373 while the dual variable system (19) is of
dimension L 2206. Note that the former has at most 7 nonzero elements per row,
while the latter has at most 9 nonzero elements per row.

Figure 6 illustrates the streamlines in and around the cavity door. Figure 6a shows
two attached vortices downstream of the spoiler or fence. These vortices separate in
Fig. 6b and the downstream vortex is shed from the aircraft skin in Figs. 6c and 6d.

(a) (b)

(c) (d)

FIG. 6. (a) Streamlines at times .005 sec; (b) at time .010 sec; (c) at time .015 sec; (d) at time .020 sec.
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THE SECOND IMMANANTAL POLYNOMIAL AND THE CENTROID
OF A GRAPH*

RUSSELL MERRISt

Abstract. Let G be a graph. The Laplacian matrix, L(G), is D(G) A(G), where D(G) is the diagonal
matrix of vertex degrees and A(G) is the adjacency matrix. The second immanant of an n-by-n matrix
A (a0.) is

dz(A)= X(o’) fi ato-(t),
cr.S t=l

where g is the irreducible character of S. corresponding to the partition (2, 1,. ., 1). The paper concerns
various algebraic and combinatorial aspects of the eoetficients Ck(G) in the "dE-polynomial"

dz(xI-L(G))= (--1)kCk(G)X"-k.
k=O

For example, the effort to better understand c,_l(G) leads to a new definition of "centroid point". One
appendix lists the dE-polynomials for all graphs on six vertices while a second gives a BASIC program to
compute the dE-polynomial.

Key words. Laplacian matrix, permanent, centroid point, adjacency matrix, invariant

AMS(MOS) subject classifications. 05C05, 05C50, 15A15

1. Introduction. Let G V, E) be an undirected graph without loops or multiple
edges, with vertex set V={1,2,..., n} and edge set E. The Laplacian matrix L(G)
associated with (this labeling of) G is an n-by-n matrix. The (i, j) entry of L(G) is
d(i), the degree of vertex i, when i=j; it is -1 when {i,j} E, and 0 otherwise. Two
different labelings of G result in permutation similar Laplacian matrices. Indeed, G1
and G2 are isomorphic graphs if and only if L(G1) is permutation similar to L(GE).
It follows that any similarity invariant of L(G) is a property of the graph G, hence
the extensive interest in "spectra of graphs". (See, e.g., [4].)

It was proposed in [15] to seek invariants which are more specific to permutation
similarity. That paper initiated a serious study of the so-called Laplacian permanental
polynomial, per (xI-L(G)). (Permanental polynomials of adjacency matrices had
received attention earlier [4, pp. 34-36].) While the permanental polynomial is generi-
cally preserved only under monomial similarity (the good news), it is computationally
intractable (the bad news) 18]. (In spite ofthis difficulty, Isabel Faria [5] has discovered
a simple relationship between the multiplicity of 1 as a permanental root of IL(G) I,
and the "star degree" of G. See 5.)

It is the purpose of this paper to introduce a compromise between per and det.
The second immanant of an n-by-n matrix A (a0) is defined by

(1) d2(A)= E X2(tr) fi ate(t),
Sn t=

where X2 is the irreducible character of S, corresponding to the partition (2, 1"-2). In
particular, XE(tr)- e(tr)[F(tr)-1], where e is the alternating character and F is the

* Received by the editors September 24, 1984, and in revised form November 1, 1985. This work was
supported in part by the National Science Foundation under grant DMS-8300097.

f Department of Mathematics and Computer Science, California State University, Hayward, California
94542.
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number of fixed points. Define the "dE-polynomial" of G by

(2) d2(xI L( G)) co( G)x" c(G)x"-1 +... + (-1)"c,(G).

Since d2 is an immanant [10], the similarities which preserve the dE-polynomial form
a group which contains the invertible monomial matrices as a subgroup. As this
subgroup is maximal in the (complex) general linear group (see [6] for a short proof),
it follows that the dE-polynomial is generically preserved only under monomial
similarities (the good news). Moreover, if the time to compute the determinant of an
n-by-n matrix is of the order n3, the time to compute d2 is of the order n4 (more good
news) 16].

There are some reasons to prefer the Laplacian matrix to the computationally
simpler adjacency matrix. For one thing, L(G) is positive semidefinite symmetric of
rank -<_n- 1. (The rank of L(G) is equal to n- 1 if and only if G is connected.)
Generally speaking, immanants match up well with positive semidefinite matrices (the
value being the length of a "decomposable symmetrized tensor"). Moreover, d2 is zero
on a positive semidefinite matrix A if and only if A has a zero row (and column) or
rank A < n- 1 12]. In addition, the greater complexity of L(G), when compared with
the adjacency matrix, suggests there may be fewer "algebraic accidents" [9].

2. Preliminary observations. First consider the d2-polynomial of a general n-by-n
matrix A (a0). Denote by Qk,,, the collection of nCk k-element subsets of { 1, 2, , n}.
For X Qk,,,, let A[X] be the k-by-k principal submatrix of A corresponding to X.
Denote by A{X} the n-by-n matrix whose (i, j) entry is given by

ao if and j X,
A{X}=

ij otherwise,

where 80 is the "Kronecker delta". Then A{X} is (permutation similar to) the direct
sum of A[X] and the identity matrix of size n- k.

The coefficient, Ck(A), of (--1)kxn-k in the expansion of dE(XI-A) can be obtained
in a manner which bears some similarity to the computation of its counterpart in the
characteristic polynomial. Namely, it follows from (1) that

(3) Ck(A)= dEA{X}.
X Qk,

Denote by Sx the subgroup of Sm consisting of those permutations which individually
fix all the integers not contained in X. Then Sx is naturally isomorphic to Sk (acting
on the k elements of X). Since each element of Sx has n- k more fixed points than
the corresponding element of Sk, and since the corresponding permutations have the
same signs, it follows from (1) and (3) that

(4) Ck(A)= E (dEA[X]/(n-k) detA[X]).
X Qk,

(Note that the "dE" in (3) corresponds to a character of S, and operates on n-by-n
matrices, while the "dE" in (4) corresponds to a character of Sk and operates on k-by-k
matrices. This kind of complication does not arise with det or per because both e and
1 remain irreducible upon restriction.)

Suppose B (bi) is a k-by-k matrix, k->_2. Since dE(B) weights the term corre-
sponding to tr S, in det B by the factor (F(tr)- 1), it follows that

k

(5) dE(B) b, det B(i)-det B,
i=1
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where B(i) is the submatrix of B obtained by deleting row and column i. Continuing
from (4), we have (for k_-> 2)

Ck(A) Y ( , ax,x, det A[X]( i) + n k-1) det A[X])
XQk, i=1

(6) 2 ax,x, detA[X](i) +(n-k-1)qk(A)
X k,n i=1

=( (txa,)detA[X])+(n-k-1)qk(A),
where qk(A) is the coefficient of (--1)kX"-k in the characteristic polynomial det (xI A).

We now specialize to the case A L(G), rewriting (6) as

(7) Ck(G)=(n-k-1)qk(G)+ ( d(t))detL(G)[X],XQk_I, tX

where qk(G)= qk(L(G)). If G is a regular graph, then d(t)=r, say, 1-< t=< n, and we
obtain

(8) Ck( G) n k- 1)qk(G)+(n k + 1)rqk-l( G).

In this case, the dE-polynomial affords no information not already contained in the
characteristic polynomial of L(G). We can say even more. Denote by A(G) the
adjacency matrix corresponding to G, A(G) D(G)- L(G), where D(G) is the
diagonal matrix of vertex degrees.

THEOREM 1. Suppose G1 and G2 are two regular graphs. Then the following
are equivalent: (i) det (xI- L(G1)) det (xI L( GE)), (ii) dE(XI- L( G))
dE(xI-L(G2)), (iii) det (xI-A(G1))=det (xI-A(GE)).

Proof. The equivalence of (i) and (ii) follows from (8) and the fact that (8) can
be used to express the qk(G)’s in terms of the Ck(G)’s. Assume (iii) holds. Since the
degrees of the two polynomials are the same and the coefficients of x"- are the same,
G1 and G2 have the same number of vertices and the same number of edges, and
hence the same degree, r, of regularity. Substituting (x r) for x in det (xI / A(G1))
det (xI + A(G2)) gives (i). Reversing the steps shows that (i) implies (iii). [3

It follows from Theorem 1 and previously published work that there exist non-
isomorphic graphs with the same (Laplacian) dE-polynomial. For example, the two
graphs in [4, Fig. 6.4] both afford the following polynomial (computed to 6 figures on
the Hayward Cyber using the program in Appendix II):

11X 12 528x1 + 11400x1 146112x9 / (1.23514E6)x (7.23264E6)x7

+ (2.99626E7)x6- (8.79944E7)x + 1.80372E8)x4- (2.48519E8)x3

+ (2.13664E8)x2- (9.82057E7)x + (1.59252E7).

We now abuse the language and also denote by D(G) the degree sequence of G,
i.e., D(G)=(d(1),d(2),...,d(n). If e={i,j}E, let De(G) be the edge-deleted
degree sequence obtained from D(G) by deleting d(i) and d(j). Denote by ak the kth
elementary symmetric function and define ak(G)= ak(D(G)). Finally, for k_->3, let

bk(G)= E ak-2(De(G)).
eE
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THEOREM 2. Let G be a graph with n vertices and m edges. Denote by L( G) the
Laplacian matrix of G and write

Then

and

d2(xI- L(G))= (--1)kck(G)xn-k.
k=0

co(G)= n-1,

Cl(G) (n- 1)al(G)= 2m(n- 1),

c2(G)=(n-1)a2(G)-m(n-3) (n_->3),

c3(G) (n 1)a3(G) (n 3)b3(G) 2(n 4) T(G) (n_-->4),

cn(G) d2(L(G)) 2mK(G),

where T(G) is the number of triangles (cycles of length 3) in G, and K(G) is the number
of spanning trees in G (i.e., the complexity of G).

Proof. It follows from (1), with A xI L(G), that co(G) x2(id) the degree
of X n-1. The coefficient Cl(G) is x2(id) times the trace of L(G)=(n-1)al(G)=
2m(n- 1). If n _-> 3, contributions to x"-2 come from two sources. The first of these is
cr id, accounting for the (n 1)a2(G) term. The second source is the set of transposi-
tions which interchange the vertices constituting an edge. In this case, the value of X2
is -(n-3).

Contributions to c3(G) come from three sources: (n- 1)a3(G) is contributed by
tr id, -(n 3) b3(G) arises from the transpositions which interchange the "endpoints"
of an edge, and the remaining term comes from the 3-cycles r (ijk) for which {i, j},
{j, k} and {i, k} are all edges. The value of X2 on a 3-cycle tr is e(tr)[F(cr)-l]=
l[(n- 3)- 1] n-4. But, the inverse of a 3-cycle is also a 3-cycle, i.e., each triangle
in G makes both a clockwise and a counterclockwise contribution (giving at the office
and at home). Finally, since the (i,j), (j, k), and (i, k) entries of L(G), corresponding
to the edges ofthe triangle, are all -1, the "contribution" is negative (perhaps explaining
the previously noted generosity). In any event, the total contribution to c3(G) from
the 3-cycles is (-1)32( n 4) T( G).

This brings us to c,(G). From (3), c,(G)= d2(L(G)). From (5), since L(G) is
singular,

c(G) d(i) det (L(G)(i)).
i=1

But, from the "matrix-tree" theorem, det (L(G)(i))= (G), for all i.
Of course, the roots of d2(xI- L( G)) are also graph-theoretic invariants. It is

proved in [14] that these "d-roots" lie in the Gershgorin disks and in [11] that the
real d2-roots lie in the interval [0, A ], where A is the largest eigenvalue of L(G).

We conclude this section with some inequalities for Ck(G). The first of these is
suggested by Theorem 2.

THEOREM 3. Let G be a graph on n vertices. Denote by ak( (3) the kth elementary
symmetric function ofD(G) and by Ck( G) the coefficient of (--1)kx"-k in the polynomial
d2(xI L(G) ). Then 0 <- Ck G n 1 ak(G).

Proof Since L(G) is positive semidefinite symmetric, all the terms in (7) are
nonnegative. On the other hand, applying Hadamard’s determinant inequality to the
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principal submatrices, (7) becomes

Ck( G) <-- n k 1)ak( G) + ,
XQk-l,n

(n k 1)ak(G) + kak(G).

d(t)) I-I d(i)
tX iX

THEOREM 4. Let G be a graph on n vertices. Let G’ be a spanning subgraph of (3.
Then Ck(G)>--_Ck(G’), k=0, 1," ", n.

Proof. Suppose G V, E) and G’= V, E’). Let G1 V, E\E’), so that (31 is a
graph on the same vertex set as G and G’. The set of edges of G1 consists precisely
of those edges of G which are not edges of G’. Then L(G)- L(G’)+ L(G1). If A and
B are any two positive semidefinite hermitian matrices of the same size, det (A + B) >-
det A+ det B. Therefore, the result follows from (7). [-1

COROLLARY 1. Let G be a graph on n vertices. If k >-1,

(9) Ck(G)<-(nk) nk-2[n(n--k)(n-1)+ k(k- 1)].

Moreover, if G is connected, then Ck( G)>--max Ck( T), where the maximum is taken over
all the spanning trees, T, of G. Finally, for connected (3,

(10) dE(L( G)) c.( G) >- 2(n 1),

with equality if and only if G is a tree.

Proof. It follows from Theorem 4 that Ck((3)<---Ck(gn), where K, is the complete
graph. Since

it follows from (8) that

qk(K.)=nk(n-l)k

k
+(n-k+l)(n-1)nk-1 n 1

k 1

=() nk-E[n(n-k)(n-1)+k(k-1)]

For a connected graph G, it follows from Theorem 4 that Ck((3)>= Ck(T) for any one
of its spanning trees, T. The characterization of trees in (10) is a consequence of
Theorem 4 and the formula for c,(G) in Theorem 2. l-1

3. The coefficients ek(G). In this section, we obtain an explicit graph-theoretic
characterization of the coefficients Ck(G) in the (Laplacian) dE-polynomial of (3. We
begin with (7). A. K. Kel’mans (see [2, Thin. 7.5] or [4, Thm. 1.4]) showed how to
compute qk(G)= qk(L(G)). Consider all edge-subgraphs F of G which have k edges
and are forests. Then

(11) q(G)=Ep(F),
F

where p(F) is the product of the numbers of vertices in the connected components of
F. To obtain a graph-theoretic characterization of Ck((3), it remains to consider

(12) ( , d(t)) det L(G)[X].
XQk_I, tX
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Following the treatment in [2], we make use of the fact that L(G)- I(G)I(G)’, where
I(G) is the vertex-edge incidence matrix of G. Let E- {el, e2,’’’, e,,} be the edges
of G. Orient each edge (i.e., make it a directed edge) arbitrarily. Then I(G) is the
n-by-m matrix with (i, j) entry equal to +1 if vertex is at the "positive" end of ej,
-1 if is at the "negative" end of ej, and 0 otherwise. In particular, each column of
I(G) contains exactly two nonzero entries. Then L(G)= I(G)I(G) t, and this equation
is independent of the orientation of the edges. It follows from the Cauchy-Binet
theorem for the expansion of the determinant that

(13) det L(G)[X]= det I[X]Y]2,
YEQk-l,m

where I[XIY] is the (k-1)-square submatrix of I(G) corresponding to the rows in
X and columns in Y.

Poincar6 proved that any square submatrix of I(G) has determinant equal to 0,
1 or -1. Moreover [2, Lemma 7.4] det I[XIY is nonzero if and only if the edge-
subgraph to which Y corresponds (which we will also call Y) is "X-distinguished" in
the following sense:

DEFINITION 1. Let G-(V, E) be a graph with n vertices and m edges. Suppose
n > t->_ 1 and let X be a t-element subset of V. (In our application, k-1.) Then
the edge-subgraph Y Vo, Eo) of G is X-distinguished if it satisfies the following four
conditions:

(i) o(Eo)= t;
(ii) X c Vo;
(iii) Y is a forest;
(iv) Vo\X contains exactly one vertex from each connected component of Y.
It follows from (13) and Poincar6’s result that det L(G)[X] comprises a count of

the number of edge subgraphs of G which are X-distinguished. Denote this number by
s(X), i.e.,

Define

s(X) det L(G)[X].

r(X)= d(t).
t=X

Then we have proved the following result.
THEOREM 5. Let G V, E) be a graph with vertex set V { 1, 2,. , n} and edge

set E -{el, e2,"’’, era}. Denote by L( G) the Laplacian matrix of G and write

Then, for k >-_ 2,

(14)

d2(xI-L(G))= (--1)kck(G)x"-k.
k=O

Ck( G) (n k- 1)qk( G) +

where qk G) is given in (11).

r(X)s(X),
XEQk-l,n

Example 1. We will implement (14) to calculate c3(G) for the graph in Fig. 1.
The computation of Y. r(X)s(X) is carried out in Table 1, where "X 12" represents
X--{1, 2} and X-distinguished edge-subgraph 12 is Y-( Vo, Eo), where Eo {el, e2}
and Vo { 1, 2, 6} is the subset of V consisting of the "endpoints" of the edges in Eo.
The computation of qa(G) is carried out in Table 2, where "F-123" denotes the
edge-subgraph F with edge set {e, e2, e3} (and vertex set {1,2,3,6}), a tree with
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2 4

el

5
e6 6 e5

FIG.

4-vertices. Note p(F)= 156. Hence, from (14), c3(G)=592+2(156)=904. (This is
graph 19, m 7, in Appendix I.)

It is clear from Example 1 that Theorem 5 is not a useful computational device.
Indeed (see Example 2 below) we can usually obtain c3(G) much more easily from
Theorem 2. The point, of course, is that Theorem 5 is for general k while Theorem 2
involves only a few values of k. It remains an open problem to achieve a better

12
13
14
15
16
23
24
25
26
34
35
36
45
46
56

TABLE

X-distinguished edge-subgraphs

12, 16, 26
13,36
14, 17, 46, 67
15, 17, 56, 67
12, 13, 14, 15, 16, 26, 36, 46, 56
13,23
14, 17, 24, 27
15, 17, 25, 27
12, 13, 14, 15, 16, 23, 24, 25, 26
34, 37
35,37
23,34,35,36
45,47,57
24, 27, 34, 37, 45, 46, 47, 57, 67
25, 27, 35, 37, 45, 47, 56, 57, 67

s(X) r(X)

10
11
10
10
7

11
10
10
7

11
11
8
10
7
7

s(X)r(X)

3O
22
40
40
63
22
40
40
63
22
22
32
3O
63
63

total" 592

F p(F)

123 4
124 4
125 4
127 6
134 6
135 6
136 4
137 8
145 6
146 4
147 6

TABLE 2

F

156
157
167
234
235
236
237
245
246
247
256

p(F)

257
267
345
346
347
356
357
367
456
467
567

p(F)

4
6
4
4
4
4
4
6
4
4
4
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understanding, in general, of these graph-theoretic invariants. To some extent, this
goal is accomplished for c,_l(G) in the next section.

Example 2. Let G be the graph in Fig. 1. We compute ca(G) by means of Theorem
2. So, D(G) (2, 2, 1, 2, 2, 5), aa(G) 216, T(G) 2, and

b3(G)= )-’, E d(i)= E (2m-E d(i))ecE i:e ecE ice

=2m2- d(i)=2m2- d(i)2=2(7)2-42-56.
ecE ice i=1

Thus, Ca(G)= 5(216)-3(56)-2(2)(2)=904.
We conclude this section by using Theorem 5 to give a second proof that cn (G)

2mK(G). From (14),

c,( G) -q,( G) + Z r(X)s(X).
Xc

Since L(G) is singular, q,(G) det L(G) 0. Consider a fixed but arbitrary selection
X of n- 1 vertices, i.e., X consists of all but one of the vertices in V. We are looking
for X-distinguished edge-subgraphs Y Vo, Eo). Therefore X c Vo and either Vo X
or Vo V. But, if Vo X, then o(Vo) o(Eo) and Y cannot be a forest. Thus, Vo V
and Y must be a tree. So, s(X)--K(G), while r(X) is the degree of the vertex not
contained in X. Finally,

X (x)s(x)=(G) X (x)
X Qn-l,n X Qn_,n

(G) d(i)=2m:(G).
i=1

4. Vertex moments and centroids. In 1, we argued that Ck(G) is a "natural"
graph-theoretic invariant, for so it seems from an algebraic point of view. Theorem 2
leaves open the possibility that Ck(G) may even be (marginally) natural from the
combinatorial viewpoint, but Theorem 5 might easily be viewed as closing the door
on this possibility.

In this section, we use Theorem 5 to determine another (natural, even interesting)
interpretation for c,_l(G). We begin with the special case that G is a tree.

DEFINITION 2. Let G (V, E) be a tree. For each i,j V, define l(i,j) to be the
distance from to j, i.e., the length of the unique path in G from vertex to vertex j.
For each V, the moment at is

M(i)= d(j)l(i,j).
j#i

THEOREM 6. Let G=(V, E) be a tree with Laplacian matrix L(G). Denote by
cn-( G) the coefficient of (-1)"-x in the d2-polynomial, d2(xI-L(G)). Then

c,_( G) ., M( i).

This result is an immediate consequence of Theorem 8 below.
Example 3. Shown in Table 3 are the six trees on six vertices. Each vertex is

labeled with its moment. In all cases, of course, the number of edges is 5. The symbol
refers to the number of the corresponding tree among the graphs on (m 5 edges

in Appendix I.
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TABLE 3

Graph

13 13

13 13

13

13 70

15

190 15 9 82

15

11 86

17

13 I 13
21t 21 10 94

19

15 11 1123 8 98

17 13 13 17
25C -- -- . , G25 7 110

DEFINITION 3. Let G V, E) be a tree with vertex set V {1, 2, , n} and edge
set E. Then vertex is a centroid point of G if M(i)=minjvM(j).

In Table 3, Graphs 9, 10 and 13 have unique centroid points while Graphs 7, 8
and 11 each have two (adjacent) centroid points.

It turns out that the name "centroid point" has already been preempted in the
literature. (See, e.g., [7, Chap. 4].) A branch at vertex of a tree is a maximal subtree
containing as an endpoint. (The number of branches at is d(i).) The weight at
vertex i, w(i), is the maximum number of edges in any branch at i. In the graph theory
literature, is a centroid point if w(i)= minjv w(j). In the next result, we establish
that these two definitions of "centroid point" are equivalent.

THEOREM 7. Let G V, E) be a tree. Suppose V. Then M(i) min v M(j) if
and only if w(i) min v w(j).

Proof Each pair of adjacent vertices, and j, of a tree divides the tree into two
"intervals". To be precise, let W(i,j)= {v VIv #i but the unique path from v to j
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passes through i}. Define ff’(i,j)= W(i,j)t_J {i}. Then ff’(i,j) is a branch at and V
is the disjoint union of W(i,j) and W(j, i).

Observe that

M(i)= d(v)l(i, v)
vi

E d(v)l(i,v)+d(j)+ E d(v)l(i,v),
W(i,j) W(j,i)

M(j)= E d(v)[l(i, v)+ l]+ d(i)+ E d(v)[l(i, v)- l]
W( i,j) W(j,i)

=M(i)+[ d(v)- d(v)].l(i,j) re lYC’(j,i)

So for adjacent vertices and j,

(15) M(j)- M(i)= E d(o)- , d(v).
’(i,j) /’(j,i)

Let G(i,j)=(ff’(i,j), E(i,j)) be the subgraph of G with vertex set ff’(i,j) and edge
set equal to the set of edges of G which join two vertices of W(i,j). Then

E d(v)=2o(E(i,j))+l.
’( i,j)

Thus,

(16) M(j)-M(i)=2[o(E(i,j))-o(E(j, i))].

It is known that there are at most two weight centroid points and that, if there
are two, they are adjacent. Suppose, first, that there are two, say ul and u2. Then
w(ul) 1 + o(E(u2, u)) and w(u2) 1 + o(E(u, u2)). Since w(u) w(u2), it follows
from (16) that M(u)= M(u2). Let v{ul, u2}. Without loss of generality, we may
assume v W(u, u2). Then w(v)> w(u). It suffices (in this case) to prove M(v)>
M(u). Let io u, il,. ., ik V be the successive vertices along the unique path from
u to v. Then o(E(u2, u)) w(u)- 1 < w(i)- 1 o(E(Ul, il)), i.e., the longest branch
at i is the one on which u lies (not the one on which i2 lies). Hence, w(i2)
o(E(i,i2))+l,...,w(v)=o(E(ik_,v))+l. Since o(E(u2, ul))<o(E(ul, i))<
o(E(il, i2))<’’" < o(E(ik_, v)), it follows from (16) that both w and M are strictly,
monotonically increasing from u to v.

The proof in the case of a single weight centroid point is very similar.
DEFINITION 4. Let G V, E) be a graph with n o(V) > 2. Let i, j V and take

X={v VIvi and vj}. The support of {i,j} in G is s(i,j)=the number of X-
distinguished edge-subgraphs of G.

Suppose, for example, that G is a tree on n vertices. Then o(E) n 1. To compute
the support of two vertices and j, we count the number of X-distinguished subgraphs
that can be obtained by deleting an edge of G. If the deleted edge does not lie on the
path from to j, then both and j lie in the same component of the resulting subgraph
and it is not X-distinguished Vo\X c { i, j}, with equality if the deleted edge does not
separate from j). If, on the other hand, the deleted edge does lie on the path from
to j, then the resulting subgraph is X-distinguished. Thus, for trees, s(i,j)= l(i,j).

If G is a connected graph which is not a tree, consider one of its spanning trees
T. Obtain subgraph T’ by deleting one of the edges on the path from to j in T. Call
T’ a disconnection of and j. Then s(i,j)= the total number of different disconnections
of and j.
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DEFINITION 5. Let G (V, E) be a graph. For each i V, the moment of is

(17) M(i)= d(j)s(i,j).
jev
j

(Note that this reduces to Definition 2 when G is a tree.)
Example 4. Let

G- /
Then G has 8 spanning trees. For example, s(1, 2) 5. The five (1, 2)-disconnections are

(i)

(ii) [
:

[ [
+ I Z/

(iii)

Of course, s(1,2)=s(1,4)=s(2,3)=s(3,4). It can be shown that s(2,4)=4 and
s(1, 3) 8. Thus, M(1) 3.5+2.8+3.5 46 M(3), while M(2)= M(4)=
2.5+3.4+2.5=32.

THEOREM 8. Let G (V, E) be a graph with Laplacian matrix L(G). Denote by
c,,_l(G) the coefficient of (-1)’-ix in the d_-polynomial, d2(xI-L(G)). Then

c,_,( G) Y M( i),
iV

the moment sum of the vertices of G.
Proof Suppose V= {1, 2,..., n}. From (14),

c._,(G) Z r(X)s(x)
XQn-z,n

(d(i)+d(j))s(i,j)
i=I j=i+1

1/2(d(i)+d(j))s(i,j)
i=lj=l

j#i

i=lj=l i=1
j#i

5. Some open problems. A. It is natural to want to extend the notion of centroid
point to graphs G which are not trees. It is not obvious how to extend the weight
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definition. The moment definition, on the other hand, admits two candidates. A centroid
point might be defined as a vertex with minimum moment in the sense of (17). On the
other hand, at least for connected graphs, we might define centroid points to be those
vertices for which

d(j)f(i,j)
jeV

is minimized, where f(i,j) is the minimum distance from to j in G. How different
are these two definitions when G is connected?

B. Let R(G)-{Pl, pE,"" ", Pn} be the roots of dE(xI- L( G)). As mentioned in
2, R(G) lies in the union of the Gershgorin disks, and the real p’s lie in the interval

[0, A] where A is the largest eigenvalue of L(G). Does Re(pi)[0, A] for i=

1, 2,..., n? Faria [5] defined a pendant star to be a maximal subgraph formed by
pendant edges all incident with the same vertex. The degree of a pendant star is one
less than the number of its pendant edges. The star degree of a graph is the sum of
the degrees of its pendant stars. Is the star degree of G always a lower bound for the
multiplicity of 1 in R(G)? (It is for all graphs on 6 vertices. See Appendix I.) What
is the exact relationship between R(G) and R(G’), where G’ is the dual of G? (For
example, if the multiplicity of 1 in R(G) is greater than one, does it always follow
that n 1 R(G’) ?)

C. Given n, m and k, can the graph G be characterized for which Ck(G) is a

maximum/minimum? For example, consider the set T(n) of trees on n vertices. Let
S T(n) be the star (with a vertex of degree n 1) and P T(n) be the path of length
n-1. Is Cn_l(S)n_l(T)n_l(P), for all T T(n)?

D. What is the "good" graph-theoretic description of Cn_E(G)?
E. Is s(i,j) a "good" way to define a distance between vertices and j?

Appendix I. Table 4 contains the coefficients of the dE-polynomial for the graphs
on n- 6 vertices. If

6

da(xI-L(G))= E (--1)keg(G)x"-k,
k=0

then c0(G) 5 for all G and cl(G) 10m where m is the number of edges of G. Thus,
these coefficients do not appear in the table. The symbol # indicates the graph number
in Harary’s tabulation [7, Appendix 1, p- 6], and D(G) is the degree sequence.

Appendix II. Equation (3) suggests that the computation of the dE-polynomial,
dE(XI- L( G)), is a two step process. One generates Qk,, and then evaluates daA{X}.
We do not claim any special insight into the generation of Qk, but we do have a
"fast" algorithm for evaluating dE.

Using (1), the time to compute d2 is clearly exponential in the size of the matrix.
A similar problem arises in the case of the determinant. Of course, fast algorithms
exist for determinant based (ultimately) on the fact that det (A)-0 whenever A has
two equal rows. Unfortunately, this "fact" is unavailable for any ofthe other immanants.
(If A has three equal rows, dE(A)-0.) Our algorithm uses (5) to convert the problem
into one involving determinants.

What follows is a BASIC program to compute dE(xI-A), for any real, n-by-n
matrix A, 3-< n <_-12. Lines 5-65 are the preliminaries; lines 109-265 involve inputing
the matrix. Lines 2000-2370 and 3050-3190 generate Qk,. Lines 2500-2650 set up
A{X}. Lines 4300-5270 compute dEA{X} using (5) and row reduction. Line 3040 is
the summation step in (5), and the output is produced in lines 275-460 and line 3200.
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TABLE 4

rn : D(G) c2 ca c4 c5 c6 d2

0 0 0 0 0 0 0

12, 0 2 0 0 0 0

2 2, 12, 0
2 14, 0

19 4 0 0 0
24 8 0 0 0

2 2, 03
3 3, 13, 0

22, 12, 0
4 2, 14, 0
5 16

51 18 0 0 0
51 32 6 0 0
56 36 6 0 0
61 50 14 0 0
66 64 24 0 0

4, 14, 0 98 104 49 8 0
3, 22, 1, 0 103 94 24 0 0

24, 0 108 112 32 0 0
3, 2, 13, 0 108 122 57 8 0
23, 12, 0 113 132 54 0 0
23, 12, 0 113 136 65 8 0
3, 15 113 146 88 20 0
22, 14 118 160 98 20 0
22, 14 118 160 101 24 0

13
5
6

9
3
4
11
2

15
10
8

12
14
7

5, 15 160 240 185 70 10
32, 22, 0 170 220 80 0 0
4, 22, 12, 0 170 244 149 30 0
32, 2, 12, 0 175 258 157 30 0
4, 2, a 175 282 224 82 10

3, 23, 1, 0 180 282 179 30 0
3, 23, 1, 0 180 286 192 40 0
32 14 180 296 237 86 10
25, 0 185 310 225 50 0

3, 22, 13 185 316 250 72 0
3, 22, 13 185 320 265 94 10

3, 22, 13 185 320 268 98 10
24, 12 190 340 285 90 0
24, 12 190 344 296 96 0
24, 12 190 344 301 110 10

15
4
5
3

21
2
6
18
14
12
19
20
13
11
16
10

34, 0 252 416 192 0 0

5, 22 13 252 488 471 216 36
4, 3, 22, 1, 0 257 478 376 96 0
33, 2, 1, 0 262 502 398 96 0
4, 24, 0 262 512 429 108 0

4, 3, 2, 13 262 526 515 232 36
32, 23, 0 267 540 477 132 0
3-, 23, 0 267 544 492 144 0
33, 267 550 543 240 36

4, 23, 12 267 560 572 258 36
4, 2, 12 267 564 592 288 48
32, 22, 12 272 580 584 224 0
32, 22, 12 272 584 607 276 36
32, 22, 12 272 584 608 274 36
31, 22, 12 272 588 625 300 48
32, 22, 12 272 588 628 304 48
3, 24, 277 618 678 318 36
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TABLE 4 (continued)

m 4# D(G) C2 C3 4 C5 C6 d2

9 3,24,
8 3, 24,

17 26
7 26

277 622 696 344 48
277 622 701 360 60
282 648 729 324 0
282 656 777 420 72

3
4
18
2

22
19

24
11
15
21
8

10
20
17
9
12
16
14
13
23
6
5
7

4, 33, 1, 0 359 812 760 224 0
42, 23, 0 359 826 836 280 0

5,3,22, 12 359 860 1018 564 112
4, 32, 22, 0 364 860 889 294 0
42,22, 12 364 884 1054 580 112
5, 24, 364 904 1121 642 126
34, 2, 0 369 898 970 336 0

4,32,2, 12 369 918 1110 608 112
4,32,2, 12 369 918 1111 606 112

34, 12 374 944 1120 512 0
34 12 374 952 1176 640 112

4, 3, 23, 374 962 1226 692 112
4, 3, 23, 374 962 1227 702 126
4, 3, 23, 374 966 1252 750 154
4, 3, 23, 374 970 1274 784 168
33, 22, 379 996 1296 736 112
33, 22, 379 1000 1322 794 154
33, 22, 379 1000 1323 794 154
33, 22, 379 1004 1342 824 168
4, 25 379 1010 1372 860 168
32 24 384 1040 1421 858 126
32 24 384 1044 1453 938 196
32 24 384 1048 1473 970 210
32 24 384 1048 1478 988 224

18
4
3
19
22
2

24
11

17
20
8
10
21
15
13
14
12
16
9
5
7
6

23

42, 32, 2, 0 481 1328 1618 604 0
5,33 12 481 1362 1868 1168 256
5, 4, 23, 481 1376 1972 1328 320
4, 34, 0 486 1376 1749 720 0

42, 32, 12 486 1396 1934 1200 256
5, 32, 22, 486 1420 2075 1408 336
42, 3, 22, 491 1454 2144 1440 320
42, 3, 22, 491 1454 2145 1452 336

5, 3, 24 491 1474 2256 1616 384
4, 33, 2, 496 1494 2228 1456 256
4, 33, 2, 496 1498 2260 1538 336
4, 33, 2, 496 1502 2288 1604 384
4, 33, 2, 496 1502 2289 1604 384
42 24 496 1512 2364 1752 448
42 24 496 1520 2416 1856 512
35, 501 1546 2408 1700 384

4, 32 23 501 1552 2450 1772 384
4, 32 23 501 1556 2484 1862 464
4, 32 23 501 1556 2485 1872 480
4, 32 23 501 1560 2512 1928 512
34, 22 506 1600 2609 1984 480
34 22 506 1600 2614 2008 512
34 22 506 1604 2643 2076 560
34 22 506 1608 2665 2112 576
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TABLE 4 (continued)

rn D(G) C2 3 4 5 C6 d2

15 43, 32, 0
52, 24

4 5, 4, 32, 2,
21 43, 3, 2,
3 5,34,
5 5, 4, 3, 23

12 42, 33,
14 42, 33,
18 43, 23
6 5,33,22
2 5, 33, 2

11 42, 32, 22
16 42 32 22
20 42 32 22
13 42 32 22
19 42 32 22
9 4, 34, 2
8 4, 34, 2

10 4, 34, 2
7 36
17 36

618 1984 2865 1350 0
618 2056 3504 2880 864
623 2086 3484 2680 720
628 2130 3599 2766 720
628 2144 3693 2934 810
628 2154 3788 3172 936
633 2184 3778 2936 720
633 2188 3812 3030 810
633 2198 3909 3294 972
633 2204 3930 3264 864
633 2208 3969 3382 990
638 2252 4093 3494 990
638 2252 4096 3512 1008
638 2256 4129 3594 1080
638 2256 4130 3606 1098
638 2260 4160 3680 1152
643 2310 4320 3840 1152
643 2310 4325 3866 1188
643 2314 4356 3942 1242
648 2368 4557 4230 1350
648 2376 4617 4374 1458

10 13 45, 0
6 5, 42, 32,
5 52, 32, 22
9 44, 3,

5, 42, 3, 22
11 44, 22
4 5, 4, 33, 2
3 5, 4, 33, 2
10 43, 32, 2
8 43,32,2

15 43,32,2
2 5,35
14 42, 34
7 42,34
12 42 34

770 2800 4625 2500 0
780 2980 5715 5000 1500
780 3004 5952 5648 1920
785 3034 5894 5170 1500
785 3058 6133 5860 1980
790 3112 6317 6060 2000
790 3122 6398 6236 2080
790 3126 6439 6368 2220
795 3180 6629 6604 2280
795 3180 6632 6622 2300
795 3184 6668 6728 2400
795 3190 6715 6820 2420
800 3248 6944 7168 2560
800 3248 6949 7196 2600
800 3252 6987 7308 2700

4 5,44,1
52, 4, 32, 2

5 5, 43, 3, 2
2 52, 34
9 45, 2
3 5, 42, 33
6 5, 42, 33
8 44,32
7 44, 3

952 4064 8725 8450 2750
957 4166 9418 10224 3960
962 4230 9683 10602 4070
962 4240 9784 10880 4224
967 4298 10000 11180 4400
967 4308 10103 11482 4598
967 4312 10146 11628 4752
972 4376 10422 12072 4928
972 4376 10425 12090 4950

12 3 52, 43, 2
2 53,33

52, 42, 32
4 5,44,3
5 4

1149 5548 13974 16860 7200
1149 5562 14148 17496 7776
1154 5636 14514 18156 8064
1159 5714 14936 19056 8640
1164 5792 15360 19968 9216
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TABLE 4 (continued)

m D(G) 2 3 C4 C5 6 d2

13 53, 42, 3
2 52, 44

1361 7272 20586 28440 14040
1366 7360 21128 29760 14976

14 5 42 1588 9256 28800 44064 24192

15 5 1830 11520 38880 64800 38880
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:10 CL.F.:
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5’.3 IF H.::::: OF.: 1".:>.2 01": I’..I.::::::.I1..,IT0::1..::, THEI’..1 50
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5 F’R HT" :BY COi_LIi"IN:5;, F’R NT

;:_"0 FOR ..’r= TO i-..1
:1:30 FOR I=:1 TO I".1
:140 I..1F’l.li" Fi,::
5r.’ I..1E::.::T
5.’. IF H:::5 ’]HEN PRINT :GOTO :i.?.

..6;.:..’ PF.:iHT"I:::: COLI_I1.’II’.-I" ..T’ "E:OF.:F.:ECI-LY Et..iIEF.:ED"
6.;:_:: 1...1F’UT

:16,::i. ]:F LEFT:,::Ft::., ).::::::.... I’q" THEN :169
6.’_"; F’R I.]T "EHTER COLLii"II’q" .3’ "FIGF 1...i,
66 GOTO :1:?;0
169 IF ..]":::1...I THEN PF.:INT"ENTE:F.: COLUI"11...I" ’.5+:1 ",
:170 NE::.::T ..T
:175 IF I’.E::.;5.: THEN ;d ,.:’ =._,

’,.-’.’,E PF.: i’..tT F’F.: I’.IT" ’.:_; TH :.; Fi.:" PF.: t’.,IT
:1:9r3 FOR I=:1 TO I’.
200 FOR ..T=:1 .tO H

.’1"1’2 0 F’F.: I’..ITTFIB .5-1 I-q J
220 NE::.::T ..T
2:30 F’F.: NT F’F:. t’.1,’f
250 t..1E;:.:’,T
260 PF.: tqT PF.: t..iT t’.IPUT F$.
26.=_; F LEFTS F’.., =" t’.l" THEH :10
275 PF.: NT F’F.: I’..IT PF.: 11...IT "LET D2 ::’.: -F SJI’1 C i.::: ".$.::’.: ’1",:: N-i’::: ::,, THEN" "PR I’qT
"280 PF.’. I’qT "C r"=" i"4- :1.,
28.5 FOF.: I=:l. TO H:C,:::I::,=C,:::i.::,+Ft,::I., I):t’]E’,:.::’i
2’::r:’ F’R NT" C =" :1-1...i :$.C
29.5 I’1:=
::-::00 i’1=1’1+
:3:1.0 GOTO 200E
::’,20 IF 1"1..’.:1".] THEN 300
460 F’R NT" C" 1...I; "=" C,:: N "1f.i
480 NPUT" FI1..iOTHER"
.:1.90 iF LEFT$ $. :l.::,="’r’" THEN :10
5EO END
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199@ REM GENERFTE SUBMSTRICES
208@ FOR I=l TO M:’-.’.!(1)=i:NEXT
2@15 IF M=N THEN
2@3@ II=M-I
@35
2E4@ !(M)=i
2EE 12=M-2
2@65 i2=i2+I
2878 (M-l)=I2
2888 IF M=2 THEN
2898 13=M-3
2895 13=13+I
2188
2118 IF M=3 THEN 25E@
2128 14=M-4
2125 14=I4+I
2138 Q(M-3)=I4
2148 iF M=4 THEN
2158 15=M-5
2155 15=15+i
2i6@
2i78 iF M=5 THEH 2588
2 IE:@ 6=M-6
2 I::5 16=16+i
2198 Q(M-5)=i6
22@8 IF M=6 THEN 253E
221@ 17=M-7
2215 i7=IV+l
2228 Q(M-6>=i7
2238 IF M=7 THEN 2588
2248
2245 IE:=IE:+I
2258 Q(M-7)=i8
2268 iF M=8 THEN 2588
2278 19=M-9
2275 i9=i9+I
2288
2298 IF M=9 THEN 2588
2388 I@=M-I@
2385 I@=I@+l
2318
2328 IF M=I@ THEN
2338 Jl=M-ll
2335 Jl=Jl+l
2348
2358 IF M=li THEN 25@8
2368 J2=M-12
2365 J2=J2+
2378 Q(M-ll
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2580 FOR I=i TO M
251EI FOR J=l TO M
2520
2522 NEXT J
25;:24 NEXT
2540 iF M=N THEN 3030
255E FOR I=i TO M
2560 FOR J=M+I TO N
2570 E i., J :,=E
2580 NEXT J
2590 NEXT
260e FOR i=M+i TO N
26iE FOR J=l TO H
2620 E i., J )=0
23e IF J=I THEM E(i.,J)=i
2648 NEXT J
2650 NEXT

304B C(Fi)=C(’i)+Z2
3345 IF I’l=H THEM
3050 ON [,i-1 GOTO 31SO.,3170.,3160.,315Ei,Si4E.,313E.,312e.,311C.,31CQ.,3QgO.,308Q
318E IF J2<J1-1 THEN 2365
3etaO F Jl<iO...-1 THEN 2335
3100 iF I0<I9-1 THEN 23E15
311E IF Ig<IS-I THEN 2275
312El IF I8<I7-1 THEN 2245
3130 iF iT<iG-1 THE[.i 2215
3i4E IF 16<I5-1 THEN 2185
3i5 IF i5<I4-1 THEN 155
3160 IF i4<i3-1 THEN 2125
3170 iF I3<i2-1 THEN
3186 IF I2<I1-1 THEN
3190 F i14N THEN 2035
3230 PRiNT"C ’.;M.; ’=:’.;C(Fi)(-1)’[t,I., :GOT0320
430E1 FOR I=1 TO N
4310 FOR J=l TO H
4326 B(i, J::,=E(I., J)
4330 NEXT J
4340 NEXT
435E1 K=H
4363 GOSU’,
4381 92=-9
4390 T=O:REM COitF’UTE E,::T.,Ti:,COFSCTOR
4400 T=T+
4405 IF E,::T.,T)=O THEN 457E
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4410 FOR I=l TO t..l
,4420 FOR ..T=I TO
44:30 IF I..’.].’::.T THEN 4500
4440 iF ..T<>T THEH 447’
4450 B,’.IT., T>=E(T., T>
4460 GOTO 45i0
,4470 B
448 GOTO 45i0
4500 B(I.,J>=E<
4510 NEXT j
4520 HE’,:’:’,T
4 ......0 GOSUB 5000
4560
4570 IF T<H THEN 4400
4e00 GOTO 3040
5000 B=
5010 FOR J=l TO K:REM HOH2ERO LER

5030 IF B<R.,J><>O THEN 5070
540 NEXT R
5050 B=O RETURN
5070 iF R=J THEN 5140

5090 P
5100 B
5 10 B (J., L =F’ L
5120 HEXT L
5130 D=-D

5150 I J=K THEN RETUR.H
5155 IF B,:J.,J>=I THEH 5200
5160 FOR U=J.,1 TO K

51:30 NEXT U
5190 9 J., J
5200 FOR Q=J+I TO K
5.,,=._ F ,: K., J =3 THEH 5250
5210 F’=B<Q.,
5220 FOR G=J TO K
5230 B
5240 HEXT G
5250 NEXT Q
5260 NEXT .]
5270 RETURN
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THE BANDWIDTH MINIMIZATION PROBLEM FOR CATERPILLARS
WITH HAIR LENGTH 3 IS NP-COMPLETE*

BURKHARD MONIENf

Abstract. It is shown that the Bandwidth Minimization problem remains NP-complete even when
restricted to "caterpillars with hairs of length at most three". "Caterpillars" are special trees; they consist
of a simple chain (the "body") with various simple chains attached to the vertices of the body (the attached
chains are called "hairs"). A previous result in the literature shows that the bandwidth of caterpillars with
hairs of length at most 2 can be found in O(n log n) time (this Journal, 2 (1981), pp. 387-393). We also
show that the bandwidth problem is NP-complete when restricted to caterpillars with at most one hair

attached to each vertex of the body. The proof is relatively straightforward and thereby also provides an

easier proof than found in (SIAM J. Appl. Math., 34 (1978), pp. 477-495) that the bandwidth problem is
NP-complete for trees with maximum vertex degree 3.

Key words, computational complexity, NP completeness, graph theory, bandwidth minimization

AMS(MOS) subject classifications. 68C25, 68E10

1. Introduction. An n n matrix A is said to have bandwidth k if all of its nonzero
entries are on one of the 2k+ 1 diagonals consisting of the main diagonal and the k
diagonals on either side of this main diagonal. The Bandwidth Minimization problem
is to determine, for a given n n matrix A and integer k, whether there exists an n n
permutation matrix P such that P. A. pT has bandwidth k. This problem is of great
importance in many engineering applications. Typically, the matrices arising in these
applications are sparse and matrix operations like inversion and multiplication can be
performed with a considerably improved computation time if all the nonzero entries
are placed within a small "band". Therefore the problem of reducing the bandwidth
of a matrix has been of great interest during the last 20 years. A number of heuristics
have been presented in the literature [1], [4], [7], [11]. The Bandwidth Minimization
problem itself is NP-complete [13] implying (to our present knowledge) that there
exists no efficient algorithm for solving this problem. The Bandwidth Minimization
problem is equivalent to the following graph problem: given a graph G and an integer
k, determine whether there exists a linear layout of G (i.e. integer labeling of the
vertices of G such that each vertex receives a unique integer) such that the maximum
difference between adjacent vertices is bounded by k. The problem has been studied
also under a graph theoretic viewpoint [3], [4], [5], [6]. It is known to remain NP-
complete even for trees with maximum vertex degree 3 [8].

On the positive side, dynamic programming algorithms have been described [ 10],
[ 14] that can determine whether a graph G with n vertices has bandwidth k in at most
O(nk) steps. It is also known that bandwidth 2 can be determined in linear time [8]
and that there is a O(n log n) algorithm to determine the bandwidth of "caterpillars
with hairs of length at most two" [2]. A "caterpillar" is a special kind of tree consisting
of a simple chain C (called the "body" or "backbone") with an arbitrary number of
simple chains attached by coalescing an endpoint of the added chain with a vertex in
C. (The attached chains are called "hairs".) Caterpillars are shown in Fig. 1.1. A
caterpillar has hairs of length at most k if all of the simple chains attached to the body
have length at most k.

* Received by the editors June 12, 1985, and in revised form July 7, 1985.
f Fachbereich 17-Mathematik, Universitit Paderborn, 4790 Paderborn, West Germany.
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(a) (b)

FIG. 1.1. (a) A caterpillar with hairs of length at most 3. (b) A caterpillar with at most one hair attached
to every vertex in the body.

We show that the Bandwidth Minimization problem is NP-complete even when
restricted to caterpillars with hairs of length at most 3 and that it is also NP-complete
when restricted to caterpillars with at most one hair attached to every vertex in the
body. Caterpillars of this latter type are a special kind of trees with maximum vertex
degree 3. Our proof of NP-completeness is relatively straightforward and thereby
provides an easier proof for the NP-completeness of the bandwidth problem on trees
with maximum degree 3 [8].

In the case of caterpillars with at most one hair attached to any vertex of the
body, we do not bound the length of the hairs. Caterpillars with maximum degree 3
and with hairs of length at most k have bandwidth at most k and therefore their
Bandwidth Minimization problem can be decided in polynomial time [9], [13].

We have said above that the Bandwidth Minimization problem for caterpillars
with hairs of length at most 2 is solvable in polynomial time whereas for caterpillars
with hairs of length at most 3 it is NP-complete. The proof in 2 will show that the
border line we have determined is even sharper. We will see that the Bandwidth
Minimization problem is NP-complete for caterpillars which have at most one node
to which hairs of length 3 are attached, while all the other nodes of the body have
hairs of length at most 1.

In [12] a weaker form of the NP-completeness result was shown. In the above
paper a caterpillar is encoded as a chain with numbers attached to every node of the
chain, i.e., the binary encoding is used for the length of the hairs. It is shown that with
respect to this encoding the Bandwidth Minimization problem for caterpillars is
NP-complete. In this interpretation a caterpillar is not viewed as a graph but as an
instance of a special kind of scheduling problem. Note that under this encoding the
length of the hairs may grow exponentially in the length of the encoding. In our paper
we use the usual graph encoding.

We formulate the two results of this paper as theorems.
THEOREM 1. The Bandwidth Minimization problem for caterpillars with hairs of

length at most 3 is NP-complete.
THEOREM 2. The Bandwith Minimization problem for caterpillars with at most one

hair attached to every vertex in the body is NP-complete.
We will prove Theorem 1 in 2 and Theorem 2 in 3.

2. Caterpillars with hairs of length at most 3. We prove Theorem 1 by reduction
from the Multiprocessor Scheduling problem [8, p. 238]. That is, given a set T=
{tl, t2,’" ", tn} of tasks (the ith task in T has execution time t,), a deadline D, and a
number m of processors, we construct a caterpillar C and an integer k such that C
has bandwidth k if and only if the tasks in T can be scheduled on the m processors
to satisfy the deadline D. The multiprocessor scheduling problem is strong NP-complete
and therefore we can assume that all the t, are polynomially bounded in n.
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We first construct two portions of the caterpillar called "barrier" and "turning
point". They are shown in Fig. 2.1.

The barrier of height p and the turning point of height p both have bandwidth p
(a corresponding layout for the turning point of height 4 is shown in Fig. 2.2). Our
construction of the caterpillar C is based on the fact that in every optimal layout of
the turning point both nodes a and g either belong to the first half of the layout or
to the second half of the layout, i.e., in every optimal layout of the turning point the
backbone has to be folded. Because of the importance of this behaviour for our
construction, we will give a careful proof below. Let Tp denote the turning point of
height p. Tp has exactly 6p + 1 nodes.

LEMMA 1. Let Tp--(V, E), letcr: V{1, ", 6p+ 1}bealayoutwith Ir(i)- r(j)l-<
p for all {i,j}E E and let p>-4. Then either tr(a), tr(g) < 3p+ 1 or or(a), or(g) > 3p+ 1.

Proof. Let Vo, , v6 be the nodes with tr(vi) i. p + 1, 1 -< _-< 6. We want to show
first that Vo-vl v6 form a path in Tp and that v3 d holds.

Tp is connected and every path in Tp has length at most 6. Since or(v6)- cr(vo)= 6p
and since Ir(i)-r(j)l-< p for all {i,j}E E, it follows that on the path from Vo to v6
any two adjcent nodes have the difference p with regard to or. Therefore Vo- Vl v6
is the only path from Vo to v6 of length 6. Every path of length 6 has the node d as
its centre. This implies d v3.

We have seen that or(d)= 3p + 1 holds. This implies that tr can associate one of
the numbers 1,...,p or 5p+2,...,6p+l to a node u only if there exists a path of
length at least 3 from d to u. This is true only if u is one of the nodes a, g or an
endpoint of a hair of length 3 or a point on a hair dangling at the node f. Now let us
assume that there exists an optimal layout tr with tr(a)< tr(d)< tr(g). We have to
show that this is not possible.

tr(a) < tr(d) implies that not all the hairs of length 3 can be stretched out to the
left. But then or(a)=< p must hold and p- 1 hairs of length 3 together with the nodes
a, b, c determine 3p nodes which have to be laid out to the left of d. The hairs of
length 1 dangling at c and the two remaining neighbours of d have to get values from
[3p+2,4p+ 1] with respect to tr. This is not possible since (p-2)+2>p holds for
p->_4. I3

The caterpillar C which we associate to the instance Y =({tl,"" ", t,}, D, m) of
the Multiprocessor Scheduling problem is shown in Fig. 2.3. We will see later that the
number p has to fulfill some condition. We consider only instances Y with i__1 ti
D.m. It is well known that the Multiprocessor Scheduling problem is strong NP-
complete also when restricted to instances of this class.

(a) (b)

FIG. 2.1. (a) The barrier of height p. (b) The turning point of height p, p 0 mod 2.

e o o- e o o --o o "-Ld::::
hairs of length

FIG. 2.2. An optimal layout of the turning point of height 4.
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t!
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p/l
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p-1 p-I p-I
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_
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FIG. 2.3. The caterpillar C, A 2. {m. (D+ 2)-2}, p has to be chosen in an appropriate way.

The caterpillar C consists of an encoding of the sequence of execution times and
of some "frame" encoding m "holes" each of size D. These two parts are connected
by the turning point of height p / 1 / 2n. The behavior of the turning point will force
every layout with bandwidth p/ 1/2n to place these two parts one upon the other.
It is a matter of technical details to show that a layout with bandwidth p / 1 / 2n exists
if and only if each of the holes can be filled by using all the nodes of the blocks
encoding certain execution times (this in turn is equivalent to the instance having
a solution).

We will give a formal proof in the remainder of this section. In order to make
our description less cumbersome, we use some special terminology. The part of the
body from the outermost barrier to the turning point we call "ground line" and the
part from the turning point to the other end of the body we call "sweeping line". The
"ith block", 1 <_-i<_-n, consists of the chain of length ti of the sweeping line together
with the hairs attached to it. The ground line consists of A -m(D/ 2)/ 1 nodes.

LEMMA 2. If Y has a solution then C has bandwidth p + 1 / 2n.
Proof We will define the corresponding layout explicitly. Set/3 =p + + 2n.
(i) The ground line is stretched as far as possible, i.e. the points of the ground

line get the numbers i./3 / 1, 1 _-< _-< A. The hairs of the barriers are laid out in such a
way that always half of them lie to the left of the center of the barrier and half of
them to the right of the center.

(ii) For the turning point we use an optimal layout which associates with a and
g the numbers A./3 + 1 and A.fl +2. This layout uses the numbers A./3 +j, 1 _-<j_--<
6 /3 / 1, for the nodes of the turning point and has bandwidth/3. All the remaining
nodes (i.e. the nodes of the sweeping line and its hairs) get numbers smaller than
.#+.

(iii) Y has a solution and therefore there exist sets/, 1 -<_j -<_ m, such that (.Jjm=l/
{1, , n} and ixj ti- D for all j 1,. , m. For every i, if / then the nodes of
the ith block are placed between the jth and the (j+ 1)st barrier (in the case j m:
between the mth barrler and the turning point). Note that by doing so we put exactly
D.p nodes between any two barriers. Of course we must bear in mind that adjacent
nodes have to get numbers at most/3 apart. But it is clear that this can be done and
we can reach in this way a partial layout which fulfills the bandwidth constraint and
which has the property that between any two nodes of the ground line there are laid
out so far exactly p nodes.

(iv) Now we have to lay out the chains between the blocks. Every chain has
length A 2. (A- 3). It can be laid out in such a way that the bandwidth constraint
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is fulfilled and that between any two nodes of the ground line there are placed exactly
two nodes of the chain (see Fig. 2.4). That is, after we have laid out all the chains
exactly p / 2n nodes are placed between any two nodes of the ground line, i.e., C has
bandwidth

LEMMA 3. Ifp > 2n d + 4) and ifC has bandwidthp + 1 + 2n, then Y has a solution.

Proof. We will show first that every layout tr of C with bandwidth/3 =p / 1 / 2n
numbers the ground line up to symmetry in exactly the same way.

The turning point of height/3 is a subgraph of C. The turning point has 6/3 + 1
nodes and its longest path is of length 6. Therefore every layout with bandwidth
has to assign to its nodes 6/3 + 1 consecutive numbers. Because of Lemma 1 we know
that the ground line and the sweeping line both lie with respect to tr either to the left
of the turning point or to the right of the turning point. Therefore the nodes of the
turning point have to get the smallest 6/3 + 1 numbers or the largest 6/3 + 1 numbers.
We will assume that the turning point is laid out at the right end.

Furthermore the barrier of height/3 is a subgraph of C. This barrier has 2/3 + 1
nodes and its longest path is of length 2. Therefore tr associates to its nodes 2/3 / 1
consecutive numbers. No edge can cross this barrier and therefore we can conclude
from the considerations made above that tr associates with the barrier of height/3 the
numbers 1, , 2/3 / 1. The current situation is shown in Fig. 2.5.

Note that C has

6fl+l+(D-1).m+m.(2p+3)+4n+n.A+p. ti={6+m.(D+2)}, fl+l
i=1

nodes. We already know the numbers associated with the barrier of height/3 and the
turning point. Between these two subgraphs the remaining {m. (D/2)-2}./3-1
nodes have to be laid out. The barrier of height/3 and the turning point are connected
by the groundline, i.e. by a path of length m. (D + 2)- 2. Therefore tr has to associate
with the ith node of the ground line 1-<_ _-< A, the number (i-1)./3 / 1.

We have seen that every layout with bandwidth/3 numbers the ground line and
the turning point in the same way up to symmetry. We have to show now that the
sweeping line can be encompassed into the "frame" given by the ground line and its
barriers only if the scheduling problem Y has a solution.

Note that the centers ofthe barriers have got the numbers Z =/3. (D+ 2) j +/3 + 1,
j 0,. rn 1. Set Z,, -/3 (D+ 2) m //3 + 1. We say that task i, 1 _-< _-< n, belongs to
the jth interval, 1 _-<j _-< m, if and only if Z_I < tr(u) < Z holds for some node u of the
sweeping line belonging to the ith block (i.e. to the subgraph of C encoding the
execution time ti). We will show first that a task cannot belong to two diilerent intervals.

Let us assume that the task belongs to two different intervals. Then there exist
two adjacent nodes u, v belonging to the sweeping line and to the ith block such that

FIG. 2.4. Layout of the chain connecting two blocks.

layout

barrier turning point

2B+I r+l r+6B+l

FIG. 2.5. Layout tr, m. (D + 2) ft.
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61

Zj-O Zj Zj+B

FIG. 2.6. The situation where a task belongs to two intervals.

tr(u) < Zj < tr(v) holds for some j. Let w be the node with tr(w)= Zj. This situation
is illustrated in Fig. 2.6. Set 81=tr(u)-(Z-fl) and 82=Zj+/3-tr(v). {u,v}EE
implies tr(v) tr(u) <-/3 and therefore 8! + 82 >=/3 holds. There are p 1 hairs dangling
at each of the nodes u and v and 2p hairs dangling at w. At most/3- 8 hairs dangling
at u can get numbers smaller than Zj-/3 and at most/3- 82 hairs dangling at v can
get numbers greater that Z+/3. Therefore 5+2p+2(p-1)-(fl-8)-(/3-82)=>
3 + 4p-fl 2 + 3p-2n nodes have to get numbers between Zj-/3 and Z +/3. This is
not possible since 2/3 + 1 3 + 2p + 4n and p -> 8n hold.

Thus we have shown that every task belongs to exactly one interval. Let/, 1 -<j -< m
be the set of tasks belonging to the jth interval. We have to show that ij ti <= D holds
for all j 1,..., m. tr has associated numbers between Z_-fl and Zj +/3 to all the
nodes belonging to a task from/. (there are p. Y.itj ti such nodes) to the hairs of the
two barriers (4p nodes) and to the corresponding part of the groundline (D + 5 nodes).
This implies

and therefore

p" ti+4p+D+5<-(D+4)(p+2n+l)+l

2n(D+4)
ti<-Dd l"1

ilj p

Theorem 1 follows from Lemma 2 and Lemma 3.

3. Caterpillars with at most one hair attached to every vertex in the body. The proof
of Theorem 2 does not differ much from the proof of Theorem 1. This time we use a
reduction from the 3-Partition problem [8, p. 224] which is a special case of the
Multiprocessor Scheduling problem where only instances ({tl,’", t,}, D, m) with
n 3m and D/4 <- ti <-- D/2, 1 <- <= n, are considered. We construct our caterpillar C
again by using barriers and a turning point. The barriers and the turning point have
to be defined now in a different way. They are shown in Figs. 3.1 and 3.2.

The barrier of height p has (2p- 1)2 nodes and the length of its body is equal to
4p-4. It has bandwidth p (note that p-(4p-4)+ 1 (2p-l)2) and it is easy to see

2p-2 2p-2

FIG. 3.1. The barrier of height p.

maximal

hair

length
2p-2
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FIG. 3.2. The turning point of height p, , 4p- 5.

that the strategy which lays out all hairs of the left part as far as possible to the left
and all hairs of the right part as far as possible to the right leads to an optimal layout
(in doing so we have to go from the outer hairs to the inner hairs and to pay attention
to the bandwidth restriction). The turning point of the height p also has bandwidth p.
This time we get an optimal layout by stretching all hairs of length 2A- 1 to the left
and organizing the layout of the two barriers and the two chains such that both times
one barrier and one chain overlap. Furthermore it is not difficult to see that for p => 5
an analogue of Lemma 1 holds, i.e. for every layout with bandwidth p both nodes c
and to either belong to the left half of the layout or to the right half of the layout.

The caterpillar C which we associate this time to the instance =
({tl, ", t,}, D, m) of the 3-Partition problem is shown in Fig. 3.3. We can also apply
the proof of Lemma 2 with only technical changes in this case showing that if Y has
a solution then C has bandwidth p + 1 + 2n.

In order to prove the other direction we follow the proof of Lemma 3. Again the
ground line together with its barriers and its turning point defines a frame into which
the sweeping line together with its hairs has to be embedded. As in the proof of Lemma
3 we define the notion of a task belonging to some interval.

A simple calculation shows that a task belongs to exactly one interval if p-> 6n
holds. Let us assume that a task belongs to two intervals. Since the body of a barrier
has length 4p + 1 and since nodes of the sweeping line belonging to task are laid out
as well to the left as to the right of the center of the barrier, there are more than p2
nodes belonging to task laid out within the region of the barrier. This is not possible
if p >= 6n holds.

spaces

FIG. 3.3. The caterpillar C, A 2p{m. (D+4)-4}, p has to be chosen in an approrpriate way.
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A similar straightforward computation shows that if/, 1-<j-< m, denotes the set
of tasks belonging to the jth interval, then h t, -< D holds for all j= 1,..., rn
provided p fulfills p>=2n. (D+4). Thus we shown that if C has bandwidth
p + 1 + 2n and if p-> 2n. (D + 4) holds then Y has a solution. This completes the proof
of Theorem 2.

Acknowledgments. The author wants to thank I. H. Sudborough, O. Vornberger
and R. Schulz for the numerous stimulating discussions we had during the preparation
of this paper.
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A SPECTRUM ENVELOPING TECHNIQUE FOR ITERATIVE SOLUTION
OF CENTRAL DIFFERENCE APPROXIMATIONS
OF CONVECTION-DIFFUSION EQUATIONS*

MURLI M. GUPTA-

Abstract. When a convection-diffusion equation is discretized using the central difference scheme the
resulting coefficient matrix is not diagonally dominant whenever the convection terms are large. If this
system of linear equations is solved using the conventional iteration methods, the iterations often fail to
converge as some of the eigenvalues of the iteration matrix lie outside the unit circle C {z:lzl =< 1} in the
complex plane.

The eigenvalue spectrum of some of the iteration matrices lies inside the infinite strip $=

{z :lReal (z) < 1, [Imag (z)l < o}. An example is that of the method of simultaneous displacements or the
Jacobi method. In such cases, it is possible to enclose the eigenvalue spectrum inside an ellipse with major
axis on the imaginary axis and minor axis in the real interval (-1, 1). This ellipse is used to define a
convergent iteration. A practical computational algorithm is described to obtain such an iteration scheme.
Numerical examples show that the spectrum enveloping technique works well when the original iterations
diverge. When the original iterations converge the spectrum enveloping technique can converge even faster.

Key words, spectrum enveloping, iterative methods, eigenvalues, central difference scheme, convection-
diffusion equation, convection dominated flow
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1. Introduction. Consider the convection-diffusion equation

(1) Au + R O---u= f(x, y),
Ox

where A represents the Laplacian operator and R represents the Reynolds number or
the Pecl6t number.

When this differential equation is discretized at a mesh point (x, y) using central
difference approximation, one obtains the following finite difference equation:

(2) Ul + u2+ u3 + u4 4Uo+ (Rh/2)( Ul u3) hEfo,
where Uo represents the value of u at (x, y) and the subscripts 1, 2, 3, 4 represent the
four neighbouring values of Uo at (x + h, y), (x, y + h), (x- h, y) and (x, y- h), respec-
tively.

Equation (2) is defined on a set of K mesh points inside some two-dimensional
domain ft. Let w represent the vector of discrete values u(x, y) at the K mesh points.
The vector w is obtained from the linear system

(3) Aw-b,

where A is a K x K coefficient matrix and b is a K vector.
The method of simultaneous displacements, or the Jacobi method, for solving (3)

has the following form:

(4) Uo"+l)=’ 1+ Ul+U:+ 1- U3-[/4 --fo.
It is well known that the Jacobi method is convergent when the coefficient matrix A
is diagonally dominant [2], [7]. This happens when the mesh Reynolds number IRh/2[
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Department of Mathematics, The George Washington University, Washington, DC 20052. Currently

at Mathematical Reviews, Ann Arbor, Michigan 48107.
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is smaller than 1. In this case, other iteration techniques such as Gauss-Seidel and
SOR are also convergent.

In this paper we consider the case when the mesh Reynolds number is larger than
unity. This case represents the situation when the convection term ROu/Ox in (1)
dominates the diffusion term Au. In such cases, the coefficient matrix A loses its
diagonal dominance and the conventional iteration methods fail to converge. This
happens because some eigenvalues of the iteration matrix lie outside the unit circle
C-{z:lzl<-l}.

When the Jacobi iteration (4) is used to solve the linear system (3), the eigenvalue
spectrum has the property that it lies inside an infinite strip S=
{z: IReal (z) < 1, [Imag (z)[ < oo}; i.e., the real parts of all eigenvalues of the Jacobi
iteration matrix lie in the interval (-1, 1). In such a situation we can find an ellipse,
in the complex plane with major axis on the imaginary axis and minor axis on the
real interval (-1, 1), which envelops the eigenvalue spectrum of the iteration matrix.
If such an ellipse exists, then it is possible to define a new iteration method that is
convergent for all values of the mesh Reynolds number. The new iteration also works
when the basic iteration method used for solving (3) is convergent; in this case the
new method can converge even faster.

The spectrum enveloping technique used in this paper was proposed by de Pillis
[1]. Manteuffel [8] and Niethammer et al. [9], [10] give general results on elliptical
enveloping of spectra. General results for K-step iterative methods and higher degree
enveloping curves are given by Niethammer and Varga 10].

In the next section we examine the eigenvalue spectrum of Jacobi and other
iteration matrices. In 3 and 4, the spectrum enveloping technique is described and
tested for Jacobi iterations. In 5 we describe a practical algorithm for implementation
of this procedure. This algorithm is then used on two test problems. In the last section
we discuss the Gauss-Seidel method and its acceleration using the spectrum enveloping
technique.

2. Eigenvalue spectrum of the iteration matrix. The coefficient matrix A of (3) can
be split into A D+ E + F where D is a diagonal matrix, E is a lower triangular
matrix and F is an upper triangular matrix. The Jacobi iteration matrix is defined by
[], [7]:

J=-D-(E+F).
The successive over-relaxation (SOR) matrix is defined by

L,o=(D+toE)-l(-toF+(1-to)D), 0<to <2.

A special case of the SOR matrix is the Gauss-Seidel matrix obtained with to 1"

L=-(D+E)-IF.
The eigenvalue spectrum of these iteration matrices is denoted by {’}, " : + it/.

When R 0 in (1), i.e., when the governing ditterential equation is the Poisson
equation, all eigenvalues of the Jacobi matrix are real and are contained in (-1, 1).
The eigenvalue spectrum of the Jacobi matrix is also symmetric about the origin. The
Gauss-Seidel matrix has real eigenvalues lying in (0, 1). The spectrum of the SOR
matrix depends upon the relaxation parameter to and fills up the unit circle as the
value of to is increased.

The spectra of a test case are given in Fig. 1. This test case consists of a unit square
0 =< x, y _<- 1 which is covered by a uniform (N+ 1) x (N+ 1) mesh (mesh width h N-l).
A consistent ordering of mesh points is utilized to construct the coefficient matrix A
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EIGENVALUES OF ITERATION MATRICES (R=0)
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FIG.

[2], [7]. With a 9 x 9 mesh, the eigenvalues of the Jacobi iteration matrix (marked by
J) lie on the real line between -0.9238 and 0.9238; the eigenvalues of the Gauss-Seidel
matrix are marked by G; and the eigenvalues of the SOR matrix with to 1.5 are
marked by S.

When the value of R is nonzero in (1), the Jacobi eigenvalues ’(" :+ i/) remain
real and lie inside the interval (-1, 1) while IRhl<2. When IRhl>2, the eigenvalue
spectrum spreads into the complex plane. The real part se is found to lie in the interval
(-1, 1) and the maximum value of the imaginary part I/I increases as the value of
IRh increases. In Figs. 2 and 3 we present the Jacobi eigenvalue spectrum for the 9 x 9
test case with R 50, 200 and 5000. It is noted that these spectra remain symmetric
about both real and imaginary axes. Note also that the maximum value of [*/I is 1.3673
for R 50, 5.7552 for R 200 and 144.3361 for R- 5000. In each case the real part se

of every eigenvalue lies in the interval (-.47, .47).
When the Gauss-Seidel method is used to solve the linear system (3) for IRhl > 2,

the eigenvalue spectrum of the iteration matrix is found to lie mostly in the left half
of the complex plane. In Figs. 4 and 5 we present such spectra for the test case when
R -50 and R -200. We note that the maximum value of [sel is 1.8703 with R 50 and
33.1702 with R 200. The maximum values of [,/[ in these cases are 1.2634 and 5.2388
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EIGENVALUES OF JACOBI MATRIX (R=50,200)
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FIG. 2

respectively. It is observed that as IRhl increases, the Jacobi spectrum expands in both
vertical directions keeping I1 < 1 but the Gauss-Seidel spectrum expands mainly in
the horizontal direction with the absolute value of the real part increasing as ]Rhl
increases. The eigenvalue spectrum of the SOR matrix for IRhl > with to 1 looks
similar to the Gauss-Seidel spectrum.

When the above iteration methods are used to solve the system of algebraic
equations given by (2), the iterations generally converge when IRhl _-<2 and diverge
when Rhl > 2. In the next section we introduce a spectrum enveloping technique that
converges even when the basic iterations diverge.

3. The spectrum enveloping technique. In a recent paper, de Pillis [1] proposed a
technique to accelerate the convergence of an iteration scheme whose eigenvalue
spectrum lies in the infinite vertical strip S={z: [Real (z)[<l}. We describe this
technique as follows:

A basic iteration method for solving Aw b is defined by

(5) w.+ Bw. + Affb
where the coefficient matrix A is written as A Ao(I-B) and A is easy to find.
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The eigenvalue spectrum of the basic iteration matrix B is assumed to lie in the
infinite vertical strip S. This spectrum can be enveloped (embraced in [1]) by a
symmetric ellipse whose major semi-axis M lies on the imaginary axis and the minor
semi-axis rn lies on the real axis; -1 < rn < 1.

Next define two constants A and/ such that

(6) A=(m-M)/(m+M)

and/z is the unique root in (0, 1) of the quadratic equation

(7) (M + m)(1 + A/x 2) 2/,.

The new iteration scheme is defined as

(8) y.+2=(l+Al.z2)By.+l-At.t2y.+(l+Al2)Alb.
De Pillis [1] showed that the sequence {y,} converges whenever ]Real (’(B)) < 1. The
asymptotic rate of convergence is given by -logo/x. De Pillis also showed that the
sequence {y,} converges faster than the sequence {w,} whenever the enveloping
(embracing) ellipse has a nonzero eccentricity, i.e., A # 0. In fact, the sequence {y,}
converges even when the basic iteration scheme (5) is divergent assuming, of course,
that the real part of all eigenvalues of the matrix B lies in the interval (-1, 1).
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EIGENVALUES OF GAUSS- SEIDEL MATRIX (R=50)
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Clearly, the Jacobi, the Gauss-Seidel and the Successive Over-Relaxation methods
for solving the equation Aw b can be written in the form (5). The spectrum enveloping
technique can be implemented through the following steps:

(1) Find the eigenvalue spectrum of the basic iteration matrix B.
(2) If the real part of all eigenvalues of B is in the interval (-1, 1), find an

enveloping ellipse that contains all eigenvalues of B.
(3) Use the semi-axes M, m of the enveloping ellipse to define A,/..
(4) Compute the solution of Aw- b as follows:

Assume some initial approximations yo, Y. For n 0, 1, 2, compute using the
basic iteration scheme an intermediate vector

(9) Y-.+2 By.+ +Ab.

(10)

Linear combination of Yn+2 and y. gives the new approximation:

Y,+2 (1 + ,[,2)yn+2 hill, 2y,.
It is clear that the combination of (9) and (10) is equivalent to (8).

4. Eigenvalue spectrum ofthe Jacobi iteration. When the central difference approxi-
mation (2) of (1) is solved by Jacobi iteration, the sequence {w.} is convergent only



A SPECTRUM ENVELOPING TECHNIQUE 519

EIGENVALUES OF GAUSS- SEIDEL MATRIX (R=200)

5.2* - --
2.6+

-5.2* + + /

-33.2 -24.6 -16.1 -7.5 1.0

REAL AXIS

FIG. 5

when the value of IRhl is small. We consider the test problem 1 where the exact solution
of (1) is given by u(x, y) xy(1 x)(1 y); the domain is the unit square [0, 1 x [0, 1
which is covered by a uniform (N+ 1)x (N+ 1) mesh (N h-l). The iterations are
started from zero initial data and terminated when the maximum increment between
the successive approximations is either smaller than 10-4 (convergence) or is larger
than 100 (divergence). In Table 1, we give convergence and divergence data for the
test problem 1.

In each case listed in Table 1, the Jacobi eigenvalues lie in the infinite strip $ (see
Figs. 2, 3 for the case N 8). In fact, I:[ < 0.5. This means that the value of the
semi-minor axis m (on the real axis) can be taken to be any number in the interval
(0.5, 1). We chose m 0.6. The enveloping ellipse is given by

(11) (x/m)2+(y/M)2= 1.

The value of M, the semi-major axis, is taken such that all eigenvalues of the iteration
matrix lie inside the ellipse in (11): for any eigenvalue ’( se+ it/) of the matrix B,
(:/m)2+ (r//M)- < 1. The value of M is chosen such that

(12) M> mlrl[(m2- 2)-1/2.
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5O
100
200
5OO
1000
2000
5000

TABLE
Number of iterations for convergence

Jacobi iterations).

N

8 16 24 32

24* 41 58 102
10" 24* 119" 71
6* 10" 16" 25*
4* 6* 8* 9*
3* 4* 5* 6*
3* 3* 4* 5*
2* 3* 3* 3*

(* Divergence)

The semi-major axis M of the enveloping ellipse is such that (12) is satisfied for all
complex eigenvalues " of the iteration matrix B.

In Table 2, we give the dominant eigenvalues of the 9 x 9 test case. An enveloping
ellipse with rn =0.6, M R/IO satisfies (12) in each case. Corresponding values of h
and/z are obtained from (6) and (7). Since/x < 1, the iteration scheme defined in (9),
(10) is convergent. In Table 2 we also give the number of iterations required for a 10-4

convergence. It is noted that the spectrum enveloping method converges for all values
of R whereas the standard Jacobi diverged for all values of R-> 50 (N 8) as seen in
Table 1.

TABLE 2
Dominant eigenvalue and spectrum enveloping data

(N=8, m =0.6, M-R/10).

50
100
200
500
1000
2000
5000

Dominant eigenvalue

.4619 1.3673 -.8182 .9054

.4619 2.8495 -.9048 .9513

.4619 5.7552 -.9512 .9753

.4619 14.4265 -.9802 .9901

.4620 28.8635 -.9900 .9950

.4619 57.7343 -.9950 .9975

.4619 144.3361 -.9980 .9990

Number of
iterations

49
89
187
549
1211
2622
7419

5. A practical algorithm. In a practical situation, one does not know, a priori, the
location of the eigenvalue spectrum of the iteration matrix. In order to define the
enveloping ellipse, one must first locate the largest eigenvalue of the basic iteration
matrix B. If these eigenvalues lie in the infinite strip S {z: [Real (z) < 1}, then the
method of this paper would be applicable. If the eigenvalue spectrum of B lies outside
the set S, the spectrum enveloping technique could not be used.

We now describe a practical algorithm to locate the eigenvalue spectrum, to define
the enveloping ellipse and to carry out the new iterations. This algorithm consists of
three phases:



A SPECTRUM ENVELOPING TECHNIQUE 521

(13)

(14)

(15)

(16)

(17)

(18)

(19)

5.1. Phase 1: eigenvalue estimation.

(i) Carry out a small number ofbasic iterations (even if this process is divergent):

Initial vector Wo

W.+l Bw. +Ab

(we prescribed a maximum of 20 iterations).
(ii) Begin estimating the dominant eigenvalues of B" At the nth iteration,

(a) Compute successive ratios

r. -IIw,,/- w,,ll/llw.- w.-, II, n 2, 3, .
Sometimes alternate ratios might be used:

s. -(llw,,/- w.ll/llw,,_ w,,_=ll)

(we used the maximum norm).
(b) Continue iterations (13) until the ratios r, or the ratios s, settle down, i.e.,

for some tolerance 8 (we used .05).
(c) When the ratios (14) or (15) have settled down, take the value ofsuccessive

increment vectors

Wn+ Wn Wn Wn Wn Wn-2

at any two mesh points P and Q and define y, Y2, y3, z, g2, Z3 as follows:

y3=(w,,+l-W,,)(P),

Y2 w, w,-1)(P),

y=(w,,_-w,,_,)(P),

z=(w,,+-w.)(O),

z=(w.-w._)(O),

z=(w,,_-w._)(Q)

(we took P to be the point where [w,+l-w,I is largest; Q was one of
the neighbours).

(d) Compute den y2zl ylz2.

If den 0, go to step (i).
If den 0, compute

p (z3yl-y3z)/den, q (zzy3-YzZ3)/den.

(e) The dominant eigenvalues are roots of

st2 +pr + q 0.

Compute A p2 4q.
If A >= 0 (real roots), s [-/9 + ,,/]/2, r/= 0.
If A < 0 (complex roots), -p/2, r/= /-A/2.

(f) Test for acceptability of ’.
Compute 1’[ 4(2-" T2).
If It.- I’11/r. _-< e (acceptable), go to Phase 2.
If It. -Ill! r > or if I:l > 0.995, go to step (i)
(we used e 0.1).

(iii) If a suitable eigenvalue is not estimated in steps (i), (ii) in a preassigned
number of iteration, the computation is terminated.
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5.2. Phase 2: spectrum enveloping. When the dominant eigenvalue has been
computed, the enveloping ellipse is defined as follows:

(i) Define the semi-minor axis rn such that rn > [:l- (We chose

/ .o5 if I:1 < .9,
(20) m=

(l:l+ 1)/2 if[:l>_-.9,

with the provision that rn => 0.6.)
(ii) Define the semi-major axis M from (12)

M= mlnl(m-Il) -1/,
with the provision that M-> 1.

(iii) Compute h m M)/ m + M);

/. [1 -/{1- h(m + M)2}]/[h(m+ M)].

5.3. Phase 3: convergent iterations.
(i) Define initial vectors Yo,
(ii) Compute the numerical solution from (8)"

y.+2 (1 + A/z2)(By.+l +A b)- A/z2y..

6. Numerical examples. The first test problem is (1) with the exact solution
u(x, y)=xy(1-x)(1-y) in the unit square [0, 1]x[0, 1]. The right-hand function is
given by f(x, y)=-2[x(1-x)+y(1-y)]+ R(1-2x)y(1-y). As noted in Table 1, the
standard Jacobi iteration for solving the resulting system of algebraic equations diverges
whenever ]Rh is large. Using the algorithm outlined in the last section, we estimated
the dominant eigenvalues of the Jacobi iterations for N 8, 16, 24, 32 (N h-l). Once
a satisfactory estimate of " was obtained from Phase 1, an enveloping ellipse was
defined and convergent iterations begun from zero initial data. The number of iterations
required for convergence to a 10-4 tolerance are given in Table 3.

In Table 3, the entries marked with a J are the cases where the ordinary Jacobi
iteration is convergent (see Table 1) and the spectrum enveloping technique is compar-
able in efficiency. As discussed later, further improvements in computational efficiency
are possible in such cases. In all other cases, the Jacobi iterations diverge and the new
technique is quite effective. We note also that the number of iterations required for
convergence in the case of N 8 (Table 3) are much smaller than those in Table 2.
This is to be expected as the spectrum enveloping ellipses in Table 3 are obtained

TABLE 3
Number of iterations for convergence,

spectrum enveloping technique: Problem 1.

50
100
200
500

1000
2000
5000

N

8 16 24 32

29 36J 62J 106J
54 53 51 71J
124 343 67 95
240 154 90 84
916 302 355 151
905 838 419 277
2934 1586 1009 712
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using the algorithm outlined in 5 whereas the enveloping ellipses in Table 2 were
defined in an ad hoc manner.

The second test problem represents convection dominated flows"

(21) --e(tlxx + Uyy) + tlx O,

in [0, 1] x [0, 1] with boundary conditions

u(O, y) sin ary, u(1, y) 2 sin ry,
(22)

u(x, O)= u(x, 1)=O, O_-<y<_-l.

0<__x--<l,

This problem has been considered by Gartland [3] and Gupta et al. [6]. It is of great
physical interest when e is small. The differential equation (21) is equivalent to (1)
with R--1/e. The exact solution of (21), (22) is given by

(23) u(x,y)=[2ex-1)/2 sinhtrx+e’/2 sinh tr(1-x)] sin 7ry/sinh tr

where o"2
"/T

2 / 0.25/e2.
This problem was solved using a uniform (N/ 1) x (N+ 1) mesh for e -0.1, 0.01,

0.005 and 0.001. In Table 4, we give the number of iterations required by the Jacobi
method to either converge to 10-4 or diverge to 106 An asterisk indicates that the
Jacobi iterations diverged.

In Table 5, we give the number of iterations needed for convergence when the
algorithm described in 5 is used to solve the linear system corresponding to (21),
(22). It is noted that the spectrum enveloping scheme converges for all values of e

and N. When the standard Jacobi iterations are divergent (entries marked by * in

TABLE 4
Number of iterations for convergence or
divergence, Jacobi iterations" Problem 2

N

8
16
24
32
64

.01 .005 .001

50 15" 9* 5*
173 35* 15" 6*
348 258* 22* 7*
564 95 34* 8*
1716 230 164 13"

(* divergence)

TABLE 5
Number of iterations for convergence, spectrum

enveloping technique: Problem 2.

N

8
16
24
32
64

.01 .005 .001

52 100 221 1116
191 71 138 579
370 91 96 395
593 95 106 329
1785 253 165 267
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Table 4), the new iteration scheme converges fairly rapidly as expected. When the
Jacobi iterations are convergent (e.g., e=0.1; e=0.01 with N=32 or 64; e=0.005
with N 64), the new iteration scheme converges in about the same or slightly larger
number of iterations.

The spectrum enveloping ellipses in all cases in Table 5 used imaginary semi-axis
M of length ->1. In many of these cases, such as for e 0.1, the whole spectrum lies
on or near the real line. The dominant eigenvalue as computed using the algorithm
outlined in 5 for e =0.1, N 8 is 0.9022+0.2658i. With real semi-axis rn =0.9511,
one needs an enveloping ellipse with imaginary semi-axis M->0.8398. Using M
0.8398, we needed only 44 iterations for convergence which is a saving of 8 iterations.
Savings are much more pronounced for larger values of N. The eigenvalue spectra for
e 0.1, N-> 16 all lie on the real axis and any value of M (>0) would be satisfactory.
As seen in Table 6, using M 0.5 the spectrum enveloping scheme requires approxi-
mately 35 percent fewer iterations than using M 1.

Further improvements in the rate of convergence could possibly be obtained by
further reducing the value of M. However, this case (e =0.1) may not be of great
interest since most other iteration methods (Gauss-Seidel, SOR) would probably
converge much faster than the Jacobi method.

In the cases of practical importance, we usually find the eigenvalue spectrum to
lie away from the real line. In such cases, the conventional iterations often fail to
converge and the spectrum enveloping technique could be very effective.

7. Gauss--Seidel method. When the Gauss-Seidel method is used to solve the
system of linear equations (3), the eigenvalue spectrum of the iteration matrix is no
longer symmetric about the imaginary axis. In many cases the spectrum of the Gauss-
Seidel matrix lies outside the infinite strip S. Table 7 contains some of the dominant
eigenvalues for Problem 1. These eigenvalues are obtained using Phase 1 of the
algorithm given in 5. In only one case, viz. N 16, R 50, the spectrum enveloping
technique of this paper is applicable and the convergence is obtained in 26 iterations.

TABLE 6
Spectrum enveloping data for e 0.1" Problem 2.

N

16
24
32
64

Dominant eigenvalue
r/ m

.8100 0 .8600

.8633 0 9133

.8844 0 .9344

.8902 0 .9402

Number of iterations
M= M=.5

191 127
370 235
593 372
1785 1159

TABLE 7
Dominant eigenvalues of Gauss-Seidel matrix.

Problem 1.

N

16

5O
100
200
5O
100
200

-1.681 0.927
-8.192 1.472

-38.702 3.807
-0.866 0.262
-2.195 0.960

-11.313 1.390
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In the case of Problem 2, the eigenvalue spectrum of the Gauss-Seidel iteration
matrix is real for e 0.1 and any value of M would be satisfactory. Table 8 contains
the dominant eigenvalues of such iteration matrices. Also included is the number of
iterations needed for convergence using M- 1 and M 0.5. The number of iterations
needed by straight Gauss-Seidel method are also given for comparison. It is noted
that smaller values of the imaginary semi-axis M helps accelerate the convergence in
this case too.

The eigenvalue spectrum for smaller values of e fails to lie inside S unless N is
sufficiently large. The data for e =0.01 is given in Table 9. In this case, with N 24
the spectrum lies inside S and the acceleration method of this paper converges in 282
iterations although the standard Gauss-Seidel iterations are divergent. With N- 32
the Gauss-Seidel method converges in 28 iterations and spectrum enveloping technique
converges in 25.

8. Conclusions. We have presented a method of iteratively obtaining the numerical
solution of the convection-diffusion equation (1) for the cases when many of the
conventional iteration methods are divergent. The spectrum enveloping technique
presented in this paper requires that the real part of the eigenvalues of the basic
iteration matrix lie in the interval (-1, 1). When this condition is met, a spectrum
enveloping ellipse can be defined and convergent iterations obtained.

It is easy to prove that the eigenvalues of the Jacobi iteration matrix lie in the
infinite strip S {]Re ’] < 1} when the Reynolds number R is a large constant. We have
computationally verified that the Jacobi eigenvalues satisfy this condition even when
R is variable. In fact, this is true even when R takes randomly generated large values
at each mesh point.

When the spectrum of the basic iteration matrix lies outside the infinite strip S,
though to the left of Re (’)= 1, a scalar multiplication of the matrix equation can be
used to transform this problem into another whose coefficient matrix has its eigenvalue
spectrum lying within S. The spectrum enveloping algorithm described in this paper

TABLE 8
Convergence data for Gauss-Seidel iterations: Problem 2 (e 0.1).

N

8
16
24

.8514 0

.8144 0

.7503 0

Number of iterations
M M 0.5 G-S

30 31 25
110 29 89
239 104 184

TABLE 9
Convergence data for Gauss-Seidel matrix: Problem 2 (e 0.01).

N

8
16
24
32

Number of iterations

-8.203 1.467
-2.033 0.930
-0.716 0.878
0.136 0.741

M

*,
2.4713
0.7606

Spectrum
enveloping G-S

* Divergent
* Divergent

282 Divergent
25 28

* Spectrum enveloping not applicable.
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can be applied to the transformed problem. However, one must develop an algorithm
to compute the parameters of such a transformation. This will be the subject of our
future research.

The algorithm described in this paper is robust and has been applied to many test
problems. If the basic iterations are convergent, the spectrum enveloping method can
converge faster. This method is especially effective when the basic iterations fail to
converge.

The Jacobi iteration method is increasingly becoming popular because of its easy
adaptability to parallel processors. The spectrum enveloping algorithm is well suited
for parallel computation and can be used whether or not the original computational
scheme is convergent.

As for the accuracy of the computations, the spectrum enveloping algorithm
presented in this paper yields accurate numerical solutions of the algebraic system (3).
The numerical solutions exhibit typical oscillations when the convection is dominant,
i.e., when the coefficient R in (1) takes large values. This is the well-known property
of the central difference approximations [4], [5]. Alternative finite difference approxi-
mations of the convection-diffusion equation (1) have recently been proposed by Gupta
et al. [6]. These approximations have the property that they yield highly accurate
solutions (truncation error of order h4) and are stable (the eigenvalue spectrum of the
iteration matrix is real, lies in (-1, 1), and conventional iteration methods are appli-
cable).

It is well known that direct solvers can be used to solve the systems of algebraic
equations when the conventional iteration schemes are not convergent [5]. However,
the direct solvers require large memory and possibly large amount of computer time.
The spectrum enveloping technique presented in this paper can be used to circumvent
some of these difficulties.
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THE NULL SPACE PROBLEM I. COMPLEXITY*

THOMAS F. COLEMAN" AND ALEX POTHEN$

Abstract. The Null Space Problem (NSP) is the following: Given a x n matrix A with < n, find a

sparsest basis for its null space (a null basis). We show that columns in a sparsest null basis correspond to
minimal dependent sets of columns of A. Sparsest null bases are characterized by a greedy algorithm that
augments a partial basis by a sparsest null vector. Despite this result, (NSP) is NP-hard since finding a
sparsest null vector of A is .NP-complete. We prove that the related problem of finding a sparsest null basis
with an embedded identity matrix is NP-hard too. Finally, we study the zero-nonzero structure of sparsest
null bases.

Key words, null basis, null space, sparse matrix, bipartite graph, matching, matroids, conformal
decomposition
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1. Introduction and overview. The development of practical algorithms for the
Linear Equality Problem (LEP) is a fundamental concern in numerical optimization.
(LEP) can be expressed as

minimizef(x)

subject to Ax b.

Here f(x) is a nonlinear "objective" function f: n _>, and we assume that f is
twice-continuously differentiable. The matrix A has rows and n columns, < n, and
rank (A)= r.

Efficient algorithms to solve this problem are needed for two reasons" First, (LEP)s
result from mathematical models of several practical optimization problems. Second,
(LEP)s occur as subproblems of more general optimization problems. Nonlinearly
constrained optimization problems are often solved by linearizing the constraints and
solving a succession of resulting (LEP)s. Thus the generalized gradient method, the
augmented Lagrangian method, and the projected Lagrangian method to solve these
problems are based on efficient algorithms to solve (LEP)s.

One strategy for solving (LEP), the null space method, involves two phases: In
phase 1, a "feasible" vector y is determined that satisfies Ay b. In phase 2, y is
corrected by a vector z in the null space of A that decreases the value of f; that is,
Az O, and f(y + z) <f(y). We set y := y + z, and repeat phase 2 until f is small enough
in value, or no further reduction in its value can be made.

The correction z can often be chosen so that the algorithm converges at a quadratic
rate to a stationary point of f. Let N be a basis for the (n- r) dimensional null space
of A (a null basis), g(y)n the gradient of f at y, and H(y) the Hessian
matrix of f at y. We model f about the point y by a quadratic function, and choose
y + z to be the minimizer of this model function. This results in the system of equations

NH(y Np Ng(y),
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which is solved for the vector p, and then the correction z is computed from the
equation z Np.

The system of equations may be solved by computing a factorization of the
projected Hessian NrHN when n-r is small. For problems where n-r is large, an
iterative technique such as the conjugate gradient method may be used. This is a
simplified discussion which ignores several practical issues; Gill, Murray, and Wright
(1981) contains a more detailed discussion of (LEP).

Our concern will be with large-scale (LEP). In such problems, the constraint
matrix A has a large number of rows and columns. Fortunately, however, most of the
matrix elements of A are usually zeros and do not need to be stored. This redeeming
feature results from each equation being involved with only a few variables, and each
variable occurring only in a small number of equations. Only nonzero elements are
stored, allowing large matrices to be processed without exceeding storage capacities
of computers. Such matrices, whose zero-nonzero structure can be used to advantage,
are sparse. Coleman (1984) discusses the various issues that arise in large sparse
numerical optimization.

Sparsity in A is good, but is not enough. The null space algorithm needs a
representation of a null basis N of A. Such a basis, being a set of n-r vectors that
span the null space of A, is not unique, and care needs to be taken to make it as sparse
as possible.

With the above discussion to motivate us, we study the Sparse Null Space Basis
Problem:

(NSP) A x n matrix A with < n and rank r is given. Find a matrix N
with the fewest nonzeros, whose columns span the null space of A.

Hereafter we will abbreviate this to the Null Space Problem. Such an n x (n r) matrix
N is a sparsest null basis.

This paper has four additional sections. We characterize sparsest null bases in 2
by means of conformal decompositions and matroid theory. The computational com-
plexity of (NSP) and some variants are discussed in 3. The zero-nonzero structure
of sparsest null bases is studied in 4. In the last section we summarize our results,
discuss related work by other researchers, and indicate future research directions. We
adopt the notational convention that a term is in italic font when it is being defined.

In a second paper, Coleman and Pothen (1985), we will describe our algorithms
for computing sparse null bases. These algorithms have two phases: in the first
combinatorial phase, a maximum matching in the bipartite graph of A is used to
identify the nonzero elements in the null basis. In the second numeric phase, systems
of equations are solved to compute numerical values of the nonzeros in the basis. This
two-phase strategy makes it possible to efficiently compute sparse null bases. Our
computational experience with these algorithms will also be included.

2. A characterization of sparsest null bases. In this section we characterize sparsest
null bases by means of a "greedy" algorithm which chooses, at each step, a sparsest
possible null vector to be in the basis.

An important concept in what follows is that of a circuit. A linearly dependent
set of columns of the matrix A will be called a dependent set. A null vector of the
matrix A can be obtained from the coefficients of the linear combination. A circuit C
is a minimal dependent set--i.e., C is dependent, but all proper subsets of C are
linearly independent. We will call the null vector associated with a minimal dependent
set also a circuit.
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ALGORITHM 2.1 (Greedy Algorithm). Given a x n matrix A with rank(A)= r,
find a sparsest null basis N.

N:=0
for l, n- r-->

find a sparsest null vector n
such that rank (n,..., n)= L
N := N n rof.

THEOREM 2.1 (Optimality Theorem). The matrix N is a sparsest null basis ofA if
and only if it can be constructed by the greedy algorithm.

Algorithm 2.1 is greedy, since it augments the partial null basis at each stp by a
sparsest null vector linearly independent of those previously chosen. To us Theorem
2.1 is a surprising result; locally greedy strategies seldom lead to globally optimal
solutions to optimization problems. We now develop the results needed for its proof.

Let the jth component of a vector x be denoted by (x)s. (This should not be
confused with the notation for a vector, say ni.) We define the support of x, S(x), to be

S(x) {j: (x)) # 0}.

By definition, if c is a circuit, there cannot exist a null vector x with S(x) S(c).
LEMMA 2.2. If C, d are circuits of A, and S(c) S(d), then c is a scalar multiple

of d.
Proof. Suppose the lemma is false. Then we can pick a scalar A such that

(c)-A(d) =0, for some S(c). But then S(c-Ad) S(c), and c is not minimal.
Hence circuits of A are unique to within a multiplicative constant. We now

introduce a linear algebraic concept from network flow theory, conformal decomposi-
tion, studied first by Camion (1968), Fulkerson (1968), and Rockefellar (1969). Lemmas
2.2 through 2.4 follow immediately from their work.

A vector x conforms to a vector y if

(x)) # 0=:> ((y)) # 0, and sgn {(x))} sgn {(y))})

where sgn denotes the sign function. For example, let

sgn (x) (+0-0+0), sgn (y) (+ + -0+ -),

then x conforms to y, but y does not conform to x. Note that if x conforms to y, then
S(x)_S(y).

LEMMA 2.3. Given a null vector n, there exists a circuit c that conforms to it.

Proof. Again, the proof is by contradiction. Choose a null vector x with the
smallest IS(x)] such that no circuit ofA conforms to it. Let c be a circuit with S(c) c S(x).
Define the set

J {j:(c)j 0, and (c)j and (x)j disagree in sign}.

J is not the empty set, else c would conform to x. Let

a min
(x)j
(c)/

Consider the vector z x + ac. By construction, z conforms to x, and S(z) S(x). By
the selection of x there is a circuit d that conforms to z. But then d conforms to x.

We can now apply Lemma 2.3 repeatedly to get
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LEMMA 2.4. A null vector x can be expanded in a sum of distinct circuits

x= cl +" "+ Cp,

where each circuit ci conforms to x.
The above expansion is the conformal decomposition of a null vector of A; it is

not necessarily unique. A more general decomposition exists for a vector of any
subspace of ", and is discussed by Camion, Fulkerson and Rockefellar. We can now
use Lemma 2.4 to prove that we need concern ourselves only with circuits to solve (NSP).

THEOREM 2.5. Each sparsest null vector ni chosen by the greedy algorithm is a circuit.

Proof. The proof is by induction on i. The result is clearly true for nl. By the
inductive hypothesis, assume that the theorem is true for all nj, where 1 <j < i.

Suppose that n is not a circuit. Conformally decompose ni into a sum of circuits.
At least one of the circuits in this sum, say c, must be linearly independent of
(n,’’’, Hi_l) since n is independent of them. Since n is not a circuit, S(c)c S(ni),
and c is a sparser null vector than n which the algorithm could have chosen at this
step.

A similar argument can be used to prove
THEOREM 2.6. Each column of a sparsest null basis N is a circuit.
Theorem 2.6 states that the only dependent sets of interest in (NSP) are circuits.

Since the greedy algorithm chooses only circuits by Theorem 2.5, the possibility now
looms that it could find a sparsest null basis. As Theorem 2.1 states, this suspicion is
correct; and a stronger result holds, namely, every sparsest null basis can be found by
the greedy algorithm.

We now introduce the matroid concepts used to prove Theorem 2.1. Let E be a
finite set. Some of the subsets of E are defined to be independent; a subset of E that
is not independent is dependent. Let

H {I
_
E: I is independent}.

We consider the situation when the independent sets satisfy the following two
properties"

(M1) All subsets of an independent set are independent. (The empty set is
independent by this property if H is not empty.)

(M2} Let In and Ip+l be independent sets with p and p+ 1 elements respectively.
Then there is an element e Ip+\Ip such that Ip + e is independent.

Let the family of independent sets H satisfy (M1) and (M2). Then the tuple
M=(C, H) is defined to be a matroid (Welsh (1976)).

The reader may find it convenient to think of E as the set of columns of a matrix.
An independent subset of E has linearly independent columns. By linear algebra, one
can establish that both (M1) and (M2) hold. Hence M is a matroid, and we call it the
matroid generated by the columns of the matrix.

A minimal dependent set of a matroid is called a circuit. Thus far we have used
the word circuit to denote a minimal linearly dependent set of columns of a matrix.
This usage is consistent with the definition of a circuit of a matroid. What we call a
circuit of a matrix is indeed a circuit of the matroid generated by the columns of the
matrix.

A maximal independent set is an independent set all supersets of which are
dependent. We call such a set a basis of M. Every basis of M has the same size, which
is called its rank.

Proof of Theorem 2.1. By Theorems 2.5 and 2.6 we can restrict our attention to
circuits of A. Since A has n columns, it has only a finite number of circuits. Let C be
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the circuit matrix whose columns are all the circuits of A. Thus

C=(c, c).

Let M be the matroid generated by the columns of C. To each circuit ci, assign the
positive integer weight [S(ci)[. Algorithm 2.1 is equivalent to choosing a basis of
minimum weight for the circuit matroid M. Theorem 2.1 now follows from two
well-known results on matroids:

(1) The matroid greedy algorithm constructs a basis of minimum weight.
(2) The weight of the kth smallest element of such a basis is no bigger than the

kth smallest element of any other independent set (Lawler (1976)).
Unfortunately, the proof ofTheorem 2.1 does not lead immediately to a polynomial

time algorithm to solve (NSP). The difficulty is that a matrix A of n columns and
rows might have O(n t) circuits.

3. The complexity of (NSP) and its variants. In the previous section, we showed
that a sparsest null basis can be constructed by a greedy algorithm. Hence we consider
the following strategy to solve (NSP): design a polynomial time algorithm for one step
of the greedy algorithm. This latter algorithm would choose a sparsest circuit linearly
independent of circuits chosen in previous steps. If we could design such an algorithm,
then n-r applications of it to the matrix A will solve (NSP).

Unfortunately, such a happy prospect is unlikely; we now discuss the reason why.
The greedy algorithm chooses a circuit of minimum cardinality in its first step. We
call such a circuit a minimum circuit. Theorem 3.1 states that the minimum circuit
problem is NP-complete. Hence it is as hard as any of the problems in the class NP.
For the reader unfamiliar with this terrain, Garey and Johnson (1979) is an excellent
introduction to the theory of NP-completeness. Theorems 3.1 and 3.2 were proved
independently by L. J. Stockmeyer, and his proofs may be found in McCormick (1983).

THEOREM 3.1 (Minimum Circuit Theorem). Given a positive integer k, it is NP-
complete to find a circuit ofA of cardinality k or less.

We omit our proof since our reduction is similar to Stockmeyer’s. Theorem 3.1
leads to an easy proof that (NSP) is NP-hard. We do not know if (NSP) is in NP.

THEOREM 3.2 (Sparsest Null Basis Theorem). Given a positive integer k, it is
NP-hard to find a null basis ofA with k or fewer nonzeros.

Proof. By Theorem 2.1, every sparsest null basis contains a minimum circuit. By
Theorem 3.1, it is NP-complete to find a minimum circuit.

If A is restricted to be the vertex-edge incidence matrix of a graph G (V, E), a
minimum circuit can be found in O([V[ [El) time by an algorithm of Itai and Rodeh
(1978). In this situation, a minimum circuit corresponds to a cycle in the graph with
the minimum number of edges. Matroids generated by vertex-edge incidence matrices
of graphs are called graphic matroids.

Every matroid has a dual defined on the same ground set C. A basis of the dual
matroid is the complement of a basis of the primal matroid. A matroid dual to a
graphic matroid is cographic. Minimum circuits of cographic matroids correspond to
minimum cuts in the graph; these can also be found in polynomial time.

A matrix A is totally unimodular if every subdeterminant of A is either +1, -1,
or 0. The matroid generated by such a matrix is called a totally unimodular matroid.
Seymour (1980) has shown that any totally unimodular matroid can be decomposed
by a polynomial time algorithm into a matroid sum of graphic matroids, cographic
matroids, and copies of a special matroid on ten elements. It follows that minimum
circuits of totally unimodular matroids can be determined in polynomial time.
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We have shown that constructing a null basis of a matrix A with the maximum
number of nonzeros is also NP-hard when the columns in the basis are circuits of A.

THEOREM 3.3. Given a positive integer k, it is NP-hard to find null basis ofA with
k or more nonzeros, if each column in the basis is a circuit.

The proof is by the restriction of A to vertex-edge incidence matrices of graphs,
and uses the result that finding a basis with the maximum number of edges for the
cycle space of a graph is NP-complete. A proof is presented in Pothen (1984).

Since (NSP) is NP-hard, we cannot expect to construct sparsest null bases by a
polynomial time algorithm. Hence we lower our sights in terms of sparsity, and ask
how hard it is to construct a sparsest null basis with a prescribed zero-nonzero structure.

Current null space algorithms for (LEP) use the variable-reduction technique
proposed by Wolfe (1962) to construct null bases. Let Ar denote any r linearly
independent rows of A. The matrix Ar is partitioned (after possible column permuta-
tions) as

A,=(M U),

where M is a r x r nonsingular matrix. Then we construct the matrix

N-
I_

where I_ is the identity matrix of dimension n-r. Since AN 0, the columns of N
are null vectors of A. Each of the last n r rows of N has only one nonzero in it, and
so linear combinations of the columns of N cannot produce the zero vector. Hence
N is a null basis. We call a basis with an embedded identity submatrix a fundamental
null basis.

We formally state the Fundamental Null Space Problem:

(FNSP) Given a x n matrix A of rank r and a positive integer k, find a
fundamental null basis N with k or fewer nonzeros.

TOM 3.4. (FNSP) is NP-hard.
The proof of this theorem uses a result on spanning trees of graphs. We now

develop the concepts needed for the proof.
Let G (V, E) be a connected graph on veices and e edges with veex-edge

incidence matrix M(G). A cycle in G is a sequence of distinct veices v,..., V-l, v
v, where (v_, v) e for 2,..., k Denote the edge incidence vector of a cycle by
F, with component equal to 1 if e is an edge of the cycle, and 0 otherwise. Since
each veex in the cycle is an endpoint of exactly two edges, we have

M(G)Fr =0,

over the binary field GF (2). Thus F is a null vector of M(G). Fuher, since the
omission of any edge in the cycle will violate the equation, F is a circuit of M(G).
Since every circuit of M has zero or two edges incident on each veex of G, there is
a one-to-one correspondence between a cycle of G and a circuit of M(G) over GF (2).

However, our interest is with circuits over the real field. But the restriction to
arithmetic over GF(2) is easily removed. Let D be a directed graph obtained by
arbitrarily directing the edges of G. The veex-edge incidence matrix of D, M(D) has
in the column of the directed edge {u, v} the entry +1 in the row of v, -1 in the row
of u, and 0 in all other rows. A cycle in D is defined to be a cycle in G with an arbitrary
orientation. Let F(D) be the edge incidence vector of a cycle in D, with component
y equal to +1 if e is an edge in the cycle and the orientations of the cycle and e
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agree, -1 if ei is an edge in the cycle and the orientations disagree, and 0 if ei is not
an edge in the cycle. We have

M(D)F(D)r=O,
where the arithmetic is now over the real field. Further, there is a one-to-one correspon-
dence between a cycle of D and a circuit of M(D).

We now extend this correspondence to one between a fundamental null basis of
M(D) and an appropriate graph concept. A spanning tree T of an undirected graph
G is a connected subgraph with v vertices and v- 1 edges. Each nontree edge e creates
a unique cycle C(T, e) in the subgraph T+e. We call C(T, e) the fundamental cycle
created by e with respect to T. Since T has v-1 edges, there are to(G) -= e-v+ 1
nontree edges. Hence there are to(G) fundamental cycles with respect to T. The
fundamental cycle matrix (G) has to(G) rows and e columns, with element bj equal
to 1 if ej is an edge of the cycle i, and 0 otherwise. If the edges of T are numbered
from 1 to v-l, and the nontree edges from v to e, then (G) has the structure
(G) (11 I).

Let D be a directed graph obtained from G as before. A spanning tree of D is
defined to be a spanning tree of G. The fundamental cycle matrix of D, (D), has
element b equal to / 1 if e is an edge of and their orientations agree, -1 if e is
an edge of and their orientations disagree, and 0 if e is not an edge of i. Thus
for any spanning tree T, (G) and (D) have the same structure. Since each row of
(D) corresponds to a cycle in D, we have

M(D)dp(D)T=o,
where the arithmetic is over the real field. Hence (D)" is a fundamental null basis
for M(D).

Proof of Theorem 3.4. Restrict A to vertex-edge incidence matrices of directed
graphs. A sparsest fundamental null basis of A now corresponds to a sparsest funda-
mental cycle matrix of the associated directed graph. The latter is equivalent to finding
a sparsest fundamental cycle matrix of the undirected graph obtained by ignoring the
directions of the edges. This last problem is that of finding a spanning-tree that
minimizes the total number of edges in the set of fundamental cycles with respect to
it. This problem is NP-complete; proofs may be found in Deo, Prabhu, and
Krishnamoorthy (1982) and Pothen (1984).

A fundamental basis for the row space of A has the structure (L B) and corre-
sponds to a fundamental null basis

with only a constant change in the number of nonzeros. Hence we have
COROLLARY 3.5. Given a positive integer k, it is NP-hard to find a fundamental

row space basis ofA with k or fewer nonzeros.
In contrast, finding a (nonfundamental) sparsest row space basis can be done in

polynomial time (Hoitman and McCormick (1984)) when the matrix A satisfies a
nondegeneracy assumption called the matching property.

4. The structure of sparsest null bases. Any algorithm for constructing a null basis
has to ensure that the set of n r null vectors chosen is linearly independent. Construct-
ing a fundamental null basis makes this easy to do. However, sparsest null bases need
not be fundamental. We may be constrained to construct relatively dense fundamental
bases where sparse nonfundamental null bases may exist.
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But what zero-nonzero structure (hereafter structure) should a sparsest null basis
have? By Theorem 4.2 below, a set of m vectors is linearly independent for all nonzero
values of its nonzero elements if and only if it has an embedded upper triangular
submatrix of dimension m. In what follows, let V be a matrix with n rows and m
columns, with n > m. Distinguish some elements of V as nonzeros and the rest as
zeros. By a value of a matrix we mean an assignment of nonzero numerical values to
its nonzero elements.

LEMMA 4.1. If V has at least two nonzeros in each row, then there exists a nonzero
vector x, and a value for V, such that Vx O.

Proof. Let row have Iril_->2 nonzeros. We assign to any Iril-1 nonzeros the
value+ 1, and to the remaining element the value 1-Iril. We do this for all the rows
of V, and choose x (1 1)r.

THEOREM 4.2. V has rank m for all values if and only if it can be permuted to the
following structure:

= U,,,

where U,,, is an m x m upper triangular matrix with nonero diagonal elements.
Proof. The if part is obvious. We prove the only if part. Suppose that V has rank

m, but does not have the structure claimed. Permute the rows and columns of V so
that it has the structure

g-o R’
where R is upper triangular and maximal with respect to this property. Since R is
maximal, B has at least two nonzeros in each of its rows. By Lemma 4.1, we can now
find a vector x and numeric values for the nonzeros of B so that Bx 0. Since

V does not have rank m. This contradiction proves the theorem.
It may appear from this theorem that a sparsest null basis should have an embedded

upper triangular matrix. This would be true if we could assign any value to N. But,
we are not free to do so. We can assign any value to A; then, once the structure of N
is chosen, the values of the columns of N are uniquely determined to within a
multiplicative constant.

Theorem 4.3 concerns the structure of a sparsest null basis. This result is a matroid
generalization of a theorem on cycles in graphs proved by Stepanets (1964). We shall
denote the set of columns of the matrix A also by A. Let n (a) be a circuit of minimum
cardinality containing the column a. The reader may find Fig. 1 helpful to follow the
proof of this theorem.
TORN 4.3 (Generalized Stepanets Theorem). Let the columns a,..., a be

chosen such tha

a A,

aEA\n(al),
k-1

ak e A U n(aj).
j=l

There exists a sparsest null basis Namong whose columns are the circuits n a1), ", n ak ).
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n(al) ...n(ak)

FIG. 1. The sparsest null basis N.

Proof. We prove the theorem by induction on n(ai). Let q n r, and denote the
set (P\p) [.J n by P p + n.

Let P (pl "Pq) be a sparsest null basis of A. Since P is a basis, we can expand
n(a) as

n(al) clpl +" + c,,p,,.

We assume that all the coefficients in this expansion are nonzero. Of the circuits in
this equation, there must exist at least one circuit, say Ph, which contains tl 1. Consider
the system

P1 P--Ph + n( al).

Clearly P1 is a null basis. Further, since n(al) has minimum cardinality over circuits
containing a, P is a sparsest null basis.

For the inductive step, assume that P-I is a sparsest null basis of A, having among
its columns n(al),..., n(aj_l), where each ai is chosen as claimed. We choose n(aj)
to be a circuit of minimum cardinality containing a. Expand n(a) in the basis P_,

n(a) clp +" + c,,p,,,

where again each of the coefficients is nonzero. There is at least one circuit in this
equation, say Ph, which contains a. The circuit Ph cannot be any one of
n(a),. , n(aj_) by the choice of a. Consider now the system

P= P_-ph + n(as).
As before, P is a sparsest null basis of A.

We take N to be Pk. This completes the proof. F1
There is some k < n-r for which choosing a column ak+ is not possible, since

the first k circuits contain all columns of A.
COROLLARY 4.4. If k=n-r in Theorem 4.3, then the system of circuits

n(a),. ., n (ak) is a sparsest null basis N ofA.
In this case, N has an upper triangular submatrix with n-r columns. We call

such a basis a triangular null basis. Thus, some sparsest null bases are triangular.

5. Conclusions We have formulated the Null Space Problem, and the Funda-
mental Null Space Problem. We have shown that only circuits can be columns in a
sparsest null basis, and that such a basis can be characterized by a matroid greedy
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algorithm. However, (NSP) is NP-hard since a sparsest null basis contains a minimum
circuit and finding a minimum circuit is NP-complete. Constructing a sparsest funda-
mental null basis is also an NP-hard problem. Hence the use of approximation
algorithms to solve (NSP) is justified.

A fundamental null basis ensures linear independence of the set of null vectors
chosen. We have extended this observation to show that a set of vectors is linearly
independent for all values if and only if it has an embedded upper triangular submatrix
with nonzeros on the diagonal. This can be used in approximation algorithms to
construct triangular null bases for which linear independence of the null vectors is
again easy to ensure.

A problem related to (NSP) is that of finding a set of cycles with the fewest edges
that spans the cycle space of a graph. Note that our prooftechnique for the NP-hardness
of (NSP) does not extend to this problem, since cycles with the fewest edges can be
found in polynomial time. The complexity of this problem is open (Johnson (1985)).
However, the problem of finding a set of fundamental cycles with the fewest edges
that span the cycle space of a graph is NP-complete (Deo, Prabhu and Krishnamoorthy
(1982), Pothen (1984)). The problem of finding a set of cycles with maximum number
of edges spanning the cycle space of a graph is NP-complete (Pothen (1984)).

In Coleman and Pothen (1985), we will show how circuits can be constructed
from a maximum matching in the bipartite graph of the matrix A. This algorithm can
be used repeatedly to construct fundamental null bases. Here the sparsity of the basis
turns out to depend only on the partition of the columns of A into the matched and
unmatched sets. Various heuristic strategies for finding particular matchings are used
to obtain sparse null bases.

By varying the matching while constructing null vectors, a triangular null basis
can be obtained. Such bases can be potentially sparser than fundamental null bases;
however, this increase in sparsity is achieved at greater computational cost.

We briefly mention recent work related to (NSP). Berry, Heath, Kaneko, Lawo,
Plemmons and Ward (1985) have implemented a refined version of a "turnback
algorithm", proposed initially by Topcu (1979), that constructs sparse null bases for
large sparse, banded A. This algorithm uses an initial numeric factorization of A to
identify subsets of columns that could become dependent sets in the n r null vectors.
In a second turnback phase, a numeric factorization on each dependent set is performed
to obtain circuits. Their numerical results on several problems arising from finite
element models in structural engineering show that they obtain null bases with the
same degree of sparsity as the input matrices. Berry and Plemmons (1985) have
implemented a parallel version of this algorithm on a Denelcor HEP computer. Gilbert
and Heath (1986) have implemented several algorithms for computing sparse null
bases; some of these are closer in spirit to the ones we have designed. For instance,
in one of their algorithms, they construct a triangular null basis; the columns in each
circuit are identified by matching methods.

Much work remains to be done. An important numerical consideration is the
condition number of the null basis. To this end, algorithms that can compromise some
degree of sparsity for better conditioned null bases will need to be developed. Other
sparsity criteria than the one used in this paper need to be studied. We mention one
such in closing. An implicit null basis is a representation for the null basis as a product
of a sequence of elementary matrices (e.g., Givens rotations), with the sequence of
elementary matrices being stored. A sparse implicit null basis has relatively few
elementary matrices in the sequence. One direction in which we plan to continue this
research is in developing sparse implicit orthogonal null bases.
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Abstract. A column-oriented algorithm is presented for LU factorization with partial pivoting. Two
different mappings of columns to processors are considered. Forward and backsubstitution algorithms to

use the factorization for solving linear systems are developed. Timing data, including processor utilization
and load balancing, are provided by a hypercube simulator.
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1. Overview. In the past several years there has been considerable activity aimed
at producing and utilizing various types of multiprocessing architectures. Many such
computers already exist, and others are in their final development stages. This activity
has presented new challenges in the area of algorithm development. Problems of task
partitioning, scheduling, memory access and synchronization must be addressed. The
overall goal is to provide an implementation which best exploits its computational
environment. Balancing the workload among processors to maximize their individual
activity is one of the best ways to reduce overall execution time.

Examining the details of a particular architecture can give valuable insight on
how a program should be designed. Strategies for balancing the workload on a
shared-memory multiprocessor may be very different from those in a distributed
memory environment. The processor interconnection network also plays a part in
deciding how to partition a given problem. In this paper we consider a message-passing
environment in general, and the hypercube connection network in particular for two
important reasons. First, the hypercube is among the first multiprocessors to become
commercially available and thus many people will be learning about parallel algorithms
while using hypercubes. Second, many other of the common interconnection strategies
can be embedded in a hypercube network. Thus algorithms designed for these other
topologies can also be run on the hypercube.

This paper presents a column oriented algorithm for LU factorization with partial
pivoting for use on a message-passing multiprocessor. A description of the hypercube
multiprocessor and its simulator follow in 2. Two different mappings of columns to
multiprocessors are provided, and these are described (along with the algorithms
themselves) in 3. Details of the forward and backsubstitutions are provided in 4.
The final section contains a timing analysis of the test examples, as provided by the
simulator.

2. The hypercube multiprocessor. One of the more popular message-passing multi-
processors currently available is the hypercube (or cosmic cube [6]). It consists of
p 2v independent processors, or nodes. N is called the dimension of the hypercube.
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840R21400.
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Each node is a sequential computer possessing its own local memory and its own
operating system. An important feature of this operating system is its ability to send,
receive and route messages which pass through the node. Nodes function concurrently
and independently of each other, making the hypercube a multiple-instruction, multi-
ple-data (MIMD) machine. Machines with p =64 now exist, and those with p 1024
are feasible in the near future.

In addition to the p nodes there is also one additional processor called the host.
The job of the host is to spawn processes on the nodes, to collect information from
them and to handle input/output. We assume (as in the Intel iPSC hypercube) that
there is a two-way communication link from the host to each node. This link is not
used for node-to-node message-passing. In other types of hypercubes, the host may
be connected to only one or a few of the nodes.

The nodes are identified with the binary representation of the numbers 0 through
p-1. Communication between nodes is done by passing messages rather than by
sharing memory. Individual nodes may communicate only with their immediate neigh-
bors. Two individual nodes are immediate neighbors if their binary identifiers differ
by exactly one bit. For example, when p 8, node number 010 is directly connected
to node number 110 but not to 111. If these binary tags are thought of as ordered
triples corresponding to coordinates of a cube in three-dimensional space, nodes are
directly connected if and only if there is an edge between their corresponding coordin-
ates. A message to be sent from 010 to 111 must pass through other intermediate nodes.
Details about how messages can be routed between nodes can be found in [4].

We assume the existence of two message-passing primitives send and await. The
send is an asynchronous command which sends a message of a designated length to
a designated destination and returns control to the sending process. The await causes
a process to suspend execution until a message of a designated type arrives. Messages
arriving at a destination before the execution of an appropriate await are queued. Two
other primitives which will be of use are: cubedim(), which returns the dimension of
the hypercube, and mynode( which allows a node to determine its binary identifier.
All four of these functions are very similar to what is available on actual hypercubes.

The codes contained in this paper were developed and run on a hypercube
simulator which runs on a VAX 11/780 under the Unix operating system at Oak Ridge
National Laboratory. The simulator was written by T. H. Dunigan of Oak Ridge [2],
and is based on the multitasking kernel of E. D. Brooks [1]. Individual processes are
modeled within the framework of the VAX in such a way that they have access only
to their local memory. Data are sent from process to process by passing messages. The
simulator provides a comprehensive trace file containing a log of all messages sent
and received as well as the wait states of the processes. A clock time measured in VAX
instructions tags each event. Communication delays can be effectively modeled by
adjusting the message arrival times. The trace file can be piped to other programs
which analyze processor utilization and provide performance graphs.

The simulator can be invoked in one of two modes. In the first mode, after the
host has spawned processes on the nodes, node 0 executes until it encounters an await.
Then node 1 awakens and executes until it encounters an await. Control is passed
from node to node sequentially until node p-1 yields control back to node 0. This
mode, although not a realistic model of the hypercube, can be quite useful for
uncovering logic and synchronization errors. Print generated from these runs is also
quite useful, although the trace file with the clock is not available.

The second mode more closely resembles the actual operation of the cube, with
the appearance of all processes running asynchronously. Print statements for debugging
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purposes need to be carefully selected, as it is quite common for output from different
processes to become interleaved. Subtle errors in timing more often are encountered
at this point. The importance of the trace file cannot be overestimated. In the actual
cube a program could stall due to processes with unsatisfied awaits, yet the user would
have no idea which process was waiting for what. By recording the wait states of the
nodes, the trace file is a great help in resolving these kinds of problems.

The simulator allows the possibility of spawning different processes on different
nodes, although our node programs are identical. This tends to make the codes slightly
longer, due to special-case startups and shutdowns, but the host process is greatly
simplified. All codes were written in C.

3. The algorithms. Let A be the nonsingular coefficient matrix of a square linear
system Ax b, whose order is n. We explore the idea of sending a subset of the columns
of A to each processor. Obviously the matrix can be partitioned in other ways, for
example, by rows or by blocks. A study of partitioning by rows for a general matrix
can be found in [3]. Several strategies for partitioning for the Cholesky factorization
if A is symmetric can be found in [5], with more specific information about column
partitions in [4]. Discussions on the relative merits of each approach can be found in
all these references.

Having decided to map columns to processors, the next decision involves the
nature of the mapping. There are three natural ways to send columns to the nodes"
blocking, wrapping and reflecting. To simplify the discussion, we assume that the
number of processors (p) divides the order of the matrix (n), although this is not a
requirement of the algorithm.

Blocking requires that the first (n/p) columns are sent to node 0, the next (n/p)
to node 1, and so on. The obvious disadvantage of such an approach lies in the fact
that after node 0 has factored its columns and sent its information to the other nodes,
it remains idle for the rest of the factorization. A block mapping will keep the last
processor busy through most of the computation, but will not fully use the earlier ones.
We will only consider the other two partitioning schemes.

3.1. Wrap mapping. In the wrap mapping of columns to processors, column k is
sent to processor k (mod p). Note that since the p processors are labeled 0 through
p- 1, we also choose to label the columns of the matrix 0 through n- 1. Although this
is a bit of a nuisance for most FORTRAN programmers, it fits in quite naturally with
C conventions.

Having the columns wrapped on the processors, we now need to describe a
message-passing strategy which will both assure proper synchronization and maximum
processor utilization. By processor utilization we always mean the relative amount of
the time that a node is active, as opposed to awaiting messages. The schematic given
in Fig. 1 will be used to describe this algorithm.

We have chosen a "send to next" procedure as opposed to a general broadcast
designed for the hypercube. Throughout this paper, the "next node" is taken to be
that node which needs a given piece of information first. For example, the multipliers
from the elimination of column are immediately needed by that node possessing
column i+ 1. The reason for not broadcasting is that depending on the size of the
messages and the overhead in a send, it was quite possible (if not inevitable) that
pivots and multipliers would arrive at nodes out of order. Although this can be remedied
by tagging each message with a column number, or giving each column number a
different message type, for clearer understanding of the algorithm we have chosen our
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Host process:
Generate (or load) n, A and b
Spawn processes on the nodes.
Send appropriate columns to nodes.
Await each pivot and column of L and U from nodes.

Apply pivots and L to b.
Form transpose of U.

Send appropriate rows of U and modified b to nodes.
Await each component of the finished solution x.

Node process:
Await columns of A from host.
If node 0:

Determine first pivot index and first column of L.
While factorization not done:

Await a previous pivot index and set of multipliers.
Forward these messages to the next node.
Apply row interchanges to all columns.

If this node has the next column to be processed:
Apply multipliers to active column only.
Select new pivot, and send to next node.
Form new column of L.
Send multipliers to next node.
Apply received and generated multipliers to remaining columns.

Else:
Apply received multipliers to remaining columns.

Await rows of U and solution of Ly b from host.

If this node has the last row of U:
Compute last component of x and send to next node.

While backsubstitution not done:
Await a previous component of x.
Forward to the next node.
If this node has the next row in the backsubstitution:

Determine next component of x.
Send component to next node.

Update all remaining components of x.

FIG. 1. Wrap mapping.

method. It turns out that by using this strategy, we are effectively treating the hypercube
connection network as a ring: node k communicates with node k+ 1 (mode p).

Several other remarks are in order. First it should be noted that the right-hand
side b resides on the host, and the forward substitution is done at the same time the
factorization is being completed. After each column of A is pivoted and factored into
L and U, the factored column is sent to the host. Right-hand side b is interchanged
and the multipliers in L are applied to it.

While the host is waiting for a new pivot and factored column to arrive, it also
transposes the newly received column of U. The reason for this is that backsubstitution
cannot be performed in parallel with U stored on the nodes by columns.

As an example, assume an 8 8 matrix A, with columns numbered 0 through 7,
has been wrapped onto 4 processors and the factorization has been completed in place.
Suppose that the solution to Ly b has been done on the host. The logical place to
send y is to processor 3, as it has the (7, 7) element of U. Component 7 of the solution
can now be computed, and an updated y can be sent out. The only processor which
can now become active is number 2, as all the others require information not yet
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available. Component 6 of the solution and a further updated y can now be sent, again
with only one other processor able to become active.

The backsubstitution is thus sequential. Indeed, experiments with doing the
factorization and forward substitution of a single b during the factorization, and the
backsubstitution sequentially revealed that the backsubstitution can easily amount to
30% of the total execution time when n > 100. With U transposed, the parallel
backsubstitution is less than 4% ofthe total execution time for the same sized problems.

It should be stressed that the algorithm in its current form solves Ax- b with the
right-hand side(s) processed sequentially during the factorization. If A were to be
factored and used at different times with different right-hand sides, the advantage of
the concurrent forward substitution would be lost. Also, if several right-hand sides
were to be processed from the outset, the work of the host may not be completely
masked by the factorization.

As an alternative, a possible implementation could transpose both L and U and
send their appropriate rows back to the nodes, so that the forward substitution would
also be parallel and follow the same logic as the backsubstitution. We would expect
that the two solution phases would consume about 8% of the total time with problem
size as above.

Finally, note that the forward substitution does not require elaborate synchroniz-
ation, although in this scheme pivots and multipliers will arrive in sequential order.

With regard to the factorization itself, a reading of Fig. 1 reveals that the parallel
codes for the node processes possess a logic quite different from serial codes. An
.individual node must realize which columns it has, which ones have already been
processed, and when it possesses the next column to be factored. A node declares
itself to be done if it has processed its last column.

Several features were designed into the node process code to maximize processor
utilization. For example, suppose a node possesses column number k and has just
received the multipliers from column k-1. Rather than apply these mutipliers to all
of its subsequent columns, the node applies them only to column k while it is selecting
the new pivot index. The pivot index is immediately sent to the next node. Then the
new multipliers are calculated and immediately sent on. Only then will the node apply
the multipliers from column k-1, the pivot from column k and the multipliers from
column k to the remaining columns it possesses. This strategy allows the generated
information to be sent out as soon as it becomes available. The same kind of logic is
found in the backsubstitution.

3.2. Reflection mapping. In the reflection mapping of columns to processors,
columns 0 through p-1 are sent to processors 0 through p-1, just as in wrapping.
The next p columns, however, are sent to the processors in reverse order from p- 1
to 0. The direction of mapping then reverses for each subsequent p columns. For
example, if n 20 and p 4:

processor 0 has columns: 0, 7, 8, 15, 16
processor 1 has columns: 1, 6, 9, 14, 17
processor 2 has columns: 2, 5, 10, 13, 18
processor 3 has columns: 3, 4, 11, 12, 19.

The general formula can be described as follows:

if int (j/p) is even: send column j to processor j (mod p)
if int (j/p) is odd: send column j to processor (p- 1)-(j (mod p)).

We have presented a schematic for the reflected algorithm in Fig. 2.
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Node process:
Await columns of A from host.

If node 0:
Determine first pivot index and first column of L.

While factorization not done:
Await a previous pivot index and set of multipliers.
Forward these messages to the next node.
Apply row interchanges to all columns.
If this node has the next column to be processed:

Apply multipliers to active column only.
Select new pivot, and send to next node.
Form new column of L.
Send multipliers to next node.
Apply received and generated multipliers to remaining columns.
If this node has the next column to be processed:

Apply multipliers to active column only.
Select new pivot, and send to next node.
Form new column of L.
Send multipliers to next node.
Apply received and two generated sets of multipliers to the

remaining columns.
Else:

Apply received and generated multipliers to remaining columns.
Else:

Apply received multipliers to remaining columns.

Await rows of U and solution of Ly b from host.

If this node has the last row of U:
Compute last component of x and send to next node.

While backsubstitution not done:
Await a previous component of x.
Forward to the next node.
If this node has the next row in the backsubstitution:

Determine next component of x.
Send component to next node.

If this node has the next row in the backsubstitution:
Determine next component of x.
Send component to next node.

Update all remaining components of x.

FIG. 2. Reflection mapping.

The host process is the same as in Fig. 1, and is not shown. One can see that the
overall structure is much the same, but that there is one additional inner loop. The
reason for this is that processors 0 and p- 1 possess columns which must be factored
in immediate succession. With an eye toward maximum utilization, we again send out
information as soon as it becomes available, without waiting for all columns in a given
node to be modified.

The synchronization strategy for the reflection mapping is more complex. We will
consider at length an example where p 8 and n is at least 24, which can adequately
illustrate the method.

Using the right-type communication shown in Fig. 3, serious difficulties are
encountered. Consider first the propagation of the pivot index and multiplier informa-
tion for columns 7 and 8, which reside on node 7. This information must eventually
be sent to all other processors. We illustrate the distribution of the columns in Fig. 3,
with the arrows indicating the routing of messages from node to node.
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processors:

columns" 0 2 3 4 5 6 7
15 14 13 12 11 10 9 8
16 17 18 19 20 21 22 23

FIG. 3. Ring-type communication.

We see that the information from node 7 is first needed on node 6, for the
elimination of column 9. If the messages are routed from node 7 to node 0, node 6
will be in an await state until the needed information cycles through all the other
nodes. This can result in a significant decrease in overall processor utilization.

A better communication strategy would have pivots and multipliers sent where
they are needed next. This implies that in the above example, node 7 sends its
information to node 6, where it is subsequently forwarded to nodes 5, 4, etc. This is
shown in Fig. 4.

A final illustration helps to solidify the strategy. Consider the propagation of
information from column 12, which resides on node 3. The next nodes to require this
information are, in order, 2, 1 and 0. Now the next processor to need the pivots and
multipliers from column 12 is node 4, followed by 5, 6 and 7. This is the routing which
is employed (see Fig. 5).

In this strategy, the information is always sent where it is needed next. Although
this routing seems fairly complicated at first, once the formula for the destination is
worked out, it does not involve much coding. Routing for the backsubstitution follows
similar logic.

It cannot be overstated that synchronization of a column-oriented algorithm is a
critical problem. It is very often the case that subtle timing errors will not be evidenced
on small-order examples which can be checked by hand. This scheme, while having
a tendency to slow down the propagation of information though the nodes, assures
proper and correct execution.

4. Forward and backsubstitution. It has been noted that the forward substitution
(solution of Ly b) is done on the host processor. Preliminary experiments on some
hypercubes indicate that this may not be the best strategy to reduce overall execution
time. Node-to-host communication may be significantly slower than node-to-node
communication. If this is the case, then the forward substitution could become a
significant fraction of the total work.

processors: 0 2 3 4 5 6 7

columns: 0 2 3 4 5 6 7
15 14 13 12 11 10 9 8
16 17 18 19 20 21 22 23

FIG. 4. Reflection communication" Propagation of multipliers from node 7.

processors: ( 0 2 3 4 5 6

columns" 15 14 13 12 11 10 9
16 17 18 19 20 21 22

FG. 5. Reflection communication" Propagation of multipliers from node 3, column 12.

7

8
23
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The work of transposing and re-sending the upper triangular factor U may also
not be masked by the factorization. However, algorithms are currently being developed
for efficiently transposing a matrix entirely on the nodes. These techniques are par-
ticularly important when the matrix U is so large that it cannot entirely be accumulated
on the host. In the setting where U is more modestly sized and the node-to-host and
node-to-node communication times are roughly equivalent, results more like our
simulator runs can be expected.

We have assumed that the host processor is essentially equivalent in computational
power to the nodes. Although this may not be the case in an actual hypercube, the
volume of work expected of the host in these algorithms is not significant. Besides
sending and receiving messages from the nodes, the host is expected only to modify
the right-hand side(s) b.

The message-passing strategies for the backsubstitution phase follows the logic in
Figs. 3-5, but with the arrows of communications reversed. The key idea is to send the
newly acquired components of solution x where they will be needed next.

5. Analysis of the test examples. The codes were tested on a number of linear
systems with varying orders, using varying numbers of processors. Matrices filled with
random numbers were generated and multiplied by a given solution vector x to create
problems Ax b with known solutions. These A and b were passed to the factorization
and solution algorithms on the simulator at Oak Ridge. Trace files for each run were
recorded. All of the matrices generated were nonsingular and well conditioned, and
the algorithms gave accurate solutions.

Tables 1 and 2 show the sizes of some of the test examples with statistics generated
from examining the trace files. For each problem, a time measured in the number of
VAX operations is given, along with percentages of node and host utilization. A node
utilization percentage of 46% means that the node was in a busy state for 46% of the
time, and in an await state for the remaining 54%. A busy state involves computation,
receiving or sending messages.

TABLE

Wrap mapping.

time node util host util time node util host util
n p (vax ops) range (%) (%) n p (vax ops) range (%) (%)

8 4 3689 46-64 53 64 16 120497 52-71 57
8 2 3918 73-80 48 64 8 180111 70-81 38

16 8 9774 38-60 59 64 4 305003 78-82 22
16 4 11379 60-72 50 64 2 424741 95-95 16
16 2 14056 83-86 40 128 64 369655 24-50 71
32 16 29230 20-57 73 128 32 440405 50-71 59
32 8 35218 55-71 54 128 16 672442 70-82 39
32 4 50840 71-79 37 128 8 1157869 80-87 22
32 2 68944 90-92 27 128 4 2143351 81-84 12
64 32 97104 28-54 71 128 2 2980744 97-98 9

A number of interesting facts are revealed by these tables. First, the reflection
mapping had a tendency to balance the overall percentages of node utilization better
than the wrap mapping. Focus, for example, on the n 128, p 32 case. Reflection
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TABLE 2

Reflection mapping.

time node util host util time node util host util
n p (vax ops) range (%) (%) n p (vax ops) range (%) (%)

8 4 3656 52-58 57 64 16 118685 60-64 59
8 2 3695 75-76 55 64 8 175916 76-77 40
16 8 9602 46-53 63 64 4 29639 81-83 24
16 4 11011 66-69 54 64 2 427302 93-95 16
16 2 13541 82-86 44 128 64 343364 33-46 77
32 16 28498 41-50 70 128 32 435453 58-64 60
32 8 34464 62-66 57 128 16 663479 76-78 40
32 4 48601 77-78 40 128 8 1139338 84-85 23
32 2 68653 88-92 28 128 4 2108581 83-84 12
64 32 94622 36-48 74 128 2 2998556 96-98 9

mapping produced node utilizations from 58% to 64%, while wrap mapping produced
a range of 50% to 71%. The average node utilizations (in this case 62% vs 61%) were
always very close, with a slight edge to reflection. This is the same experience reported
in [3].

As one would expect, the utilization increases as the ratio nip increases, with
percentages as high as 98% when n 128 and p 2. Each processor has more data
and therefore more work to do once it receives a pivot index and a set of multipliers.
On the other hand, the host utilization drops, as the forward substitution becomes a
smaller fraction of the total time.

Tables 3 through 6 give more detailed statistics for two of the examples, n 64
with p 8, and n 128 with p 8. There was nothing special about these two cases
other than that they are large enough to show some typical behavior. Under the heading
"tid" is given the number of each node, with "h" standing for host. The next two
columns labelled "start" and "end" give the VAX clock time at which the node process
began and ended. Note that the host does not start at time 0. This is due to the fact
that the matrix and right-hand side are being generated before the factorization begins.

The "duration" column gives the total amount of time (measured in VAX instruc-
tions) that a given, node was active, and the "busy" column records the amount of
time in a non-await state. "Busy" divided by "duration" therefore gives the nodal
utilization. Note that the total number of sends does not match the total number of
receives. This is due to the fact that as the factorization and backsolve are completed,

TABLE 3

Wrap mapping: n 64, p 8. Nodal utilization 75% Nodal+ host utilization 71% sends 1788 recvs 1764.

tid start end duration busy utiliz sends recvs

h 103258 283369 180111 68515 38% 144 192
0 103651 283345 179694 125640 70% 202 193

103817 283259 179442 125897 70% 203 194
2 103983 283143 179160 129160 72% 204 195
3 104149 283051 178902 132282 74% 205 196
4 104315 282835 178520 135369 76% 206 197
5 104481 282743 178262 138349 78% 207 198
6 104647 282627 177980 141224 79% 208 199
7 104813 282535 177722 143789 81% 209 200
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TA3LE 4

Wrap mapping" n 128, p 8. Nodal utilization 83% Nodal+ host utilization 77% sends 3644 recvs 3620.

tid start end duration busy utiliz sends recvs

h 411290 1569159 1157869 259636 22% 272 384
0 412067 1569135 1157068 931013 80% 418 401

412385 1569049 1156664 930398 80% 419 402
2 412703 1568933 1156230 942954 82% 420 403
3 413021 1568841 1155820 955379 83% 421 404
4 413339 1568625 1155286 967522 84% 422 405
5 413657 1568533 1154876 979516 85% 423 406
6 413975 1568417 1154442 991306 86% 424 407
7 414293 1568325 1154032 1002590 87% 425 408

TABLE 5

Reflection mapping: n 64, p 8. Nodal utilization 77% Nodal + host utilization 73% sends 1617 recvs 1596.

tid start end duration busy utiliz sends recvs

h 103258 279174 175916 69849 40% 144 192
0 103651 279151 175500 134877 77% 120 186

103895 279042 175147 133483 76% 213 183
2 104139 278916 174777 133825 77% 210 180
3 104383 278814 174431 134058 77% 207 177
4 104627 278608 173981 134220 77% 204 174
5 104871 278506 173635 134312 77% 201 171
6 105115 278380 173265 134270 77% 198 168
7 105359 278290 172931 133175 77% 120 165

TABLE 6

Reflection mapping" n 128, p 8. Nodal utilization 85% Nodal + host utilization 78% sends 3281 recvs 3260.

tid start end duration busy utiliz sends recvs

h 411290 1550628 1139338 262389 23% 272 384
0 412067 1550605 1138538 970227 85% 240 370

412551 1550496 1137945 960420 84% 429 367
2 413035 1550370 1137335 961221 85% 426 364
3 413519 1550268 1136749 961863 85% 423 361
4 414003 1550062 1136059 962264 85% 420 358
5 414487 1549960 1135473 962472 85% 417 355
6 414971 1549834 1134863 962522 85% 414 352
7 415455 1549744 1134289 960143 85% 240 349

nodes may be sending information to other nodes which have already shut down. This
somewhat inelegant ending could be repaired with several more lines of code to avoid
unnecessary sends. We again see the better load balance and slightly higher overall
utilization of reflection.

Finally we present performance graphs (Figs. 6-9) for the cases detailed in Tables
3 through 6. The numbers on the top refer to the sizes of n and p. Thus "n64p8wrap"
refers to n 64, and p 8 with the wrap mapping, and "n64p8ref" refers to the same
size problem with reflection mapping.
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The graphs show the number of processors which are active at any given time
during the algorithm. The initial gap with no processors active corresponds to the
generation of the problem. Even though there are only eight nodes, at various times
the graphs show nine processors busy, corresponding to the additional activity of the
host. The jagged dropotts toward the end of the graphs indicate the backsubstitution
phase, and how little time it takes with respect to the factorization. These kinds of
plots, especially for larger problems, given an important qualitative feel for how the
algorithms control the activity of the nodes.

It can be seen that these algorithms do a good job of keeping the individual nodes
busy. A "perfect" performance plot would jump up quickly to eight (or nine) processes
active and remain there until the computations are completed. In these examples, the
time during which six or more processes are active comprises a large fraction of the
total effort.

Acknowledgments. The author is gratefully indebted to A1 Geist, Mike Heath and
Bob Funderlic of Oak Ridge National Laboratory for many helpful discussions and
suggestions regarding this work.

REFERENCES

E.D. BROOKS, A multitasking kernelfor the C and Fortran programming languages, Lawrence Livermore
National Laboratory Technical Report UCID-20167, 1984.

[2] T.H. DUNIGAN, A parallel processor simulator, in preparation.
[3] G. A. GEIST, Efficient parallel LUfactorization with pivoting on a hypercube multiprocessor, Oak Ridge

National Laboratory Technical Report ORNL-6211, 1985.
[4] G. A. GEIST AND M. T. HEATH, Parallel Cholesky factorization on a hypercube multiprocessor, Oak

Ridge National Laboratory Technical Report ORNL-6190, 1985.
[5] M.T. HEATH, Parallel Choleskyfactorization in message-passing multiprocessor environments, Oak Ridge

National Laboratory Technical Report ORNL-6150, 1985.
[6] C. L. SEITZ, The Cosmic Cube, Comm. ACM, 28 (1985), pp. 22-33.



SIAM J. ALG. DISC. METH.
Vol. 7, No. 4, October 1986

(C) 1986 Society for Industrial and Applied Mathematics
005

NEIGHBORHOODS OF DOMINANT CONVERGENCE FOR THE
SSOR METHOD*

MICHAEL NEUMANN"

Abstract. Let A be an n x n nonsingular irreducible 3-cyclic H-matrix and let jA, LA and SA denote,
respectively, the Jacobi, the SOR, and the SSOR iteration matrices associated with A. In this paper we show
that if the spectral radius p(IJAI) (0, ro), where ro is the unique root of the cubic 17r3+ 2- r-1 in the
interval (0, 1), then there exists a neighborhood EIo,(A) of o(A):= 2/(1 +p(lJAI) such that

p(SA)<[o--I[<--p(LA) V

Key words, iterative methods, H-matrices

AMS(MOS) subject classifications. Primary 65F10, secondary 15A06, 15A18

1. Introduction. Let A (a) be an n x n complex nonsingular H-matrix whose
diagonal entries are, without loss of generality, all unity and write

(1.1) A=I-L-U,

where L and U are, respectively, a strictly lower and strictly upper triangular matrices.
Two well-known results from the theory of successive overrelaxation (SOR) are that

(1.2) p(/)_-< I1- ol + op(l/al)Vto (0, w(A)]

with p(LA) < 1 Vo (0, to(A)) and that

(1.3) p(S)<-ll-l+p(ljAI) Vco (0, w(A)]

with p(S) < 1 Vw (0, oJ(A)), where

(1.4) LA := (I toL)-I [(1 to)I + toU]

is the SOR iteration matrix associated with A and

(1.5) SA := (I to U)-I[(1 w)I + wL](I wL)-l[(1 o9)1 + wU]

is the symmetric SOR (SSOR) iteration matrix associated with A, respectively, and where

2
(1.6) to(A):= l+p(]JAI)
jA being the Jacobi iteration matrix associated with A, namely

(1.7) jA := L-k U.

Note that, as p(ljA[) < 1, oo(A) > 1.
We mention that (1.2) was shown first to be true for nonsingular M-matrices ,4

by Kahan in [5]. Kahan’s results were later shown to hold for the total class of
H-matrices by Kulisch, see [6]. The inequality (1.3) for the SSOR method was proven
by Alefeld and Varga in 1].

* Received by the editors August 12, 1985, and in revised form January 9, 1986.
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The questions of whether p(LA) and p(SA) attain the value 1 at to to(A) have
been investigated in [8], [9], 10], and 12]. In 12] it was shown that the upper bound
(1.2) is sharp for each toe (0, to(A)] on the total class of nonsingular H-matrices of
all orders. In [9] it was shown that if A is an n x n p-cyclic irreducible nonsingular
M-matrix in the canonical form

[ I Blp]

L P,P A

then p( A AL,o(A)) < 1; whereas for A1 A, p(Lo,(Al))< 1 if and only if p is even. From
the point of view of the SOR theory, the difference in the behavior of these cases
results from the fact that A in (1.8) is consistently ordered in the sense of Varga 14,
p. 101], while A1 AT is inconsistently ordered.

Continuing, in [10] it was shown that

(1.9) p(SA(A)) < 1 unless p(lJA[) O.

Furthermore, two additional facts were noted:
(a) The first fact is the following observation:
OaSERVATON 1.1 [10, 3]. Suppose that A is an n x n nonsingular M-matrix. Then

(1.10) p(sA)<--_p(LA) Vto(0, 1],

with strict inequality holding in (1.1O) ifA is (also) irreducible.
We comment that the proof of this inequality rests on a comparison theorem, due

to Wonicki 16], for the asymptotic convergence rate oftwo iteration matrices resulting
from two regular splittings of a monotone matrix A. (For a more accessible exposition
of Wonicki’s results and further generalizations see [4] and [7].)

(b) The second fact which was noted in [7] is that in many examples of
H-matrices A,

A A(I.II) p(So(A) < p(Lo(A)

with a substantial difference at times.
In regards to (1.11) only heuristic reasons were advanced in [10] to justify the

inequality and one purpose of this paper is to provide an interval (0, ro) (0, 1) such
that for all nonsingular 3-cyclic irreducible H-matrices A with p([jA[ (0, r0)), (1.11)
holds. In fact the following is a corollary to our main Theorem 2.2.

COROLLARY 1.2. Let A be a 3-cyclic nonsingular irreducible H-matrix and let ro be
the unique root in the interval (0, 1) of the polynomial

(1.12) g(r) 17r3+ r2- r- 1.

If p([jA[) (0, ro), then there exists a real open neighborhood ,(A) of to(A) such that

(1.13) p(sA,,,)<Ito--II<--_p(LA,,,)

In view of the upper bound for the spectral radius of SA given in (1.13), we shall
think of the neighborhood ’to(A) referred to in Corollary 1.2 as a neighborhood of
dominant convergence of the SSOR method over the SOR method.

We mention that the unique root ro in (0, 1) of the cubic (1.12) is roughly equal
to 0.4181928.
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Our main results are developed in 2. We finally make the following remarks: (i)
In a recent survey on preconditioned iterative methods, O. Axelsson, see [2], compares
the performance of various iterative schemes as preconditioning strategies for use in
conjunction with Chebyshev acceleration techniques or with conjugate gradient
methods. He notes, citing various references, the particular effectiveness of the SSOR
method as a preconditioning method and its insensitivity to the choice of relaxation
parameter oJ. (ii) In a recent paper [8], Neumaier and Varga have given the exact
domain of convergence, as a function of o and r p([JAI) for the SSOR method for
all nonsingular H-matrices.

Remark. The notation and terminology used in this paper are very standard to
the literature on nonnegative matrices, M-matrices, H-matrices, diagonal dominance
and iterative methods. The interested reader who is not familiar with the subject is
referred to the following excellent texts by A. Berman and R. J. Plemmons [3], by R.
S. Varga 14] and by D. M. Young 17] for explanation of the notation employed here
and for further background material.

2. Dominance neighborhoods for SSOR. Let A be an n n nonsingular H-matrix.
Our starting point is simple: Since a well-known lower bound on the spectral radius
of the SOR iteration matrix due to Kahan [5] is

(2.1) Iw-ll-<_p(LA) Vw0,

we raise the following question"
What is the largest interval (0, r) (0, 1) in r such that

(2.2) p( AS.(A)) < [o(A)- 11 oJ(A)- 1,

for all nonsingular H-matrices A such that p(IJa[) (0, r)?
As a first step towards answering this question we mention that in an earlier

version 11 of 10] a method for simplifying the investigation of the SSOR matrix Sa
^Awas suggested. On Sa perform the similarity transformation to obtain the matrix So,

as follows:
ASo, (I oJU) A U)-ISo,(I-oo

(2.3)
(I wL)-’[(1 o.))I + wL](I o) U)-I[(1 w)I + wU].

AThe advantage of working with (2.3) over SA is that now So, is a product of a (block)
lower triangular matrix by a (block) upper triangular matrix, thus making the (block)

Astructure of So, somewhat easier to handle than the (block) structure of SA.
ANext, on applying the Neumann expansion in (2.3), we observe that So, admits

the following representation
A(2.4) So,=(1-w)2I+Ra.

Set

(2.5) ;a :__ (1--oJ)zI + IR AI.
Then so that by (2.3) and the Perron-Frobenius theory,

A(2.6) p(SA) p(So,) <-_

Thus, in view of (2.2) and (2.6), a cruder question than the one which was posed above
is the following:

What is the largest interval (0, r)_ (0, 1) in r such that

(2.7) -a (a) 1p( So,(A)) < tO

for all nonsingular and irreducible H-matrices A with p([jAI) (0, r)?
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It is immediate from (2.5) that

p(Sto)"a (1 tO )2 / P(IR I). 

Thus, for tO tO(A), inequality (2.7) holds if and only if

A(2.8) p([R,(A)[) < to(a) 1 -(1 to (a))2.

Now put r:= p([jal) in which case, according to (1.6), to(A)= 2/(1+ r). Then upon
substituting 2/(1 + r) for tO(A) in (2.8) we see that inequality (2.7) holds if and only if

(2.9) p([ A 2r(1 r)R,o(A)[) < (1 + r)--------=: p(r)"

From here on we shall assume that A is a nonsingular block 3-cyclic irreducible
H-matrix. As mentioned in the introduction, whether A is consistently or inconsistently
ordered can effect the attainment of the value 1 at tO tO(A) by the spectral radius of
the SOR matrix, but that in either case, unless p(IJal)- 0, the spectral radius of the
SSOR matrix does not attain the value 1 at tO tO(A). We shall suppose that A has
the form

(2.10)
I 0 B13 1A= B21 I 0

0 B32 I

however all our results are valid for the case A1 Ar using similar lines of argument.
Thus the SSOR method justifies its name to a degree since its behavior is reasonably
independent of the block structure of A.

For A given in (2.10) the computation of a of (2.4) yields that

(2.11)
o.,a (1 to)ZI

Now set

(2.12)

where

I 0

tO(1 to)(to 2)B21
tO2(1 tO)(2 tO)B3B,

I 0

o(A) := to(A)8(A)C21
to2(A 8 A C32C21

(2.13)

0

0

to(1 to)(to 2)Bul

tO(( tO)(tO 2)B,3
tO to-2)BB3

to3(2 to)(to 2) B3B_,B,3

0 tO(A)6(A)C13
0 tO2(A)lx-(A)C,C,3

tO(A)6(A)C3 tO3(A)Ix(A)C

C= := [BI and C C32C21 C13,

(2.14) 6(A) := (tO(A)- 1)(2- tO(A)),

and

(2.15) p,(A) := 2- tO(A).

Thus by (2.4), (2.5), and (2.11)-(2.14)
~A(2.16)
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in which case the inequality (2.9) is valid at least for all nonsingular block 3-cyclic
irreducible H-matrices for which

(2.17) p( ~A 2r(1-- r)
Rto(A)) < (1 + r)

p( r)’

where, to remind ourselves, r=
We next turn to the problem of determining the set of all values of r in (0, 1) for

which inequality (2.17) is valid. First since A was assumed to be irreducible, obviously

(2.18) IJAI C21 0 0

0 C: 0

’Ais irreducible and so Rto(A) is also irreducible. Moreover, according to a characterization
for irreducibility of a nonnegative matrix in canonical form due to Frobenius, 1912
(see Varga [14, Thm. 2.6]), the irreducibility of ]jA[ implies that C=C32C21C13 is
primitive and that

(2.19) p(C) p3([jA[) 17"(C).

It follows that /Ato(A) tOO is primitive since it is an irreducible matrix whose cycle
lengths have a greatest common divisor equal to 1.

Continuing, set

(2.20) PA ’-- 0(Ato(A))
to be the Perron root of to(A) and let u > 0 be a corresponding Perron vector in which
case

(2.21) ’aRto(a)U pAU.

Now partition the vector u into u =(x r, yr, zr)r in conformity with the size of the
blocks of ~ARto(A) given in (2.12). Then from (2.12) and (2.21) there results a sequence
of substitutions as follows:

which implies that

pax= to(A)(A)C3z

x (1/pA)tO(A)8(A)C13z;
(2.22)

PAY to(A)8(A)C21x + to2(A)lx2(A)C21C13z
which implies by (2.32) that

(2.23) y=[(1/p2A)Oj2(A)82(A)C21C13+(1/pA)tO2(A)tx2(A)C21C3]z;

and finally

pAZ to2(A)8(A)C32C21x + to(A)8(A)C32Y+ to3(A)lz2(A)Cz
which, by (2.22) and (2.23), reduces to

[ t3(A)t3(A) to3(A)t(A)l,z2(A) o93 ]t3(A-)-82(a) + + + (A)/x2(A) Cz.(2.24) pAZ
l PA p2A PA

Since C is primitive and z > 0, (2.19) and (2.24) have the implication that

(2.25) 3(Ijal) 03(A)lx2(A)p2a + [to3(A)t2(a)+ to3(a)8(A)lx2(A)]pa + to3(A) 83(A)"
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In passing we mention here that the polynomial relation between PA and p(lJAI) given
by (2.25) is quite distinct, due to different sign cancellation, from the polynomial
relation between h and u given in the paper by Varga, Niethammer and Cai [15, eq.
(2.26)].

Let us revert now to the notation r p(IjAI) which we already introduced following
(2.8). If we substitute to(A)=2/(1 + r) in (2.14) and (2.15) and then substitute the
expressions in r thus obtained in (2.25) one deduces, after some simplication, that for

PA p( Ra,(a)) the following relations hold"

(2.26) paA + B(r)pEA+ O(r)pA + E (r) O,

where

/,5
(2.27) B(r) -32

(1 + r)-----7’

r5(1- r)2 r6(1- r)
(2.28) D(r) =-32

(1 + r)---64 (1 + r)-----’
and

(2.29) E(r) -64
r6(1 r)
(1 + r)9

Consider the parametric cubic equation

(2.30) .3+ B(r).2+ D(r)-+ E(r)=0, re (0, 1).

By (2.26) for each H-matrix A with r p(lJal) the Perron root PA of ja,oA) is a positive
real root of (2.30) whose size, in view of the discussion leading to (2.17), we wish to
compare with the quantity p(r) 2r(1 r)/(1 + r)2. Let us first determine the possible
values r e (0, 1) for which p(r)= PA. For this purpose let us substitute the expression
for p(r) in (2.30). One obtains after some simplifications, the following quartic equation
in r:

(2.31) f(r) := 17r4+ 18r3-2r- 1 =(r+ 1)(17r3+r2-r-1)=O.
It is simple to ascertain using the discriminant test for the roots of a cubic (see [13,
pp. 103-104]) that 17r3+ r2- r- 1 has one positive real root roe (0, 1) and two complex
conjugate roots. It follows that the quartic f(r) given in (2.31) has precisely one root

ro in the interval (0, 1) and hence ro is the only value of r in (0, 1) for which p(r) PA.
Computations show that

(2.32) ro -.4181928.

In order to determine more precisely the relationship between PA and p(r) at least
in an interval containing (0, ro) we next prove the following auxiliary lemma

LEMMA 2.1. (i) Of the three branches of solutions to (2.30) only one of them x, is
an increasing function at least in the interval (0, 5/7).

(ii) The function p(r) 2r(1- r)/(1 + r)2 is positive and concave in (0, 1) and it
takes its maximum value in the interval at r 1/3.

Proof The proof of part (ii) is essentially a freshman’s calculus exercise and so
only part (i) of the Lemma will be proved here.

First using expressions (2.27)-(2.29) for B(r), D(r) and E(r) one can verify the
existence of values of r in (0, 1), e.g., r 0.25 for which the discriminant of (2.30) is

~Apositive and hence for the values of r in (0, 1) the Perron root of Ra,(A), which in this
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lemma we denote by xr, is the only branch of solution to (2.30) which is positive
throughout the interval (0, 1). To complete the proof of the part (i), we shall therefore
show that

dx
(2.33) rd--

> 0 Vr (0, 5/7).

Implicit differentiation of

(2.34) xr+ B(r)x+ D(r)x+ E(r)=0
with respect to r yields that

(.35) dx
dr

2B’(r)x + D’(r)x + E (r)
3x+2B(r)xr+ D(r)

Hence, on multiplying both sides of (2.35) by (1/x)>0 one obtains that

(2.36)
1 dxr B’(r)x+ D’( r)xr + E’( r)
x dr 3x3 + 2B(r)x2+ D(r)xr

Consider the denominator on the right-hand side of (2.36)"
23x3 + 2B(r)x + D(r)x

2(2.37) 3[x+ B(r)x + D(r)x + E r)] B( r)x2 2D(r)xr- 3E r)

=-B(r)x2-2D(r)x-3E(r)>O Vr(0, 1).

We mentioned that the last equality in (2.37) follows by (2.27)-(2.29), (2.34), and
because xr> 0. To prove (2.33), it therefore remains to show that at least for r (0, 5/7)
the numerator of (2.36) is negative. Indeed,

r4
B’(r)=-160 (l+r)6<0 Vr(0,1),

32r4(5-2r-7r2)
D’(r)

(1 + r)8
<0 Vr (0, 5/7),

and

192r5(2- 8r+ 10r2- r3)
E’(r)

(1 + r)1
<0 Vr (0, 1).

This completes the proof.
The situation is quite clear now:

(2.38) pA=p
’AR,oA)) <p(r)

2r(1 r)
(1 + r)2

whenever p(ljAI) (0, to).

This is born by the graph in Fig. 1. We note that from Fig. 1 it appears that p( ~AR,,,(A))
is an increasing function of r o(IjAI) throughout the interval (0, 1) a fact which we
have not been able to prove here, but which we did not require either. We further
mention that our computations show that the discriminant of the cubic (2.30) is positive
for r in the range 0 < r < .6.

Lemma 2.1 and (2.38) together with the analysis presented in (2.1)-(2.17) yield
the following result:
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THEOREM 2.2. Let A be an n n complex nonsingular irreducible 3-cyclic H-matrix.
zfp(IJl) (0, to), where ro is the unique root ofthe cubic (1.12) in the interval (0, 1), then

(2.39) p(sA(A)) z p( ~a (A) 1 < ASo(a)) < (.O p( L,,.,(A)).
As indicated previously, ro is roughly given (2.32). It is evident now that because

of the strict inequality in (2.4) a neighborhood of dominant convergence of the SSOR
method over the SOR method, in the sense defined in 1, exists for each H-matrix A
with (0, This proves that the statement of Corollary 1.2 is valid.

Figure 2, where
gA ’ASto(A) (1 -to (A))2I + R,o(A),

illustrates that the inequalities in (2.39) between p( A ALo(A))So(a)) and p( remain valid
considerably beyond ro, but it appears that different tools need to be developed to
examine the relationships between A Ap(S,,(A) and P(L,oA)) outside the interval (0, to).
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Finally, in view of Observation 1.1 and Corollary 1.2 we raise here the following
question"

Suppose A is an n x n nonsingular M-matrix such that R(JA) E (0, to). Does the
inequality

p(S)>-p(L)

hold for all to (0, to A ?
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FREDMAN-KOML(JS BOUNDS AND INFORMATION THEORY*

JANOS K6RNERt

Abstract. Fredman and Koml6s have applied an interesting information-theoretic lemma to two prob-
lems in combinatorics. They have derived good lower bounds on the minimum size of a family of partitions
of an n-element set into at most b classes such that all the subsets (respectively, pairs of subsets) of a certain
kind are "separated" by at least one partition in the family.

Our aim is to show that the Fredman-Koml6s lemma is a special case of a simple inequality between
entropies of graphs. The general inequality enables us to handle more problems on separating partition
systems. Part of the problems relate to hashing.

Key words, perfect hashing, graph covering, graph entropy

AMS(MOS) subject classifications. Primary 68E10; secondary 05C70, 94A15

1. Introduction. In a recent paper Fredman and Koml6s [4] have applied an
interesting information-theoretic technique to two problems in combinatorics. We shall
extend and simplify their method in order to be able to treat a large class of problems
on separating partition systems in a perspicuous manner.

The key notion in our approach is a functional, introduced for arbitrary graphs
by K6rner [5]. We shall point out later on that this notion is implicitly contained in
the basic lemma of Fredman and Koml6s in the case of a graph consisting of a complete
subgraph plus an isolated point.

In 2 we shall recall the definition and some basic properties of graph entropy.
Furthermore, we shall prove our basic inequality. To illustrate the advantage of our
generalization, we shall rederive the Fredman-Koml6s result on perfect hash functions
[4] in a short and elegant manner in 3. In 4 we shall treat a related problem, nearly
perfect hash functions, that seems to be untractable by the original Fredman-Koml6s
technique. In the final 5 of this paper we shall discuss the tightness of our bounds
and explain the relation of our approach to that in [4]. Also, we shall point out that
graph entropy is a better estimate for the Fredman-Koml6s "content" of a graph than
their Theorem 1.

No information-theoretic prerequisites are needed. However, for more details on
our terminology and the basic notions of information theory we refer the reader to
the books by Csiszfir and K6rner [2] or McEliece [7].

All logarithms are to the base 2. For the reader’s convenience we recall that the
entropy H(P) of the probability distribution P on the finite set X is given by

H(P) E P(x) log P(x).
xX

The entropy H(P) of a random variable (RV) X with values in X and distribution
P{X x}- P(x) is defined as H(X) H(P). Given the RV’s X and Y with respective
finite ranges X and Y, the mutual information I(X ^ Y) between X and Y is

I(X^ Y)=H(X)+H(Y)-H(X, Y)

where H(X, Y), the joint entropy of (X, Y) is simply the entropy of the RV (X, Y)
that takes its values in X x Y.

* Received by the editors February 6, 1985, and in revised form January 13, 1986. Part of this research
was done while the author was visiting Trieste University, Italy.

Mathematical Institute of the Hungarian Academy of Sciences, 1053 Budapest, Hungary.
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The term graph means a simple graph, i.e., one with undirected edges, without
multiple edges and loops. An independent set of the graph G is a subset of the vertex
set in which no pairs of vertices are connected by an edge of G. The maximum
cardinality of such a set, denoted by a(G), is called the independence number of G.
A coloring of G is a partition of the vertex set into independent sets called color
classes. The chromatic number 3’(G) of the graph G is the minimum number of classes
in any coloring of G. We shall denote by V(G) the set of vertices of G, while E(G)
will refer to the set of its edges. Note that the elements of E(G) are unordered pairs
of elements of V(G). The term subgraph will always refer to induced subgraphs. The
inclusion F c G means that F is an induced subgraph of G. For the unexplained
terminology concerning graphs, cf. Berge 1].

2. Graph entropy. Let us consider a graph G with vertex set X and an arbitrary
probability distribution P on the set X. We call the couple (G, P) a probabilistic graph.
Graph entropy is a nonnegative valued functional on probabilistic graphs, introduced
in [5]. Reversing the role of the definition and characterization in that paper, we shall
define graph entropy as follows:

DEFINITION 1. Let M be the family of all the maximal independent sets of G. A
distribution Q will be said to belong to the family (G) of distributions on X x M if
it is concentrated on those elements (x, y) X x M for which the vertex x is contained
in the independent set y. Set

H(G, P) a_ min {I(X ^ Y); Px P, PxY (G)}.

H(G, P) is the graph entropy of (G, P).
The key element in our machinery is a simple inequality for graph entropies.
DEFINITION 2. Let the graphs F and G have the same set of vertices. The union

graph F [.J G is defined by the relations

V(F [.J G) V(F) V( G), E(F [_J G) E(F) U E( G).

We have our key
LEMMA 1. For every probability distribution P on V(F)= V(G),

H(F[.J G, P)<- H(F, P)+ H(G, P).

Proof We define the triple of RV’s X, Y, Z as follows. Let X have distribution
P, let PxY attain the minimum in the definition of H(F, P), and, likewise, let Pxz
attain H(G, P). Further, let Y and Z be conditionally independent given X. Clearly,
the maximal independent sets of F [.J G are exactly the pairwise intersections of the
maximal independent sets of F and G. Hence the pair of RV’s X, Y can be regarded
to take its values in the maximal independent sets of FU G. Obviously, the joint
distribution of X and YZ is contained in (FU G). Hence

(1) H(FU G, P) <- I(X ^ YZ).

Now, by the well-known nonnegativity of mutual information, (cf. [2, Lemma 1.3.2]),

(2) I(X ^ YZ) <- I(X ^ YZ) + I( Y A Z).

But, by our definition ofmutual information, the right-hand side ofthis inequality equals

H(X) + H(Y) + H(Z) H(XYZ),

an expression symmetric in X, Y and Z. Hence (2) can be rewritten as

I(X ^ YZ) <- I(X ^ Y) + I(XY ^ Z) I(X ^ Y) + I(X ^ Z),
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where the last equality follows from the fact that Y and Z are conditionally independent
given X. Comparing this with (1) and recalling that I(X ^ Y) and I(X ^ Z) achieve
H(F, P) respectively, H(G, P), the statement of the lemma follows. [3

We shall return to the problem of equality later on. By an iterative application of
the lemma we get

COROLLARY 1. For everyprobability distribution Pon V(G1) V(G2) V(Gk)

g U G,P <-2 H(G,P).
i=1 i=1

We add a simple observation. Let A be an independent set of the graph G. Define
the graph G(A) as the result of the operation of replacing A by a single vertex adjacent
to precisely those vertices of G which were adjacent to at least one element of A. Let
the distribution pA be obtained from P by assigning to the single vertex that replaces
A the total probability P(A). It easily follows from the definition of graph entropy that

LEMMA 2.

H(G,P)<-H(G(A),PA).
It is clear that

H(G, P) Nlog /(G).

Further,
LZMMA K (K6rner [5]). Let G be a graph all the connected components G ofwhich

are complete subgraphs. Further, set

P,(x) P(x)[P(G,)]-’, x G,.

Then

H(G, P)=F, P(G)H(P).

In 4 we shall prove a generalization of this lemma.
The above is all we need to rederive the Fredman-Koml6s bound in a few lines,

as it will be done in the next section. However, it would be inappropriate not to dwell
somewhat more on this notion so as to provide some intuitive picture. I will try to
explain, using my original definition, that graph entropy is a probabilistically refined
concept of the chromatic number of a graph.

Given the graph G with vertex set X, let us define the nth power of G of G as
follows. The vertex set of G" is X". Two vertices, x and x’ of G" are adjacent (connected
by an edge) in G" if for at least one of their n coordinates the corresponding vertices
of the two sequences are connected by an edge in G. Intuitively, we might think of G
as the graph of distinguishability between the elements of X. Then, the two endpoints
of an edge are always considered to be distinguishable, while the remaining pairs of
vertices might be confused. The graph G" is the natural extension of this relation to
sequences of length n of elements of X.

Consider an arbitrary probability distribution P on the set X. We denote by P"
the product extension of P to Xn, i.e., for x XlX2 x we write

P"(x) _a_ I P(x,).
i=1

We define the e-chromatic number y,(G, P) to be the minimum of the chromatic
numbers of the "large" subgraphs of G;

3,(G, P)---a min {3,(F); P(F) >- I e, F C G}.
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In this definition, P(F) is the total probability of the vertices of F. It is easy to see
that for every fixed e, the quantity y(Gn, P") is exponential in n. We recall

THEOREM K (Kfrner [5]). For every e (0, 1)

lim
1

log y(G, P")= H(G, P).

Remark. As we have stressed before, this characterization theorem is not used in
our proof of the Fredman-Koml6s result. Originally, the author has obtained it in an
esoteric information theoretic context. In our original paper introducing graph entropy,
it was defined as the left-hand limit above. Theorem K served to prove that this limit
exists, is independent of e (0, 1) and can be described by the formula we are using
here as the definition. We have reversed the function of the two mainly to point out
the brevity and the elegance of the proof of Theorem FK.

3. Perfect hash functions. Consider the n-element set X. We shall say that a
function f:X B separates the set A c X if f takes a different value on every element
of A. Let f, 7r II be a family of mappings of the set X into a set B. Set b IBI. The
family {f}n is said to be a (b, k)-family of perfect hash functions for X if every
k-element subset A c X is separated by at least one function f, 7r II. Let us denote
by Y(b, k, n) the minimum size of any (b, k)-family of perfect hash functions for X.
We fire interested in the asymptotics of Y(b, k, n) for every fixed b and k.

We shall define the functions f through partitions of X, assigning a different
element of B to the different classes of a partition in an arbitrary manner. Selecting
each partition equiprobably, independently from one another among all possible
equipartitions of X into b classes, one easily sees, cf. [4], that

bk

(3) Y(b, k, n)<- k. log n

as n goes to infinity, while b and k remain fixed. Here and in the sequel,
k-1

bk----a I-I (b-i).
i=0

Next we prove that
THEOREM FK (Fredman-Koml6s [4]).

bk-1 log n
(4) Y(b,k,n)>.

bk-1 log (b- k+2)’
asymptotically in n, for every fixed b and k.

In order to rederive this result, let us first observe the obvious
LEMMA FK. The number of k-element sets in X separated by any given f: X- B is

upper bounded asymptotically by

b-
Proof of Theorem FK. Let us define a graph G the vertices of which are pairs

(x, C) where x e X and 12 is a (k- 2)-element subset of X that does not contain x. Let
(x, 12) and (x’, 12’) be adjacent in G if and only if x x’, 12 12’. Clearly, for every
12 c X with 1121 k-2, G has a connected component which is a complete subgraph
on n- k+ 2 elements. Hence, letting P be the equidistribution on the vertex set of G
and noticing that these subgraphs exhaust the vertex set of G, we have, by Lemma K,

(5) H(G, P) log (n k + 2).
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Now, let f X--> B, 7r H be an arbitrary (b, k)-family of perfect hash functions for
X. With every function f we shall associate a graph G having the same vertex set
as G, Let (x, C) and (x’, C’) be adjacent in G if and only if

(i) they are adjacent in G,
(ii) the k-element set obtained from C- C’ by adding the elements x and x’ is

separated by f.
Then the fact that f, 7r II is a (b, k)-family implies that G is the union of the graphs
G, r II in the sense of Definition 2. Hence, by Corollary 1, we get

H(G, P) <- E H(G, P).

If, furthermore, {f}ri is an optimal (b, k)-family, the last inequality yields

(6) H(G, P)<= Y(b, k, n) max H(G, P).
II

It remains to upper bound H(G, P). It is clear from the definition of G that the
points (x, C) for which the set CU {x} is not separated by f are all isolated points in

G. Further, if (x, C) and (x’, C’) are adjacent in G, then C C’ and f(x) f(x’).
Moreover, all the pairs (x, C) for which (f(x),f(C)) is the same pair of sets are in
a corresponding single independent set of G. Iteratively applying the contraction
operation of Lemma 2 to these independent sets, we obtain a graph that contains a
set of nonisolated points having total probability at most

bk+l,

(cf. Lemma FK), the subgraph of which has the propey that its connected components
are complete subgraphs of b-k+2 veices each. Let us denote this new graph by
(G, P’). By Lemma 2,

(7) H(G,P)H(G,P’).

On the other hand, we have seen that G satisfies the conditions of Lemma K, and hence

bk-1
H(G, P’) log (b- k+2).

Comparing this inequality with (5)-(7), we obtain the statement of the theorem.
In the last section of this paper we shall return to the question of the tightness of

this bound. Fuher, we shall explain in what sense this is a streamlined version of the
Fredman-Koml6s proof. For an explanation of the hitheo mysterious title of this
section we refer the reader to [4].

4. Nearly-perfect hash functions. Lemma 1 applies to a wealth of problems in
which a family of paitions must "separate" subsets or t-tuples of subsets of a given
ground set. Not all of these problems are however tractable by the original Fredman-
Koml6s technique. Crucial to their approach is namely the reliance on graphs all the
connected components of which are complete. We shall see in what follows that not
all the problems of the above type can be described in terms of such graphs. To
illustrate this phenomenon, we introduce a slight variation into the previous problem.

Let us have [XI n, IBI b. We shall say that a function f:X B nearly separates
the set A c X if f takes IAI- 1 different values on A. The family {f}n of mappings
f:XB is said to be a (b, k)-family of nearly-perfect hash functions for X if every
k-element subset of X is nearly separated by at least one function f, e H. Let us
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denote by Z(b, k, n) the minimum size of any such family for X. We are interested in
the asymptotics of this quantity for any fixed b and k.

Let F(b, k, l, n) denote the maximum fraction of k-element subsets of X on which
a function f:X B takes precisely different values. Since it is easily seen that
F(b, k, l, n) is achieved by equipartitions of X, we have the asymptotic inequality

--1 b lk-l,(8, F(b,k,l,n)<()() kb._ll [()(;)] -for every fixed b, k and/. In particular,

bk_=l

F(b, k, n)& F(b, k, k-l, n) <--(k- 1).

A standard random selection argument yields
LEMMA 3.

b k k
Z(b, k, n) <<.

bk k-- l
log n,

asymptotically, for fixed b and k.
Proof. As in the previous problem, we shall select partitions which will be used

to define the functions in an obvious way. Let us choose our partitions with equal
probabilities and independently from one another among all the possible equipartitions
of X into b classes. After m partitions have been selected, the probability that there
is at least one k-element subset of X which is not nearly separated by at least one of
our partitions has the obvious upper bound (cf. (8))

If this expression is strictly less than 1, then there is at least one family consisting of
m partitions that has the desired properties. Hence

mk.logn -log 1-(k-l)
b J <b-’k2-l"

The counterpart of the last lemma is a generalization of the Fredman-Komlds
type lower bounds. In order to prove it, we need a generalization of Lemma K.

LEMMA K*. Le the connected components of the graph G be the subgraphs G.
Further, set

Then

Pi(x) P(x)[P( Gi)]-’, x e Gi.

H(G, P)=Z P(G)H(G,, P).

Proof. The inequality

H(G, P)->-Z P(G)H(G, P)

follows from Theorem K. In fact, let G(n) be a graph with vertex set IV(G)]n. Let the
vertices x and x’ of G(n) be connected by an edge in G(n) if they are adjacent in G
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and all their coordinates belong to the same subgraphs Gi. Let us fix some e e (0, 1).
It is easily seen that

lim infllog %(O(n), P")>-Z P(O,)H(G,, Pi).
FI

As E(G(n)) c E(G"), it is also clear that

%(G", P")>- 3(G(n), P").

Comparing this with the previous inequality, our first assertion follows by the definition
of H(G, P) and Theorem K. To prove inequality in the other direction, let G* be the
graph with vertex set V(G) obtained from Gi by adding the remaining points of V(G)
as isolated points. By Lemma 1,

It remains to see that

H( G, P) <- Z H(G* P).

H(G* P)<- P(G,)H(G,, Pi).

To this end, let PxY achieve H(Gi, P) for some fixed i. To any maximal independent
set A in G there corresponds a maximal independent set A* in G* obtained by adding
to A all the isolated points in G*. Let us define the joint distribution of the RV’s
X*, Y* as follows. Set Px.a-- P. Let the conditional distributions of Y* given the
various values of X* be

a__ PYIx(Alx) if x e V(G,),
PY.ix.(A*lx) Py(A) else.

An easy computation shows that

I(X* ^ Y*) H( Y*)- Z P(x)H( Y*IX* x)
xeV(G)

where H( Y*IX* x) is the entropy of the probability distribution PY*IX*(" Ix) Hence,
by definition,

I(X* ^ r*) Y P(x)[H( Y*)- H( Y*IX* x)]
xeV(O)

E P(x)[H(Y)-H(YIX=x)]=P(G,)I(X^ Y).
xV(Oi)

Noting that H(G*)<= I(X*^ Y*) and I(X ^ Y)= H(G, P), we can complete the
proof.

Remark. It is possible to prove this lemma directly, without using Theorem K.
Now we are ready to establish
THEOREM 1. For every fixed b and k, asymptotically in n,

bk-3 log n
(9) Z(b, k, n) bk___23 log (b- k/ 5)"

Proof. Let G be a graph the vertices of which are pairs of subsets (A, C) of X
such that ]AI 2, ]C] k-4. The vertices (A, C) and (A’, C’) are adjacent in G if and
only if C C’ and the sets A, A’, C are pairwise disjoint. Notice that the last condition
implies ]A LI A’LJ C] k. Let P be the equidistribution over the vertices of G.
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Then, clearly, the graph G has (kn_4) connected components all of which are
isomorphic. Let G’ be such a connected component and let P’ be the equidistribution
over its set of vertices. By Lemma K*

H(G,P)=H(G’,P’).

Further, by the Erd/Ss-Ko-Rado theorem [3],

a(G’)<-n-k+3.

By the last two relations we see that

(10) H(G,P) H(G, P’)_->log >-. log n.
t(G’) n-k+3

(The first inequality in (10) is obvious. Nevertheless, its proof will be given in the last
section, cf. (14).)

Let f, 7r e II be a family of mappings from X to B that achieves the minimum in
the definition of Z(b, k, n). For every 7r e H, let us define the graph G with vertex
set equal to V(G) as follows. Let (A, C) and (A’, C’) be connected by an edge in G
if and only if

(i) they are adjacent in G,
(ii) A U A’U C is nearly separated by f.

Since the family f, r e II is a (b, k)ofamily of nearly-perfect hash functions for X, we
have

G= U O,,,

whence, by Corollary 1, we obtain

(11) H(G,P) <- , H(G,P)<-Z(b,k,n).maxH(G,P).
rH rH

As in the previous theorem, it remains to upper bound H(G, P).
We shall refer to the different values off as "colors." Let f(A) denote the set

of all the ditierent colors f takes on the various elements of A. Then, f(A) B.
Clearly, if (A, C) is not an isolated point, then either

(a) If,(c)l k- 5, If,,(A U C)I k- 3,
(b) If,,(c)l k-4, If,,(A U C)I k- 3,
(c) I/(c)l k-e, Lf(A U c)l k-2.

Let us denote the sets comprising all the vertices of G,, with one of the above properties
by X,, Xb and Xc, respectively. As in the previous problem, we can see that all the
(A, C) for which (f,,(A),f,,(C)) is the same set pair of colors form an independent set
of G,,. Iteratively contracting each of these sets into a different single vertex we obtain
a graph (G’,,, P’). By Lemma 2,

(12) H(G,P)<-H(G’,P’).

Let us denote by X’, X, resp. X’ the contracted versions of X,, Xb and Xc, respectively.
Clearly,

(13) P’(X’) P(X), P’(X)= P(Xb), P’(X’)= P(X).
It is easy to see that the subgraph of G’ defined by the vertex set X’a has chromatic
number at most b- k / 5. Clearly, the vertices of X form a single independent set in
G’. Further, the chromatic number of the subgraph on X’ equals the minimum number
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of colors needed to color the edges of the complete graph on b k / 4 vertices so that
adjacent edges get different colors. As is well known, cf. [1, Thm. 1, p. 249], this
number is at most b- k / 4.

Let G(a) denote the subgraph of G’ having vertex set X’ and let G(b, c) denote
its subgraph with vertex set X, (.J X’. The above analysis shows that

),(G(a))<-b-k/5, ,(G(b, c))<- ),(G(c))+ l <-b-k+5.

By Lemma K*, this implies

H( G’, P’) <_- P’(X’ (.J X, (.J X’) log (b k + 5).

By (13) and (8), the last inequality results, for every 7r II, in

H G’, P’) <.
k 3 b k---3 + bk---A2 b k---A3

bk-2 log(b-k/5)=-c31og(b-k+5)
Comparing this with (10)-(12) yields the desired result.

5. The method. While the problem treated in the last section seems to be outside
the reach of the Fredman-Koml6s technique, we should not forget that the present
proof of Theorem FK is just a streamlined version of the original argument in [4], put
in a broader prospective. In fact, the Fredman-Koml6s approach is based on two
crucial ideas. First, the sets (or, for the other problem treated in their paper, pairs of
sets) to be separated are imbedded as edges into a suitable graph. In the present proof
of Theorem FK, this idea, and even the graph G, are as in [4]. Then, in a way, the
"volume bound," (cf. [4]), is applied to the edges. More precisely, at this point, in
[4], the concept of "strong coloring" of the vertices of a graph is introduced, and an
information-theoretic inequality is derived. We would like to explain why this
inequality, the Theorem 1 in [4], is, in case of very simple graphs, a combination of
our Theorem 1, Lemma K and Corollary 1. In fact, our concept of graph entropy is
implicitly rediscovered for those graphs in [4].

Let G be an arbitrary graph and let V be a graph with only two connected
components; a complete subgraph and an isolated point. Let Vd be the dth power of
V, (cf. Part 1). The mapping f:V(G)-> Vd is said to be a strong coloring of G if the
edges of G are preserved by f. Fredman and Koml6s’s key theorem is, in our language,

LEMMA IT. Iff: V(G)-> Vd is a strong coloring of the graph G, then

d

log IV(G)I<= ,, H( V,
o(G) i=l

where, for every vertex v in V, P(v) is the fraction of those vertices in G for which the
ith coordinate of the value off is v.

Proof. We claim that for an arbitrary G and distribution P on V(G),

(14) H(G, P)>- H(P)-log a(G).

In fact, let X, Y achieve H(G, P). By Theorem 1, we have

H(G, P)= I(X ^ Y)= H(X)- , H(XIY=y)Py(y).

Since H(XI Y y) is the entropy of some distribution on the elements of the indepen-
dent set y of G, it cannot exceed log lYl. Thus,

H(G, P)>- H(X)-log a(G)= H(P)-log a(G).

This proves (14).
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Let P be the equidistribution on V(G). Then H(P)= log IV(G)I, and (14) implies

(15) H(G,P)>-log.
On the other hand, let Va be a graph on the vertex set of G in which the vertices x
and x’ of G are adjacent if and only if the ith coordinates off(x) andf(x’) are adjacent
in V. Observe that

d

v v,
i=1

and, by the definition of graph entropy, we have

H(G,P)<-H(Va, P),

where P is the distribution generated by f on the vertices of Va in the natural way.
Thus, by Lemma 1, we have

d

H(G, P) -<_ E H( V/e, P)
i=1 i=1

where the last step is an obvious consequence of Lemma 2.
Not having to rely on graphs of which all the connected components are complete

subgraphs allowed us to introduce a more direct approach. The key to this approach
had to be, however, a functional defined for arbitrary graphs" graph entropy. To prove
a further illustration of this concept, let us dwell a little bit on the problem of the
content of a graph, introduced in [4].

Let V be the graph containing a single edge plus an isolated point and let
f" V(G) Va be a strong coloring of G. In [4], the content (G,f) is defined to be the
fraction of the nonisolated points among all the coordinates of all the sequences in
f(V(G)). The content of the graph G is defined as the minimum of content (G,f) over
all the strong colorings of G which map into powers of this particular V. Fredman
and Koml6s note that their Theorem 1 gives the estimate

Iv( )l
a(G) content (G).

Since we can rely on graph entropy, we will not replace it by its lower bound (15). In
fact,

content G) >= H( G,P),

where P is the equidistribution on V((3).
Finally, let us discuss how tight these bounds are. We shall limit this discussion

to Theorem FK. It is easily seen that in our proof of this theorem the upper bound
on H(G, P) is tight in an asymptotic sense for an equipartition f. Hence, if we
restrict ourselves to equipartitions, our estimate might be asymptotically tight provided
that we have equality in

(16) H(G, P)<= E H(G, P).
l-I

The question of additivity of graph entropy seems to be quite difficult. A modest
attempt to tackle it was made in [6]. There is some reason to hope that for independently
chosen equipartitions f, graph entropy is additive with large probability, provided
that there are not too many of them. However, we have no proof of this. At any rate,
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we believe to have exhibited graph entropy and in particular, its subadditivity to be
at the core of the Fredman-Koml6s technique.

We should mention that the two problems treated in [4] have a common generaliz-
ation to which the same technique applies. Other applications of graph entropy in
combinatorics and coding theory will be discussed in a forthcoming paper.

Added December 13, 1985. Using essentially the above approach, the author and
Kati Marton have improved upon the Fredman-Koml6s bounds. The results will be
published in a forthcoming paper in the European Journal of Combinatorics. This and
some other recent results we had obtained using this approach have led us to believe
that graph entropy yields an efficient method to prove nonexistence results in com-
binatorics.
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OPTIMAL NUMBERINGS OF AN N xN ARRAY*

GRAEME MITCHISONf AND RICHARD DURBIN"

Abstract. Given a numbering of the vertices of a graph, one can define the edgesum [6] as the sum of
differences between adjacent vertices. The problem of finding numberings which are optimal in the sense

of minimizing the edgesum is NP-complete [2] but has been solved in the special case where the graph is

the 2 cube [3] and for several instances of graphs with high degrees of symmetry [6]. We find the solutions
for numberings of an N x N array. These have practical application in the problem of representing spatial
information in a one-dimensional medium. To find our solutions, we exploit the fact that such numberings
can always be taken to be ordered, in the sense that numbers increase along rows and down columns. We
also consider a generalization of this problem to the case where the differences are raised to a power q. We
derive bounds on the edgesum in this case, and show that the optimal numberings for q < must be essentially
different from those we have found for q--1. While the latter may be assumed to be ordered, and have

regions of numbering by rows or columns, neither statement is true for the case q < 1. We hypothesize that
the solution in this case has a fractal character.

Key words, edgesum, graph numbering, fractal mapping
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1. Introduction. Suppose we number an N x N array with the integers 1 N2.
What numbering minimizes the absolute values of differences between adjacent entries ?
More precisely, suppose f is a numbering of an N x N array, with f,j the number
assigned to the (i,j)th entry. Define the "cost" of f, C(f) by C(f)=Y. Aij, where

Ao If,j+l -f,l q + If+l,-f,l q and q > 0. Our goal is to find numberings f which
minimize C(f). The significance of the exponent q is that it indicates the extent to
which large jumps between adjacent squares are penalized (q > 1) or tolerated (q < 1).
We shall derive the optimal numbering for the case q 1 (Fig. 4), and obtain bounds
on C(f) for other values of q. We also consider generalizations to higher dimensions.

This problem arises in many practical contexts, for instance in representing
two-dimensional arrays on a sequential file in a computer. Suppose one wishes to
perform local calculations around a point in the array, as in the case of evaluating a
differential operator. Then Ai measures the distance in the file which must be traversed
in each local operation. An analogous problem arises in computer hardware, when
one wishes to place components of a multi-dimensional array processor on a lower
dimensional chassis.

Our original interest in this problem arose with a biological question. The cortex
of the brain of higher mammals can be regarded as a sheet of nerve cells. In the part
of the cortex devoted to vision, cells respond to certain visual stimuli, such as oriented
bars of light against a dark background. A major discovery of recent years is that
variables used to describe these stimuli, such as the location of an edge in space, or
its orientation, are mapped in a systematic manner on the cortex [7]. This mapping
ofmore than two variables onto a two-dimensional sheet is, in some cases, accomplished
by cycling through the values of variables to give striped patterns. This suggests that
the nervous system may be trying to achieve as much continuity as possible in mapping
these variables onto the cortex. The numbering ofan array represents the most simplified
mathematical model of this problem.

The higher dimensional generalization is relevant to coding theory. If the numbers
0. 2 are encoded as strings of m l’s or O’s, the mean absolute change which results

* Received by the editors May 24, 1985 and in revised form January 2, 1986.

f MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, England.
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from an error in one bit is proportional to Aij, q 1, the sum being taken over
adjacent vertices of the 2 cube. Harper [3] showed that the numbering of the 2" cube
that corresponds to the standard binary code is optimal, for all m. When q 2, C(f)
is the mean-square error, and this too was shown to be minimized by the standard
binary code [1]. As we shall see, the analogous numbering of N" (the expression of
a number in base N) is not optimal in the case q 1 when N is large enough.

2. The case q = 1. It is convenient to describe the N x N array geometrically as
a square. Numberings by rows or columns, such asfj (i- 1)N +j, give C(f) N3- N.
These numberings are ordered, in the sense that f <f.+l and f <f+l..

PROPOSITION 1. _For q >-- 1, iff is any numbering, then there is an ordered numbering
g with C(g) -<_ C(f).

Proof. It is clear that the horizontal differences within a row are minimized by
ordering that row. It follows that if we order all rows we can only decrease the horizontal
contribution to C. To show that horizontal ordering also improves the vertical contribu-
tions, we proceed inductively down the rows. Suppose that we have ordered a row
and performed the appropriate permutation on the rows below so that every element
retains the same vertical neighbour. Suppose and j lie next to each other in our
ordered row, and that lies above m, j above n, with i<j, m > n. Then the vertical
differences are reduced by switching m and n in the lower row, by virtue of the
inequality i- nl + J- ml q <-[i- ml q + J- nl q which holds for such sets of i, j, m, n
when q-> 1. We can clearly order the row below by a sequence of such permutations.

Call the resulting horizontally ordered numbering h, and order this vertically to
obtain g. It remains to show that g is still horizontally ordered. If not, then for some
i, j and k with i<j we would have gik > gjk. Assume gjk--hj. There are (k-1) h.’s
with h. < gk, and so, including hi, there are at least k hi.’s with hi. < gjk gig, which
is a contradiction.

We may now assume that, with q => 1, all contenders for a minimal numbering are
ordered. For q 1, and for an ordered f, C(f) (sum of entries for R.H. (right-hand)
column + lower row-L.H. (left-hand) column-top row). This dependence upon the
boundary values greatly simplifies our task.

Numbering the N x N square in sequence, let U denote the region which has
been filled when either the L.H. edge or top row is complete. For definiteness, let us
assume in the following that the L.H. edge is filled first. Let V denote the region which
has yet to be numbered just before the top R.H. corner is numbered. Let S denote the
sum of edge elements on the boundary of U.

LEMMA 1. The largest value of S is obtained by successively filling in from either
the top row or the L.H. edge the longest columns or rows within U compatible with the
ordering rule.

Proof. We start by placing 1 in the top L.H. corner and putting 2 in an adjacent
square. After this, the longest row or column lies next to the pair 1, 2 (see Fig. 1), and
can only be two squares long if it is not to violate ordering. Continuing in this way,
if at any stage we do not fill a row or column as far as ordering permits, then the
remaining sites must be filled later, and the edge entries which are made before this
is done will be smaller than if the row or column had been completed at once. So the
largest S is obtained by filling rows or columns as far as allowed.

If at some stage we fill a row or column which is not the longest available, then
there must be two rows or columns (one of each) of lengths m and n, m < n, which
have been filled consecutively, with that of length m filled first. Interchanging the order
of filling increases S.
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FIG. 1. The initial sequence for optimally filling region U.

COROLLARY. S is maximized by filling first the largest square P which lies within U,
and then filling in order of decreasing length the columns or rows in the regions to the
right of, and below, P. P is filled as a succession of squares of increasing size: there is a
choice of adding a row or a column to each completed square, after which a column or
row, respectively, must follow.

We now know how to number U so as to maximize the sum of entries along its
boundary. By symmetry, we can number V so as to minimize the corresponding sum,
and in this way we can minimize the total cost C(f) for a given pair of regions U and
V. It is also not difficult to see that the region between U and V is best filled with
vertical columns in sequence from left to right (as permitted by Proposition 1). In this
way the entries along the bottom row which do not lie within V are minimized, and
likewise the entries along the top row which do not lie in U are maximized.

The next question is how to choose the shapes of U and V so as to give a global
minimum for C(f).

LEMMA 2. Suppose U, V and the region W between U and V have been numbered
optimally, in the manner prescribed above. Let P be the largest square in the top left-hand
corner inside U, and Q the largest square in the bottom right-hand corner inside V. Then
C(f) can be made smaller by deleting from U the region which lies to the right ofP and
the corresponding region from V to the left of Q.

Proof. Let U1 denote the region of U to the right of P, and U2 that below P. Let
V1 denote the region in V to the left of Q, and V2 that above Q.

Let us give names to sums of numbers in various segments of the boundary of
the N x N square. E denotes the sum for the segment of the top row above U, E2

that for the left-hand edge of U2 and E that for the remaining part of the top row to
the right of U. F1, F2 and F3 are defined analogously (see Fig. 2a).

We can write C(f)=(F1 + F2+ F3)-(El + E+ E3) + (terms from boundaries of P
and Q). Our plan is to remove V1 and U1 and show that (E + E2/ E3) is increased.
By symmetry it will follow that (FI/ FE+F3) is decreased, and hence that C(f) is
decreased.

First remove V from V. That is to say, fill Wu V with columns, and then fill
V-V1 optimally. This will increase E3, but leave terms on the boundary of Q
unchanged, since Q is still the maximal square in V and is filled last.
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(a) (b)

FIG. 2. (a) The regions defined in Lemma 2, and the segments of boundary over which the sums Ei and

F are taken. (b) Showing that the region Ui can be removed column by column.

Next remove the right-most column of U1 from U and add it to Wu V1. Suppose
this column has height w. Let the side of P be x. In U2, suppose the last row with
width greater than w lies at height h above the bottom row. Removing the right-most
column of U decreases E2 by hw. By assumption, Wu V is filled with vertical stripes,
and this includes the region to the right of U below P, since we have removed V1 and
P and Q are disjoint. The last entry of U1 in the top row will be increased by at least
hx (the area of X in Fig. 2b). In all, E1 + E will be increased by at least hx- hw > O,
since x > w.

Removing the right-most columns of U step by step, we eventually remove all
of U and in doing so increase (El + E2). This completes the proof. D

LEMMA 3. Suppose we have put U and V into the above form, and hence that U
consists of a square P of side x, no points to the right of this square, and a region U2
beneath P. Then C(f) is minimized by making the width of U2 constant down to a height
x above the bottom row, and then giving the row at height y < x a length ofy or y- 1.

Proof. Assume there is a row, r, at a height y above the bottom left-hand corner
of length w with w < y, w < x (Fig. 3). Since w < x, we can assume the row above r is
longer than w (if not, take the row above). If we extend r by 1, C decreases by
(y- 1)-w > 0 (if w =y- 1 the change is indifferent). Similarly if w > y for some row

r, we can assume that the row below is shorter than w, and if we shorten r by 1 then
C decreases by w-y > 0. [3

We now know how to construct the optimal numbering. By the Corollary to
Lemma 1, and Lemma 2, the top left-hand corner of U is a square of side x, say, with
no points to the right of it. By Lemma 3, this square continues downwards as a rectangle
until it is a distance x from the bottom, and then cuts inwards to meet the left-hand
column in a 45 triangle. By symmetry, V can be assumed to have the same shape
(reflected about the horizontal and vertical midlines), and the region between them is
optimally filled with vertical columns in sequence from left to right.

For this numbering we find C(f) N xN: + 2x2N 2x2N 2x3/3 + O(N2),
which is minimized by taking x=(1-2-/2)N. For this value of x, C(f)=
(4- 21/2) N3/3 + O(N2) 0.868N3 + O(N2). Of course, these dimensions are only real-
ized approximately for integral N. The smallest N where the regions U and V exceed
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FIG. 3. Deriving the optimal shape for U.

a column width and therefore allow a better numbering than by rows or columns is
N= 5 (Fig. 4b).

There are many equivalent variants of the optimal numbering. Proposition 1 shows
that ordering a numbering does not increase the cost. Suppose we have two ordered
columns (or rows) next to each other. If all the elements of one are larger than those
in the other, either column may be reversed without changing the cost, for the differences
down each column are unchanged, as is the total difference between the columns. If
the two sets of elements overlap in their ordering, reversing one column will increase
C, as is easily seen. In the section of columns in the centre of Fig. 4a, any column can
be reversed without changing the cost. All other rows or columns overlap in their
ordering with their neighbours, so no other reversals are possible.

As we have seen in Lemma 3 and the Corollary to Lemma 1 there is a choice
along the diagonals in the corners. Each diagonal site may belong to either a row or
a column (Fig. 4c). If the numbering is required to be stably symmetric, as defined by
Harper [6], then this ambiguity is removed in the top left and bottom right corners,
but not in the other two corners.

Finally, we have assumed (in the preamble to Lemma 1) that the L.H. edge is
completed before the top row. If this is not so, then the boundary of U includes the
top row and that of V the bottom row, the region W between them is best filled with
horizontal stripes, and we obtain a construction equivalent to that given above but
reflected around the diagonal.

We summarize this section as follows:
THEOtEM 1. For q 1, the optimal numberings are given by Fig. 4a, its reflected

version, and all their variants obtained by reversing the order of the central complete
columns and selecting diagonal elements in corners.

There is no essential difficulty in applying the foregoing arguments to an N x N
torus instead of the square. One can still show that there must exist an optimal
numbering which is ordered, in the sense of Proposition 1. This follows from the fact
that the minimal cost on a circle is twice the difference between the minimum and the
maximum, which is attained by the ordered numbering. Having ordered a circle, the
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(a)

10

11

12

13

14

15

(b)

16 18

17 19

20 21

22 24

23 25

(c)

FIG. 4. (a) Schematic representation of an optimal numbering. The arrows denote the direction in which
a column or row is numbered. The light lines show which rowfollows which column, or vice versa, and otherwise
rows are filled downwards or columns to the right. (b) An optimal numbering for N 5. (c) Variants of the
optimal numbering in (a).
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minimum cost is reached by imposing the same ordering on adjacent rows, as in
Proposition 1. Now, given an ordered numbering, the cost for a torus is just twice that
for the same numbering on a square, and it follows that the numbering derived above
is also optimal for a torus. The torus numbering which Harper [5] proposes lacks the
diagonal pattern in the bottom left and top right corners and is therefore not optimal.
His argument that the regions we call U and V must be rectangles, although intuitively
appealing, is in fact unsound.

3. The ease q < 1. We have not been able to prove that any particular numbering
is optimal for q < 1. However, we have been able to obtain lower bounds for C(f),
and to find numberings for which C has the same exponent of N as this bound.

Good numberings for q < 1 are obtained by a different strategy from that used
when q 1. Instead of trying to spread differences between adjacent squares as evenly
as possible, it is better to cluster large differences together, as suggested by the following:

LEMMA 4. Let si, 1 to k, be real numbers satisfying , Si a, where a > O. Then,
for q<l T=k Isil q is minimized by taking si- 0 for all except for some sj a, giving
T a q. For q > 1, T is minimized by s- ak, giving T aqk1-q.

Proof. If any s < 0, distributing it over other positive s will decrease T. So we
can assume s > 0, all i. The function Islq- A s, A a Lagrange multiplier, has a
turning point in [0, a] k at sl s_ Sk. One easily checks that this is a minimum
only for q > 1. When q < 1, the minimum lies on the boundary of [0, a] k.

We now derive a lower bound for C(f) when q < 1.
PROPOSITION 2. When q < 1, C(f) >- (2q+ 1)-.Nl+2q + O(NEq).
Proof. Join 1 and N2 by a path constructed by following a horizontal line through

1 until it meets a vertical line through N2, after which this vertical line is followed
(Fig. 5). The interfaces between squares crossed by this path contribute terms to C(f).
We can write this contribution as Isil , where the s are differences at each interface
along the path. By Lemma 4, the minimum contribution of the path between N2 and
1 is (N2-1)q. Now look at the region left after the entire horizontal row and vertical
column partially used by the path are deleted. The difference between the largest and
smallest numbers left on the square must be at least N2-2N-2 (N-1)2-1.

If we repeat the above construction, the path between these two extremal numbers
does not repeat any of the contributions to C(f) made by the previous path (even if
they cross, because different interfaces are used by the two paths at their cross-over;
see Fig. 5). The second path contributes at least ((N-1)2- i) q. This process may be
repeated until the whole square is used up, from which it follows that

N

C(f)>- (i2-1)q-(l h’2q)-l.Nl+2qq-O(N2q) as required.

Consider now how a good numbering might be constructed. By Lemma 4, paths
give minimal contributions if the difference between their endpoints is concentrated
in a single step. We expect to create the smallest set of differences if the steps in a
bundle of adjacent paths are lined up. But this then divides the numbers into regions
within which the same construction can be repeated. We therefore look for a numbering
in which some motif is repeated at a succession of smaller scales--in loose parlance,
a "fractal" construction.

Figure 6 shows a simple example of such a construction. Suppose N w
Starting in the top left-hand corner, number sequentially in columns of height w, until
a w x w square is filled. Repeat this w times to make a column of w x w squares, then
replicate this to make w such columns, so filling a square of size wE x wE. The whole
N x N square is filled after n + 1 iterations of this process.
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FIG. 5. Paths used in proof of Proposition 2.

The cost of this numbering f is easily calculated. Each w x w square contributes
w(w 1)(wq + 1), and there are N2/w2 such squares. The boundaries of w x w squares
within a w2 w2 square contribute w2(w 1)(wq + 1)(w2 w + 1)q, and there are N2/w4

squares of side w2. Continuing in this manner, we find

C(f)/N (1- 1/ w)( l + wq) + (1/ w 1/w2)(l+ wq)(w2- w + l )q

or

+(1/w2- l/w3)(1 + wq)(w4- w3+ w:z- w+ 1)q + ",

(C(f). (1 + w)q)/(N2(1 + wq)(1- l/w))
(2)

(w+ 1)q+(w3+ 1)q/w+(wS+ 1)q/w2+ "+(w2"+l+ 1)q/w ".
Expanding each term on the R.H.S in binomial series gives

(C(f) (1 + w)q)/N2(1 + wq)(1- l/w)

(3) wq wi(zq-’) + qwq-’ w’("-3)+’’"
=0 =0

wq(N2q-1- 1)/(w:q-’- 1)+ qwq-’(Nq-3- 1)/(w2q-3- 1)+"
when q # 1/2.

When 1/2 < q < 1 this gives us

(4) C(f) Nl+2q.wq(1 q- wq)(1 1/W)/((W2q-l- 1)(1 + w)q)+ O(N2).
The term in w is minimized by taking w 2. When q , for instance, this value gives
C(f) 2.39N/2+ O(N2).
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W2

W

W

FIG. 6. A construction for a numbering with cost C(f)= O(Nl+2q).

When q =1/2 the first series on the R.H.S of (3) reduces to (n+ 1), and, since
N wn+l, we have

(5) C(f) N2 logw N.(1 + wl/2)( w1/2 w-1/2)/(1 + w) 1/z + O(N2).

Again, this is minimized by taking w 2, which gives C(f)= .99N2 log2 N+ O(N2).
When q < 1/2, the term in Nl+-q no longer dominates, and may be neglected. We

have only to count up the terms which contribute to the coefficient of N2, and the
R.H.S. of (2) converges for large n to a sum which depends only upon w and q. For
q ], for instance, calculations show that C is minimized by taking w 2, which gives
C(f)=3.53N2. When q=.l, C is minimized by w=4, with C(f)=2.39N2.

It is striking that, for q < 1/2, we can find a numbering with a cost proportional to
N2. This says that the average Aij does not depend on N. In fact, the coefficients of
N2 which our numbering give are not too far from the best possible. The smallest
differences between a given square and its four neighbours are, of course, 1, 2, 3, and
4, and these give a lower bound for the cost of 1/2(1 q d-2q-k 3 q -k-4q)N2. Taking q =1/4,
say, this cost is 2.4N2, whereas our numbering gives 3.5N2.

What we have shown is that, for 1/2< q < 1, there is a numbering which depends
upon N in the same manner as the bound given by Proposition 3. When q <1/2, the
dependence on N2 is the best possible. We summarize this in the following"

PROPOSITION 3. When 1/2< q < 1, the minimal cost C is O(Nl+2q)o When q <1/2,
C O(N2).

We do not know what are the optimal numberings for q < 1. The numbering in
Fig. 6 is ordered, but Proposition 1 no longer holds when q < 1, and it seems likely
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that the best numbering is unordered. A simple example is the square 3412 with q 1/2.
12 which is optimal, has costThis has a cost 2 + 2.21/2, while the unordered square 43,

3+31/2"
Note that the optimal numberings for q < 1 cannot contain a rectangle of stripes

with sides a constant factor of N, since this would contribute a term of order N2+q.
In fact, there cannot be a block of stripes with sides of order N(l+2q)/(2+q). In this
sense, the optimal numberings must have fine-scale detail.

4. The case q > 1. The optimal numbering for q- 1 (Fig. 4a) is no longer optimal
for q > 1. This numbering generates terms of O(Nl+Eq), which arise from boundaries
of the central region of stripes and the diagonals of the bottom left and top right
corners. A row or column numbering gives C(f)- NI+q(N- 1) + N(N- 1)
N2+q + O(Nl+q), with a lower exponent for N when q > 1. In fact, this is the best
possible exponent for N.

PROPOSITION 4. For q> 1, C(f)>-4.2-q.N2+q/(q+2).
Proof. By Proposition 1, we may assume that f is ordered. Join the points 1 and

N2 by an elbow-shaped path (Fig. 7). As f is ordered, these points lie in diagonally
opposite corners, so the path has length 2N-2. By Lemma 4, this path contributes
(N2-1)q.(2N-2) 1-q to C(f). Now consider the remaining square after removing the
path. The smallest and largest entries in this square have a difference of at least
(N-1)2-1 and can be connected by a similar elbow-shaped path of length 2N-4.
Continuing this construction, we get a total contribution to C(f) from these paths of
at least

N N

(i2-1)q.(2i-2)1-q---21-q iq*1-..21-q.N2*q/(q+2).
i=1 i=1

But there is another set of paths at right angles to these (dotted in Fig. 7) which shares

FIG. 7. Paths used in,proof of Proposition 4.



OPTIMAL NUMBERINGS OF AN N x N ARRAY 581

no interfaces, and we can put the same lower bound on its contribution to C(f). The
result follows from this l-!.

Are the row or column numberings optimal for q > 1 ? This is not the case for
q>2, for the diagonal numbering, f=i+(i+j-1)(i+j-2)/2, gives C(f)
4N2+q/(q + 2), which is less than N2/q when q > 2. Moghadam [9] has shown that,
for rectangles of all dimensions, the diagonal mapping is optimal for q , i.e., for
the problem of minimizing the maximum difference between adjacent vertices.

5. Generalizations to higher dimensions. Let (il,. ", i) denote an element in
the s-dimensional array N, and letf be a numbering of N. We can define C(f) A
where A is the sum of differences ]f-fl q over the s positive neighbours of i. What
numberings minimize C(f) ?

Consider first the case q 1. When N 2, Harper [3] showed that the "natural
numbering", which assigns to the vertex (il,. , i) the binary number i + 2i2+’" +
2-i, is optimal, for all s. For arbitrary N, the analogue of this is f(i)=
i + Ni2+’" + N-i_, which is just a generalized row or column numbering (by 0
to N- 1). We know this is not best when s 2, N> 5 (Fig. 4b). It follows that the
generalized row or column numberings are not best for any s when N> 5. For let g
be our optimal numbering for s 2 (Fig. 4a). Then we can define a numbering for any
s>2 dimensions by f(i)=f(il,...,i)=il+Ni2+...+N-.g(i_,i), which is
clearly better than the generalized row numbering.

How small a cost can be achieved for the s-cube, N, when q- 1? Can one do
better, when s > 2, than the minimum for s 2? The answer to the latter question is
yes. Given a numbering ns for N with cost CsNEs-1 and a < N2, construct a numbering
n+l for N+ as follows:

an(i , i) + is+i, is+ < a,

n+l(i,’’’,i+)= n(il,’’’,i)+Ni+l, a<i+l<N-a,

N(N-a)+ans(il, , i)+ i+1, N-a<i+.

This has cost c+N2/1= N(N(N-a)+a)+2a2cN2++(N-2a)cN--1. Hence
c+=l-a/N+2ca2/N+O(N-), which has a minimum of (1-1/(8c)) when
a/N= 1/(4c). So c rapidly converges to (2+21/2)/4, which is slightly smaller than
(4-2/2)/3, which was the minimum we obtained for s 2.

Considerable progress has been made for the case q o, sometimes called the
bandwidth problem. For general graphs this is known to be NP-complete [10]. As
mentioned in the previous section, Moghadam [9] has shown that the optimal number-
ing for rectangles is the diagonal numbering, extending a result of Harper [4] for the
2" cube.

Another type of generalization involves replacing the four nearest neighbours in
the sum for C(f) by a larger set of (possibly weighted) neighbours. Lindsey [8] has
shown that when the set of "neighbours" of a point includes all points which agree
with in all but one coordinate, then a row or column numbering is best for N.

Finally, it is interesting to ask whether the composition of two optimal maps is
itself optimal, as in the case of the map f: N4-)(N:)2 defined by f(i,j, k,/)=
(g(i,j), g(k, l)), where g is an optimal numbering of N x N.
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AN APPROXIMATION TO THE STATIONARY DISTRIBUTION
OF A NEARLY COMPLETELY DECOMPOSABLE MARKOV

CHAIN AND ITS ERROR BOUND*

MOSHE HAVIV" AND Y. RITOVt

Abstract. In Haviv (Ph.D. dissertation, Yale Univ., New Haven, CT, 1983) an approximation procedure
for computing the stationary distribution of a nearly completely decomposable (NCD) Markov chain is
suggested. There and in Haviv (this Journal, 7 (1986), pp. 589-593) the incurred error is analyzed. In
particular, a series expansion for the error is developed. Courtois and Semal (J. Assoc. Comput. Mach., 31
(1984), pp. 804-825) independently of us, replaced this point approximation with a set of points. Using
algebraic methods, they proved that the exact distribution lies in the convex set spanned by this set. We
give a probabilistic interpretation for this set and then obtain their results in a more elementary way. We
compute the convex combination leading to the exact distribution and develop a bound on it. Finally, we
show how approximation to this convex combination leads to an error reduction in a current approximation.
It is the first time that a probabilistic approach is made in order to analyze NCD Markov chains.

AMS(MOS) subject classifications. 60J10, 15A51

1. Introduction and summary. A Markov chain is called nearly completely decom-
posable (NCD) if its state space can be partitioned into a number of subsets in a way
that transitions are most likely to occur between states in a same subset, while transitions
between states belonging to different subsets are much rarer. The special structure of
NCD Markov chains can be stated in terms of the stochastic matrices which describe
them. We call such a matrix an NCD stochastic matrix. Up to a permutation of rows
and corresponding columns, an NCD stochastic matrix is characterized by diagonal
blocks which are "almost" stochastic and off-diagonal blocks having relatively smaller
entries. In particular, by permuting rows and corresponding columns, wemay assume
that P is given in the following form:

(1.1)

P(1) P(1)(2) P2(1)(q)\
P

P.(2).(1) P.(2) P.(2).(q)/
|

PJ(q)J(1) Pj(q)J(2) P (q)

which represents a partition _J [J(1), J(2), , J(q)], of the state space to q subsets,

NCD models are common. They usually exist in computer systems. There, transi-
tion rates are fast in the "inner" side and slow in the "outer" side. Hence, groups of
states that can reach each other rapidly will form a subset. Such a partition will result
in an NCD representation of the system. For some examples, the reader is referred to
Courtois [2], Zarling [16], W. J. Stewart [13], Vantilborgh [15] and the references
cited therein.

Received by the editors March 18, 1985, and in revised form January 9, 1986.

" Department of Statistics, Hebrew University, Jerusalem, Israel.

Note that for J, K _J, PK is the submatrix of P with rows index by J and columns indexed by K.
Also we use P for
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In the sequel we will assume that the Markov chain represented by P has only
one recurrent class. This implies that P has a unique stationary vector satisfying yP y,
yu 1 and y >_-0 (where u denotes a column vector all its entries are equal to 1). The
vector y represents the long run behavior of the chain. Throughout we also assume
that each subset J _J contains at least on recurrent state. This is equivalent to assuming
that for each J _J, Yi > 0, for some state J.

We next introduce some notation that applies to the matrix P. Fix subset J _J.
The subvector of y corresponding to subset J is denoted yj. Since yj O, we can
normalize it so that the sum of its components is one. This normalized vector is called
the conditional stationary distribution (CSD) of subset J and will be denoted zj. This
vector can be viewed as the asymptotic probabilistic behavior within a subset. Also
the stationary probability of subset J is the quantity ij Yi, which will be denoted kj.
The vector k (kj(1),’", kj(q)) can be viewed as the asymptotic probability distribu-
tion of being in various subsets. Of course,

yj kjzj.

Finally, we need the following notation. For a subset J, let J’ be its complement.
Hence, the matrix P can be represented (perhaps after permuting rows and correspond-
ing columns) by

P,P=
pj,j Pj,]"

The NCD structure for Markov chains frequently occurs when the state space is
very large. Hence, one looks for approximations procedures for approximating y while
reducing the computational burden. Usually, the approximations are based on two
steps. The first approximates zj for all J _J, while the second approximates k. This
approach was originally taken by Simon and Ando [12] and further developed by
Courtois [1], Vantilborgh [15], G. W. Stewart [14], Courtois and Semal [3], Haviv
and Van der Heyden [7] and others. They all start by constructing matrices whose
dominant eigenvectors are (small) perturbations of z, J_J or of k. A different
approach, based on probabilistic arguments for approximating z was suggested by
Haviv [6]. Next we state a slight modification to that procedure.

Fix a subset J _J and a row vector r in the (IJ[)-dimensional simplex. Let
A-(i_p)-l. The inverse of I-P exists and equals =oP (Kemeny and Snell
[5, p. 46]). Hence, (TrA)j for j J, stands for the expected number of time epochs the
system visits state j before it first leaves subset J, given that it initiates at subset J with
7r as the marginal distribution over its states. Similarly, ,aAu denotes the expected
number of time epochs for visiting subset J before first leaving it under the same initial
conditiOns. Thus, [zj(’a’)]j=(’n’A)j/TrAu is the ratio between the number of visits to
state j and the number of visits to subset J, both before first leaving subset J and under
the same initial conditions represented by r. In the NCD case, one expects [z(Tr)]
to be a reasonable approximation to [z]. The rationale is as follows. [z] gives the
asymptotic fraction of time periods the process visits state j J out of the number of
time periods it visited subset J. In the NCD case, the horizon until the first exit from
the initial subset is fairly long to scramble the arbitrary initial conditions.

Before proceeding we would like to note here that the matrix A can be replaced
with the adjoint matrix of I-P, adj(I-P). This is true since A=
adj (I- P)/det (I- P). This fact not only reduces the computational burden, but also
shows that almost singularity of I- P, (i.e., det (I- P) being close to zero) does not
cause numerical difficulties.
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By converting the model to algebraic terms, Courtois and Semal [3] have shown
that zj lies in the convex hull spanned by {zj(ei), 1 =< i<=lJI}, where ei is the ith unit
vector. Hence, they have induced that MiniAo/a<=[zj]j<=maxAo/a, where a= Au.
We next obtain these results using elementary probabilistic arguments. More specially,
we show that z(r) is the conditional stationary distribution of subset J in the
(IJI / 1)-dimensional Markov chain represented by the transition matrix

Then we show that there exists a choice of 7r, say zr* such that z(Tr*) z, which
immediately leads to the above bounds. Moreover, we show that a choice of 7r* is the
normalization of y,Pj,.

Our final result concerns showing how a natural choice of zr as a function of
current approximation to y lead to a new approximation to z which results in a serious
error reduction. Moreover, we bound the reduction from above.

Finally, we would like to refer the reader to Haviv [6, 2.4] and Haviv [8]. There
a series expansion for z(cr)-z is developed.

2. The approximation and its error bounds.
THEOREM 1. Let the (IJI + 1) x (IJ] + 1) transition matrix Pj(Tr) be as defined above.

Then z(Tr) is the conditional stationary distribution of subset J with respect to P(Tr).
Proof. Denote by s the state appended to subset J to construct the Markov chain

represented by P(Tr). To simplify notation, denote P(r) by Q and let p be its
stationary distribution. Finally, denote by sQ the probability that the Markov process
represented by the transition matrix Q while initiating at state s visits state j at the
nth epoch without passing through state s again previously.

Bearing in mind the definition of A, we have (TrA)j--n=O sQ. The last equals
limm (,o QJ/,=o Qs) (Karlin and Taylor [4, p. 35]). Hence,

A)/a lim Q 2 Q
m =0 kJ n=0

/1=lim
1
Q/mmm =o =o

keJ

which by definition equals [zj(Tr)]j, completing the proof.
The heuristic behind the theorem is as follows. Instead of looking at the expected

number of visits at a state j before leaving the subset J, we look at the long run average
of the number of visits at state j in a process which is equivalent to the original process
except that any time the chain leaves J it returns to it through the vector of marginal
probabilities

Remark 1. We would like to note that if one replaces the zero in the southeast
corner of P(r) by some a, a[0, 1), and accordingly replaces r with (1-a)m the
corresponding conditional stationary distribution of subset J will be preserved. We
omit a formal proof of this observation.

Remark 2. By the fact that the conditional stationary distribution of subset J in
P(zr) is the stationary distribution of P + Paj,uzr (Kemeny and Snell [5, p. 115]), one
can see that Theorem 1 and the conclusion of Courtois and Semal I-3, p. 817] are
equivalent.
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THEOREM 2. There exists a 7r, say 7r*, such that zj(Tr*)=zj; moreover, a choice

for 7r* is

Proof Since y yP or

(y, y,) (y, y,) p,

one easily gets that yj--yjPj + yj,Pj,j and that yj,= yjPjj,+ yj,Pj,. By postmultiplying
both sides of the last equality with u, one gets that kj,--yjPjj,u + yj,Pj,u. Hence

(yj, kj,)= (y, k,) y,P, y’Pj,uI
kj, kj, J

To the stochastic matrix in the last equality corresponds a matrix of the type Pj (zr)
(see Remark 1) with r being the normalization of yj,Pj,j which is, of course,
y,Pj, /y,P,u.

Remark 3. The above choice for 7r* is just the stationary marginal probabilities
of entering subject J through any of its states from subset J’, i.e.,

7r= lim

when S, denotes the state of the system at stage n.
Remark 4. By combining Remark 2 and Theorem 2, one can easily see that zj is

the stationary distribution of Pj + Pjj,uTr*. This observation is an alternative proof to
the fact that "exact aggregation" exists. Also note by Hunter [9, Cor. 4.1.2], that for
any rank one matrix A wv where w and v are column and row vectors, respectively,
such that vw 1, with yw 0 and vu 0 and such that I-Pj- A is stochastic with
stationary distribution y, satisfies y v( I Pj )-I/ v( I Pj )-l u.

Remark 5. Theorems for a different choice for 7r* can be deduced from Courtois
and Semal [3, p. 809].

LEMMA. For any 7r in the (IJI)-dimensional simplex, there exists a vector 6 is the
same simplex which satisfies

7ra)j/7ra Z tiaij/ai

for all j J.
Proof For a given 7r set 6i 7riai/7ra, for all i J.
THEOREM 3. For any 7r, zj(Tr) lies in the convex hull spanned by {zj(ei), J}. In

particular, for any norm II" II, I[zJ zJ(r)ll IlzJ(7r*) zj(Tr)II--< Maxj IIzj(e)- zj(r) II.
Hence, for all j J

Min Aij/ ai <- [zj( Tr)] <-_ Max

Proof The theorem follows immediately from Theorem 2 and the lemma.
COROLLARY. Mini Ai/ ai <= zj ) <= Maxi Ao/
Proof The corollary follows immediately from Theorems 2 and 3.
Remark 6. Theorem 3 and the corollary can be deduced also from Theorem 6 of

Courtois and Semal [3, p. 810]. They also showed that MaxiAi/ai Aj/a. This intuitive
fact can be proved also in an elementary probability way. The heuristic argument is
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that when we count the number of time epochs the system stays in set J, we can count
separately the number of time epochs until the first visit in j and from that event on.
Making the first period shorter should maximize the fraction of time epochs the system
visits state j until the first time it leaves subset J. We omit the details.

For any rr let 6(rr) be the vector one gets through the transformation indicated
in the lemma. Hence zj(zr) 6(zr) Y, where the matrix Y is defined by Y0 Ao/a. To
simplify notation, we use 6 instead of 6(zr). In particular, 6*= 6(7r*). The following
theorem bounds the difference between zj(Tr)-zj in terms of 6- 6" and the matrix Y.

THEOREM 4. Let 3’ 6 6*; hence 3"u O. Also, for any norm [[. [] on R11, let the
operator (. be defined by

z(Y) Max []xYl[,
s.t. xu O,

Then

In particular,

r,, (Y) 1/2 Max E lYo Y,jI

and

’(Y) Max E IYo-
where Y(mJ)J is a median of the entries in the jth column of the matrix Y.

Proof. Since z(’)-z=6Y-6Y*=3"Y and since 3’u=0, the theorem’s result
for an arbitrary norm follows. The explicit forms for the l and the l norm appear in
Rothblum 11]. [-i

We would like to note that the bound of Theorem 4 is tight. It is easy to see from
the definition of r(. that a vector 6 such that the inequality is replaced by equality
exists.

Let )7 be approximation to y, let = j,Pj,/,P,u and let 3’ be 6(7?)-6(zr*),
namely 3’ is the difference between the 6(zr) corresponding to 37 and 6(zr*), the 6(
corresponding to the exact y. Of course, 3’1] is a measure representing the accuracy
of.9 as an approximation to y. Then the lemma shows that while premultiplying Y by
6(zr) in order to get zj(zr), the error shrinks by a factor of z(Y).

The above discussion shows that the smaller z (Y) is the larger the error reduction
is. Since by assumption P represents an NCD Markov chain, P can be written in the
form P P*+ eC, where P* is completely decomposable and e is a "small" number.
The approximation for the conditional stationary distributions discusssed here are of
the order of O(e) (Haviv, [8]), namely they approach the stationary distribution of
P* as P approaches P* linearly in the direction C. This, of course, will be true for ei,

1 =< <= [J[ as a choice for 7r, namely for any Y as an approximation for (zj)j. Hence,
terms in the same columns of Y will differ by the order of O(e). In this case, ’1,(Y)
and ’(Y) will be of the order of O(e) as well.
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Abstract. All existing approximations for the stationary distribution of a nearly completely decompos-
able Markov chain are based on solving systems which are perturbations of the exact system. We develop
here an original approximation which is based on probabilistic intuition. A series expansion of the accrued
error is given as well.
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1. Introduction. A Markov chain is called nearly completely decomposable (NCD)
if its state space can be partitioned into a number of subsets in a way that transitions
are most likely to occur between states in a same subset, while transitions between
states belonging to different subsets are much rarer. The special structure of NCD
Markov chains can be stated in terms of the stochastic matrices which describe them.
We call such a matrix an NCD stochastic matrix. Up to a permutation of rows and
corresponding columns, an NCD stochastic matrix is characterized by diagonal blocks
which are "almost" stochastic and off-diagonal blocks having relatively smaller entries.
In particular, by permuting rows and corresponding columns, we may assume that P
is given in the following form"

/ PJ(I) PJ(1)J(2) PJ(1)J(q)
(1.1) p (PJ(2)J(1) PJ(2) PJ(2!J(q))

\PJ(q)J(1) PJ(q)J(2) PJ(q) /

which represents some partition _J={J(1), J(2),...,J(q)}, of the state space to q
subsets.

In the sequel, we will be more specific about the size of the elements in these
matrices, though a precise definition will not be needed. For more details on nearly
complete decomposability, see Simon and Ando [14] and Courtois [3].

ASSUMPTION A. The Markov chain represented by P has only one recurrent class.
Assumption A implies that P has a unique stationary vector y satisfying

(1.2) yP=y, yu=l, y>-O

(where u denotes the vector all of whose entries equal to 1). Of course, the vector y
is the asymptotic probability distribution of the corresponding Markov chain.
Throughout we also assume the following.

ASSUMPTION B. Each subset J E J contains at least one recurrent state.
Assumption B is equivalent to assuming that for each J E _J, Yi > 0, for some state

iJ.
We next introduce some notation that applies to the matrix P. Fix subset J _J.

The subvector of y corresponding to subset J is denoted yj. Since yj O, we can

* Received by the editors February 12, 1985, and in final revised form January 9, 1986.

" Department of Statistics, Hebrew University, Jerusalem, Israel.
Note that for J, K

_
J, PJr, is the submatrix of P with rows indexed by J and columns indexed by K.

Also we use Pj for Pjj.

589



590 MOSHE HAVIV

normalize it so that the sum of its components is one. This normalized vector is called
the conditional stationary distribution (CSD) of subset J and will be denoted zj. This
vector can be viewed as the asymptotic probabilistic behavior within a subset. Also,
the stationary probability of subset J is the quantity iJ yi which will be denoted k.
The vector k (kl), , kq)) can be viewed as the asymptotic probability distribution
of being in various subsets. Of course,
(1.3) yj kjzj.

The NCD structure for Markov chains frequently occurs when the state space is
very large. Hence, one looks for approximation procedures for approximating y which
reduce the computational burden. Usually the approximations are based on two steps.
The first approximates zj for all J _J while the second approximates k. See e.g., Simon
and Ando [14], Courtois [2], Vantilborgh [16], Stewart [15] and Haviv and Van der
Heyden [6]. They all are based on constructing systems of linear equations which are
(small) perturbations of the systems whose solutions are zj, J J_ and k. For details
see Haviv [5].

Next we define an original approximation procedure for approximating zj which
is based on probabilistic arguments,

Fix a subset J 6 _J and let A =-(I-Pj)-. The inverse of I-Pj exists and equals
Y,=o P’ (Kemeny and Snell [8, p. 46]). In particular, Aij is the expected number of
visits in state j before first leaving subset J, given that the chain initiates at state J.
Accordingly, ai =- ,j Aij is the expected number of transitions in subset J before subset
J is left, given that the chain starts in state i J. Thus, Aij/a can be interpreted as the
ratio between the expected number of visits in state j J and the expected number of
visits in subset J, both before the first exit out of the subset and given that the chain
starts in state J. In the NCD case, one expects this approximation to (zj)j to be
reasonable since (zj)j gives the asymptotic fraction of time periods the process visits
state j J out of the number of time periods it visits subset J. In the NCD case, the
horizon until the first exit from the initial subset is fairly long to scramble the initial
condition. Of course, different initial states might yield (slightly) different approxima-
tions. Also i 7riAij/a for any r such that r’u 1, is a reasonable approximation to (zj)j.

We like to note here that the matrix A can be replaced with the adjoint matrix of
I-Pj, adj (I-Pj). This is true since B- =adj (B)/det (B). This observation not only
reduces the computational burden, but also shows that the almost singularity of I- Pj,
i.e., det (1- Pj) being close to zero, does not cause any numerical difficulties.

In the next section we look at some properties of the suggested approximation.
In particular, we give a series expansion of this approximation as a function of the
probability of leaving subset J and conclude that the incurred error is of the order of
this probability.

Recently we have learned of a paper by Courtois and Semal [4]. They proved
there that zj is contained in the convex hall spanned by the set of approximation
attained by the choices of r, {r e, -< _-< ]J[), where e is the ith unit vector, hence,
having bounds for the error incurred by the approximation. Independently, in Haviv
and Ritov [7] by using probabilistic arguments, we obtained the same results and
further developed them to get

Mini ao/ ai -<= zj )j <= Ajj/ Clj.

2. The approximation and its error analysis. Before proceeding we need the follow-
ing lemma.

This paper is based on Haviv [5, 2.4].
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LEMMA [8, p. 115]. For a subset J J_ and its complement J’ express P (perhaps
after permuting columns and corresponding rows) by

ej,j Pj, /

Then the IJI ma ri =- / is stochastic with stationary distribu-
tion z.

Since (I-p,)-i is nonneg.ative, one can see by the lemma that /3 p + for
some --- 0. In the NCD case, T has small terms. To emphasize this fact, we let eT
for a small e and a nonnegative matrix T. Also let A(e)=-(I-j+eT)- and let
a(e) =- A(e)u. Hence, the suggested approximation for (zj)j is Aij(e)/ai(e) for some
arbitrary i. We next obtain, under some technical conditions, a series expansion for

Ai(e)/a(e) around e 0. In particular, the leading coefficient of that series expansion
will be (z). Thus, the suggested approximation is an O(e) one. Thus, one can easily
get from that a series expansion for the incurred error, namely for.A(e)/a(e)-(z).

The following notation follows Rothblum [11]. Let S-- I- P. Then, zero is an
eigenvalue of S. Moreover, as /3 is assumed to be irreducible, the multiplicity of this
eigenvalue of S is one. The unique (up to a multiplicative constant) corresponding
left and right eigenvectors are z and u, respectively. The index of a matrix B is defined
as the smallest integer such that the null spaces of B ’/1 and B’ coincide. It is known
that the index of S is (cf. Campbell and Meyer, [1, p. 152]). The projection on the
space spanned by the eigenvectors of a matrix B belonging to the eigenvalue zero is
denoted by E and is called the eigenprojection at zero. Finally, for a matrix B, the
Drazin inverse is defined as (B-E)-(I E).

We next state the promised series expansion for Aj(e)/ai(e).
THEOREM 1. Suppose the matrix T is nonsingular and that the index of T-S is

one. Let D be the Drazin inverse of T- S. Then .for e small enough,

A,(e) (z)+ zru [O(-e)]r-=1 ij

a,(e)
+zru2 2 [D(-e)]r-’

k= im

(zJ)J- zjTu [ (DT-I)ij-(ZJ)j im ] , -Jl’- O(2).

Proof. As z3 and u are, respectively, left and right eigenvectors of S belonging to
zero, z3T and u are, respectively, left and right eigenvectors of T-S belonging to zero.
Hence, the assumption that the index of T-IS is one implies that the eigenprojection
of T-S at zero is uzT/zjTu (Rothblum, 10]). Then Rothblum [11 establishes that
for e small enough,

(T-S+el)-l=uzT/zTue ok+(--e) k

k=0

and so

A(e)=(S+eT)-=(T-S+eI)-T-=uz/zTue- [Dk+(--e)k]T-k=0

and the theorem follows by straightforward division. [-1

The condition that the index of T-S is one is satisfied in the cases where zero is a simple eigenvalue
of T-IS (cf. Campbell and Meyer, [1, p. 133]). Since zero is a simple eigenvalue of S it is most likely that
the same will be true for T-IS.
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As Theorem 1 shows, for any choice of i, Air(e)/ai(e) is an O(e) approximation
to (zj)j. Evidently, for any vector r with r’u 1, i riAo(e)/a(e) is also an O(e)
approximation to (zj)j. It is easy to see that a choice of r such that Y’. r[DT-)j
(z) ,, (DT-)m] O(e) yields an O(e2) approximation. Next we show that if r is
chosen to be an O(e) approximation to zjT, then the corresponding error is O(e2).

THEOREM 2. Let r R IJI be an O( e approximation to zjT. Then, under the same
technical assumptions given in Theorem 1, -’iJ 7riAij( e )/ ai( e is an O( e) approximation
tO za )j.

Proof As indicated in the proof of Theorem 1, zjT is a left eigenvector of T-Is
belonging to the eigenvalue zero. Hence, it is also a left eigenvalue of its Drazin inverse
D (cf., [1]), namely, (zaT)D=O. Thus, if r=zT+O(e) then rDT-=O(e) and
hence r(DT-1)j-(za)jr(DT-)u O(e) where the latter times zjTu agrees with the
coefficient of e in the series expansion of

Theorem 2 above has only a theoretical merit since the matrix T, or an O(e)
approximation to it, are not available while constructing the approximation. In par-
ticular, as shown in Lemma 1, the computation of T needs information not contained
in Pj. Of course, an O(e 2) approximation to (z)j which is based only on P does not
exist: Pj itself is only an O(e approximation to Pj, namely to the transition probabilities
leading to zj. In Vantilborgh [16] one can find an O(e 2) approximation to zj and
indeed he uses additional information from outside subsets. In Courtois and Semal
[4] and in Haviv and Ritov [7] one can find different choices for r leading to the
exact zj.

We would like to conclude this paper by showing how to develop a series expansion
to the corresponding approximation of k, the stationary subset probabilities. First we
need the following lemma and notation.

LEMMA 2 (trivial). Let the q x q stochastic matrix Q be defined by

Qj Z (zj))s Z Ps,, <- i,j<= q
sJ(i)

Then k is the stationary distribution of Q.
The matrix Q, of course, can be approximated by Q(e) where Q(e) is constructed

like Q is but where the zj(i)’s 1 _-<i_-< q, are replaced by some O(e) approximations to
them like those suggested in this paper, which we generally denote by z()(e). In other
words,

Qq(e) z((e)P(i)()u, <- i,j <- q.

Of course, a given series expansion for the zj()’s immediately yields a series
expansion for E(e) -= Q(e) Q with E(e) Zs= eSas for some matrices As, s
1, 2, . Also, let k(e) be the stationary distribution of Q(e) and let Y be the Drazin
inverse of Q. Then, by Schweitzer’s [12] perturbation result,4 for e small enough,

k(e) k , (E(e) Y)"
m=O

=0 =0

=k,

Schweitzer’s results in terms of the Drazin inverse are given in Meyer [9].
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for Bo I and some matrices B., s 1, 2, where B. is a function of A,, 1, 2, , s
and of Y. Now a series expansion of, say, yj(e)=-kj(e)zj(e) can be easily derived.
For a different way to obtain series expansions for yj (e), see Courtois 2] and Schweitzer
[13].
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COMPUTING THE STRUCTURAL INDEX*

I. S. DUFFf AND C. W. GEAR

Abstract. The index of many differential/algebraic equations (DAEs) is determined by the structure
of the system, that is, by the pattern of nonzero entries in the Jacobians. This paper considers an important
subclass of DAEs which can be solved by backward differentiation methods if their index does not exceed
two. For this reason, it is desirable to determine whether the index exceeds two or not. In this paper we
present an algorithm that determines if the index is one, two, or greater, based only on the structure. The
algorithm can be exponential in its execution time: we do not know whether it is possible to get an
asymptotically faster algorithm. However, in many practical problems, this algorithm will execute in
polynomial time.

Key words, sparse matrices, transversals, differential/algebraic equations, matrix index, index of nil-
potency

1. Introduction. For a more detailed discussion of the index of differential/alge-
braic, equations, the reader is referred to 1]-[4]. Here, we summarize the meaning of
the index and treat the simple case

(1.1a) y’= f(y, t) + Gz,
(1.1b) Hy Az.

The dimension of y and f is n; the dimension of z is m. The constant matrices A, G,
and H have dimensions m by m, n by m, and m by n, respectively.

The index of a differential/algebraic equation system is defined as the minimum
number of times the system must be differentiated with respect to the independent
variable so that the first derivatives of the all dependent variables can be determined
uniquely at a point when only the values of the dependent variables (but not their
higher derivatives) are known at that point. Thus, if m is zero in (1.1), z does not
appear and y’ is determined uniquely by (1.1a). In this case, the index is zero. However,
if m is nonzero, z’ is not determined by (1.1) so the index is at least one. If we
differentiate (1.1b) once, we find that

(1.2) Az’= Hy’= Hf(y, t) + HGz.
If A is nonsingular, (1.2) determines z’.. Hence, a necessary and sufficient condition
for the index to be one is that A is nonsingular. A necessary and sufficient condition
for the index to be less than three is that

(1.3) rank
NHG =m’

where N is a full rank r by m(r <= m) matrix whose r rows span the left null space of
A, that is, NA 0 and N is the largest rank matrix with this property. Condition (1.3)
follows by differentiating (1.2) once, premultiplying by N, and substituting (1.1a) to get

(1.4) NHGI’ =-NH [0-yf (f+ Gz) +0]
and solving for z’ from (1.2) and (1.4).

* Received by the editors March 28, 1985, and in revised form February 18, 1986. This work was
supported in part by U.S. Department of Energy grant DEAC0276ERO2383 and in part by the Applied
Mathematical Sciences subprogram of the Office of Energy Research, U.S. Department of Energy, under
contract W-31-109-Eng-38. This report has also been published as AERE Harwell Report CSS 173.

" Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Illinois 60439,
on leave from AERE Harwell, Didcot, Oxon, England.

t Department of Computer Science, University of Illinois, Urbana, Illinois 61801.

594



COMPUTING THE STRUCTURAL INDEX 595

Clearly the index depends on the actual numerical values of the matrix entries.
In many cases, the determination of the index given the numerical values of the matrix
is a poorly conditioned problem since it involves rank determination. However, for
almost all values of the nonzero entries of the matrices, the index has the same value
and is determined by the nonzero structure of the matrices. We call this the structural
index; its determination is a well-conditioned problem. Since the index of many
practical problems assumes its structural value, the structural index is a useful quantity
to calculate in a differential/algebraic equation code.

Before examining the structural index further, it is helpful to consider the structural
rank of a sparse matrix. This is the numerical rank of the matrix for almost all values
of its nonzero entries, and is equal to the length of a maximum transversal A transversal
is a selection of nonzero elements such that no more than one element is selected from
any row or column. A maximum transversal is a transversal of maximum length. It
follows that a matrix A of order m is nonsingular if and only if a maximum transversal
has length m (this is called a full transversal). An algorithm for finding a maximum
transversal is given in [5]. Hence the problem of determining if the index is one has
already been solved, and the algorithm in [5] for doing this has worst case complexity
O(mr), where r is the number of nonzeros in the matrix. Clearly, adding additional
nonzero entries to a sparse matrix will not reduce its structural rank but may increase
it, and the structural rank of a dense matrix is the minimum dimension of the matrix.

The concept of a structural index is more complex than that of structural rank.
If A is nonnull and dense, the structural index of (1.1) is one. However, it does not
follow that adding additional nonzeros to a sparse A cannot increase the structural
index: it may decrease, increase, or leave the structural index unchanged. Hence we
cannot equate the structural index with the maximum or minimum index over all values
of the nonzero elements. We illustrate this with the following example in which the
addition of a nonzero element to A will increase the structural index. If the matrix A
has the structure

its left null space N has rank 2 and the structural index of (1.1) is at least one. Note
that we cannot give a unique sparse structure for N in general, all that we know in
this case is that N consists of two linearly independent rows each of which is orthogonal
to the first column of A. A possible structure for N is

0 x

but there are five other rank two structures possible for N with two zeros, and seven
structures with fewer zeros. Suppose the matrix product HG has the structure

/!i/Ox
then NHG can have the form

(0 x
so (1.3) holds with m 3 and the structural index is two. However, if we change A by
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adding a nonzero in the (2, 1) position to get

x 0

N now has rank one and takes the form

(0 x x)
implying that

A )<2rank
NHG

so that the structural index exceeds two.
Henceforth, we will use the words "linear independence", "nonsingular", etc. to

mean structural linear independence, structurally nonsingular, etc., in the sense that
there exist values of the nonzero entries of the matrices such that these properties hold.
If there exist any values of the matrix entries for which properties of this type hold,
they hold for almost all values.

In this paper we will extend the algorithm given in [5] to the determination of
whether the index is two. Specifically, we will first solve the problem of determining
whether

(1.5) rank
NB =m’

where B is an m by m matrix whose structure is also given and N spans the left null
space of A. Then we will extend the algorithm to (1.3). In 2 we will present the
modified algorithm, and in 3 we will prove that the algorithm does determine whether
the index is two.

We normally envisage the algorithm being applied to differential/algebraic
equations in the form (1.1). However, it can be applied to equations in a more general
form directly. Consider

(1.6) Ax’ + HGx 0.

If A is nonsingular, the index of this problem is clearly zero since (1.6) can be solved
for x’ directly. If A is singular but (1.3) holds, then the index is one. In fact, the index
of the system (1.6) is zero or one as the index of system (1.1) is one or two, so that
the algorithm described in this paper can be used to determine whether the index of
(1.6) does not exceed one. The index of system (1.6) is just the index of nilpotency of
the matrix pencil HG+ AA (see [6]).

The structure of null space bases for sparse matrices is investigated at some length
in [7] but the concern there is solely with the sparsity of the basis so that any basis is
feasible in that case. The main form of basis that we use in our proofs has a triangular
submatrix and is termed a myopic null basis in [7]. In our approach, however, the
choice of myopic null basis determines the rows of B (HG) that are considered. It is
this added complexity that makes our algorithm exponential.

We end the introduction with a description of the algorithm given in [5] for
determining a maximum transversal (and hence the structural rank) because it will be
extended in 2 to compute the index. That algorithm is equivalent to Algorithm I
outlined below.

1The outline has a breadth-first search in Insert_Row. In [5], a depth-first search is used. The latter
seems preferable for implementation; here, however, we are interested in the form of the algorithm.
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ALGORITHM I. In the following, T is a (partial) transversal. It consists of a set
of pairs (ri, ci), i= 1,. ., k, where ri and ci are row and column numbers with no row
or column repeated, and the matrix entry ari,., is nonzero. Capital letters are used for
sets, and lower-case letters refer to integers. The set union operation is indicated with
the "+" character, and set formation with braces. Hence, { } is the empty set. The
notation R(T)[ C(T)] means the set of rows [columns] represented in T, while R(i)-
[C(i)] is the set of row [column] indices corresponding to the nonzeros in column
[row] i. The algorithm is described recursively to prepare for its extension to the more
general problem, although it is just as easily expressed using a loop in this case. The
data structure T is global; everything else is local. In the algorithm presented below,
comments are enclosed in brackets.

The algorithm proceeds a row at a time. At any time, T contains a maximum
transversal of the rows examined so far. As each new row is considered, the algorithm
looks for a nonzero column that is not yet in T. If the new row has a nonzero in a
column not yet in T, that element can be added directly to T. If not, it is necessary to
see if a different maximum transversal of the previous rows would permit the addition
of an element from the new row to the transversal. Fortunately, this does not require
that all transversals be checked; rather, the algorithm considers replacing an element
of the current transversal with an element from the new row to see if the row thus
removed from the transversal would have an element in a column not yet in the
transversal or if a similar replacement could be made for an element in the latter row.
This is done in the function Insert_Row.

program Compute_Transversal
[Main program. It initializes T and then calls the subprogram
Extend_Transversal which cycles through the rows.]
T{}
Extend_Transversal(I)
[Rank of A is number of pairs in T]
endprogram Compute_Transversal

subprogram Extend_Transversal(q)
[This subprogram extends the current transversal in T to include rows
qto rn of A.]
if q > m then return endif
Insert_Row(q, Q)
Extend_Transversal(q + 1)
[This recursive call of Extend_Transversal serves to count through the
rows of A.]
endsubprogram Extend_Transversal

boolean function Insert_Row(q, Q)
[This function attempts to add an element from row q to the transversal held in
T. The set S contains the columns containing nonzeros from row q and from each
row containing a transversal element which we are considering replacing with an
element from another row. Insert_Row is defined as a Boolean function in prepar-
ation for the algorithm in 2. Similarly, the parameter Q is present because of
its use in the next algorithm. Here we use only the changes produced in T]
S-C(q)
repeat

if there exists c in S but not in C(T)
then
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Add row q and column c to T
[This will require some reorganization of T if the (q, c) element is zero.
At this stage we are guaranteed that: (i) there is a transversal of length
one larger than that now in T and (ii) that the longer transversal contains
row q and column c. The depth-first search given in [5] identifies the
needed reorganization more easily.]

return true
else
Q <--all r such that (r, c) T for some c S
[Q is the set of rows which have transversal elements which could be
involved in a replacement.]
S S + { C(j) for all j in Q}

endif
until S does not increase in size

[Note: If S did not increase in size, we did not insert an entry of the transversal
in row q, and Q+{q} is a set of linearly dependent rows of A. If any step does
not insert an entry, the matrix is singular.]
return false
endfunction Insert_Row

2. Determination of the structural index. In this section we describe an algorithm
for determining the structural index. The algorithm is an extension of Algorithm I.
Each time that Algorithm I finds a linearly dependent set of rows, that set is rank
deficient by one only, so it has identified exactly one row of the null space, N, of A.
The column indices corresponding to nonzeros in this row of N represent the rows of
B that could be included in a row of NB. They also represent a set of rows of A, one
of which can be ignored without decreasing the rank of A. Thus, it is sufficient to
consider a matrix with one of these rows discarded and a row from NB appended.
The algorithm discards each of the rows in a dependent set in turn and then searches
for the next dependent set. In considering the rows of NB, we will show in 3 that
it is sufficient to consider replacing the discarded rows of A by the corresponding row
orB.

ALGORtTHM II. Algorithm II uses the same notation and data structures as
Algorithm I, plus a global Boolean array of size m called Mark. It is used to mark
rows of A that have been switched with rows of B. The algorithm refers to rows "being
marked." The function Insert_Row is the same as described in Algorithm I. Note that
the parameter Q is an "output" parameter (vat in Pascal).

program Determine_Index

T{}
if Extend_Transversal(I)

then if no marks set
then index 1
else index 2
endif

else index > 2
endif

Since there can be as many as m- dependent sets and the algorithm may check all combinations,
it can take exponential time. However, if there are few sets and each set is small, speed is not a problem.
In particular, if the sets consist of single entries because rows of A are empty, the time remains polynomial.
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endprogram Determine_Index
Boolean function Extend_Transversal(q)

if q > m then return true endif
if Insert_Row(q, Q)

then return Extend_Transversal(q + 1)
else
U--Q+{q}
U is a dependent set of rows]

s--q
if any row in U marked then return false endif

[This return means a row of B is in a dependent set.]
for r U do

Reorganize T to include row s and exclude row r
mark row r
if Insert_Row(r, Q)
[Insert_Row is here being used to insert a row of B]

then if Extend_Transversal(q + 1)
then return true
[We have found transversal]

endif
endif

[We were unable to extend transversal through a row of B, or
failed to extend transversal through rest of matrix. Time to back-
track.]
unmark row r

enddo
return false

endif
endfunction Extend_Transversal

This algorithm handles the determination of the truth of (1.5). It can be extended
to handle (1.3) without much difficulty, although the execution time can increase
considerably. The extension consists of modifying the code that switches rows of A
and B to switch rows of A and G instead, where the rows of G are selected based on
the structure of the rows of H as follows. When Algorithm II selects a row of B for a
switch, it should examine the structure ofthe corresponding row ofH. For each nonzero
in that row, the corresponding row of G should be tried in the transversal computation.
(This requires an additional loop at each level of recursion.) A transversal will include
entries from rows of A and G. Therefore, no more than one copy of a row of G should
appear in a transversal. This restriction can be implemented by providing another
global Boolean array to mark the rows of G, testing the mark before a switch, marking
one when it is switched, and unmarking it when it is switched back.

3. Proof of method. In this section we show that the algorithm works mathemati-
cally (this is not the same as a proof of the correctness of the program). We also
present an interesting lemma and two corollaries. Before getting to the main result, let
us examine the notion of structural rank in more detail.

If we know the structure of A, its numerical rank is a function of all of its nonzero
entries. However, except for a set of values of measure zero, the numerical rank is
invariant. The structural rank is this value. However, if the entries of A are functions
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of other variables, the numerical rank may be less. For example, the structural rank
of a full 2 by 2 matrix is two. However, if all- a12a_l/aE2, then the numerical rank
cannot exceed one. We will call this the constrained structural rank. In this problem
we are dealing with the matrix in (1.3) or (1.5) whose entries are functions of the
values of the nonzeros in A and B. We will need the following two obvious results.

PROPOSITION 1. An upper bound on the constrained structural rank of a matrix is

the length of a maximum transversal.
PROPOSITION 2. A lower bound on the constrained structural rank ofa matrix is the

.free length ofany transversal, where thefree length is the number ofentries in a transversal
whose values can be chosen independently of the values ofany other entries of the matrix
not in that transversal.

For the previous example of a 2 by 2 matrix, the free length of either transversal
is one.

THEOREM. Algorithm II computes a value of true for Extend_Transversal (1) if
and only if the index does not exceed two. In this case, the index is one if and only if no
rows have been marked.

Proof. We deal first with the index one case in which A is nonsingular. If the
problem has index one, a full transversal exists and will be found by Algorithm I.
Algorithm II duplicates the steps of Algorithm I in this case and will never mark a
row. On the other hand, if Extend_Transversal returns true with no rows marked, it
must have returned with a true value from Insert_Row(q, Q) every time, and never
have entered the second phase of Extend_Transversal which marks rows. Hence, the
algorithm has never found a linearly dependent set because Insert_Row was successful
every time. Therefore, A is nonsingular and the index is one.

We now consider the case that the algorithm finds a full transversal but has marked
some rows. Consequently, the index is two or greater, and A has linearly dependent
rows that are identified by the algorithm each time it computes a false value for
Insert_Row. We wish to show that the index is two. If A is rank deficient by r, then r
different sets, U, of linearly dependent rows of A are identified by Extend_Transversal.
Each set of dependent rows of A corresponds to a feasible nonzero structure of a row
of N. The entries of A will make these entries of N nonzero almost everywhere.
Therefore, the rows of NB can contain nonzeros in positions corresponding to those
rows of B that are selected by the nonzeros in N.

However, it is not sufficient simply to examine the nonzero structure of NB to
determine if (1.5) is satisfied, since its values cannot necessarily be chosen indepen-
dently. We illustrate this point with the following example. Let A have the structure

0 0 x 0 0

x x x 0 0

x x x 0 0

x 0 0 0 0

x 0 0 0 0

so that a possible structure for N might be

X X 0 X

but these entries in N are not independent since the submatrix comprising the second
and third columns must necessarily be singular for NA to be zero.
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We will show, however, that the values in the positions corresponding to the
nonzeros in the rows of B selected by our algorithm are independently determined by
entries of B. Note that the algorithm replaces a row of A with the corresponding row
of B when it finds a dependent set. This is done before it looks for the next dependent
set. Therefore, all subsequent dependent sets identified will not contain that row of A.
Hence, the structure of N is such that each row has at least one nonzero entry in a
column which contains zeros in all other rows (that is, each row has a column singleton).
We identify one such element in each row and call it a substitution entry. If the algorithm
terminates with the value true, it will have identified r dependent sets, replaced a row
of A corresponding to each of those sets with a row of B in the position corresponding
to the substitution entry, and found a transversal of length m for the combined matrix.
The algorithm selects a row of B corresponding to each row of NB. The entries in a
row of NB in the positions of the nonzero entries in the corresponding row of B can
be independently chosen by varying the entries in the row of B without changing any
other entries in NB because the substitution entry in N is the only nonzero in its
column. The entries of A can all be freely chosen. Hence, the free length of the
transversal is m, implying that (1.5) is satisfied. Thus we conclude that the structural
index is two.

Finally we must show that if the index is two, the algorithm returns true, with
some rows marked. If the rank of N is r, we can discard r dependent rows of A. The
remaining rows of A plus the rows of NB must contain a transversal of length m for
(1.5) to hold. Furthermore, there must be a transversal such that the submatrix formed
by selecting the columns of NB corresponding to the columns of the transversal entries
in NB is numerically nonsingular. (See Corollary 1 of the following lemma.) Corre-
sponding to this transversal, we can make a (1-1) correspondence between the r rows
of NB and a set of r different rows of B such that the transversal entries in the rows
ofNB depend on an entry from the corresponding row of B. N must have an appropriate
nonzero to pick up these entries of B. We will show that the algorithm will form this
arrangement of rows of A and B unless it finds another arrangement that also gives a
transversal of length m.

Consider the structure of an N that satisfies (1.5). We first arrange its rows so the
column index of the last nonzero entry in each row is monotonically increasing. If this
function is not strictly monotonically increasing, we replace a row with a linear
combination of the adjacent rows to zero the last nonzero, and repeat this until the
function is strictly monotonically increasing. This is equivalent to premultiplying N
by a nonsingular matrix and does not affect (1.5). The first row of N now represents
the first linear dependency of rows of A. It will be detected by the algorithm. The first
row of NB must have a transversal entry since (1.5) is true. Suppose it is in column c.
There must be a nonzero in column c of a row of B that corresponds to a nonzero in
row 1 of N. Suppose the nonzero in N is Nit (and the nonzero in B is Brc). Zero the
entries in column r of all later rows in N by linear row operations. At some point, the
algorithm will switch rows A and B, and Insert_Row will be successful in finding a
transversal through this row of B. This argument can be repeated for each linearly
dependent set (row of N). The algorithm may choose a different column from c, but
this path either will lead to another transversal or will fail, backtrack, and eventually
choose c since the search is exhaustive. Therefore, if the index is two, the algorithm
will find either the transversal of length m described above, or another. QED

It remains to show the following.
LEMMA. Ifa matrix, A, is nonsingular but has a numerically singular r by r submatrix

W, there must be a transversal of A that has no more than r-1 entries in W.
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Proof. Suppose W is the top left-hand corner of A. Expand det (A) in r by r
minors using the first r columns of A. We have

det (A)= (-1) det (Ax) det (Ay),

where {Ax, x X} is the set of all r by r minors from the first r columns of A, Ay are
the corresponding m-r by m-r minors from the last m-r columns of A, and is
odd or even depending on which rows are in the minors. One of the summands consists
of the top left-hand r by r minor, which is singular. Therefore, one of the other
summands must be nonzero. Hence, the Ax term must have a transversal of length r,
and the Ay term must have a transversal of length m-r, which together form a full
transversal of A. No more than r- 1 entries of the transversal of this Ax and none of
the entries of the corresponding Ay are in W. QED

COROLLARY 1. f W is a set of r rows of a nonsingular matrix A, a full transversal
of A exists such that the submatrix of W containing the entries of that transversal is
nonsingular.

Proof. Suppose the contrary. Consider the set of all full transversals of A. Each
of these have r entries in W. Let W’ be the smallest submatrix of W that contains all
of the entries of all of these transversals in W. Every r by r minor of W’ is singular,
so W’ is singular. The above lemma says that there exists another full transversal
containing an entry not in W’, contrary to the definition of W’. QED

Another interesting corollary of this lemma follows.
COROLLARY 2. If a matrix A is nonsingular but a submatrix W has numerical rank

no greater than r, then there must exist a full transversal of A with no more than r entries

in W.
Proof. Without loss of generality, assume that W is in the top left-hand corner of

A and has dimension p by q, where p _-> q -> r. If q r, then there is nothing to prove,
since r columns can have no more than r entries in a transversal. Otherwise, q > r.
Since A is nonsingular, it has a full transversal. Suppose no such transversal has less
than r / 1 entries in W. Choose a transversal with a maximum number of entries, s,
not in W, and order the matrix so that the first r / 1 columns of W contain transversal
entries. Now expand the determinant of A by the minors of the first r / 1 columns and
the last m- r-1 columns, as in the lemma above. Since A is nonsingular, the deter-
minants of at least one pair of corresponding minors are nonzero. The minors of the
first r / 1 columns either are drawn entirely from W, in which case their determinant
is zero since W has rank r, or they include rows of A that are not part of W. One of
the latter must be nonsingular, along with its corresponding minor from the last
columns. Therefore, that pair has a full transversal of the (r/ 1) by (r/ 1) minor
containing an entry of A not in W and a full transversal of the (m r 1) by (m r 1)
minor. Together they form a full transversal of A with s / 1. entries in A but not in W,
contrary to the supposition. QED
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SEQUENCE ALIGNMENTS WITH MATCHED SECTIONS*
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Abstract. In molecular biology, two finite sequences are compared by displaying one sequence written
over another in an alignment. The number of alignments of two sequences is related to the Stanton-Cowan
numbers. This paper gives asymptotics for the number of alignments of two sequences of length n with
matching sections of size at least b.
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Mathematics has played an important role in modern molecular biology in the
area of sequence comparison. When nucleic acid (DNA or RNA) or protein sequences
are determined, the question of relationships between sequences arises. Frequently
two (or more) sequences are compared by dynamic programming or other methods to
produce one or more sequence alignments which display one sequence written over
another. When one letter (nucleotide in DNA) is written above another, they are
presumed to have a common evolutionary ancestor. When a gap appears above or
below a letter, the evolutionary event of insertion or deletion is assumed to have taken
place. A review of methods to perform this analysis appears in Waterman [7].

An example of two different alignments of two sequences appears in Fig. l(a)
and l(b) (Fitch and Smith [2]). The upper sequence is chicken//-hemoglobin messenger
RNA (mRNA), nucleotides 115-171, and the lower sequence is chicken a-hemoglobin
mRNA, nucleotides 118-156. These mRNA sequences are transcribed into hemoglobin
protein molecules and are well known to have arisen from a common ancestor. In fact
so many hemoglobin sequences are known that the alignment is presumed known, and
the paper of Fitch and Smith is a study of the ability of various alignment algorithms
to produce correct results.

As is easy to imagine, many ad hoc methods have arisen to align sequences. The
most naive simply look at the sequences and perform the alignment visually. In order

(a) UUUGCGUCCUUUGGAAC CUCUCCAGCCCCA CUG C CAUCCUUGGCAA CC C CAUGG UC
UUU C CC CACU UC G AUCUGUCACA C GGC UCCGCUCA AAUC

(b) UUUGCGUCCUUUGGAACCUCUCCAGCCCCAGUGCCAUCCUUGGCAACCCCAUGGUC
UUUCCCCACUUCG AUCU GUCACACGGCUCCGCU CAAAUC

(C) 11111111111111111011111111111110111010111111111111011010111110011
11101001100000001111011001000011111111110100011100111111110001111

(d) 11111111111111111111111111111111111111111111111111111111
11111111111110011110000011111111111111110001110000000111

FIG. 1. (a) and (b) are two alignments of nucleotides 115-171 of chicken fl-hemoglobin mRNA (upper)
and nucleotides 118-156 ofchicken a-hemoglobin mRNA (lower). (c) and (d) are 0-1 representations of (a)
and (b), respectively.
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to estimate the complexity of this task it is of interest to count the number of alignments
for two sequences of two given lengths. There are previous results on this problem.
H. T. Laquer [4] solves a more general recursion equation and relates the number of
sequence alignments to the Stanton-Cowan numbers.

Frequently biologists find an alignment more believable when the matches occur
in larger blocks. We will represent alignments as rows of O’s and l’s where a 1 indicates
presence of a letter or nucleotide and a 0 indicates a gap. Figure 1 (c) and 1 (d) convert
the alignments of Fig. l(a) and l(b) into these 0-1 rows. In this paper we count the
alignments where the matching l’s must occur in blocks of b or more. In Fig. l(a)
and 1 (c), b 1 while in Fig. 1 (b) and 1 (d), b =< 3.

Let g(b, n) denote the number of alignments of two sequences of size n in which
matching sections have size at least b. Equivalently, g(b, n) is the number of (0, 1)-
matrices with 2 rows and an unspecified number of columns such that both rows
contain precisely n l’s, each column contains at least one 1, and columns with two
l’s occur in adjacent sections of size b or more. We are interested in the asymptotic
behavior of g(b, n) for fixed b as n--> oo, as a function of b.

Observe that alignments where no column sum equals 2 are simply permutations
of n columns with a single 1 in row 1 and n columns with a single 1 in row 2. Those
are satisfactory for any b. Thus for all b and n,

(1) g(b, n) _-> (2nn).
Applying Stirling’s formula as n oo with b fixed,

(2) g(b, n)>-((Trn)-/2)(4"+o(1)) as n--> oo.

Further, note that g(1, n) counts the total number of 2-sequence alignments. A
generating function approach is successful for the general problem of b _-> 1.

THEOREM 1. Let b >- 1. Define
h(x)=(1--x)2--4x(xb--x+ 1)2

and let p be the smallest positive real root of h(x)= O. Then

g(b, n) ybn-/2) DT, as n ->

where Db p-1 and

’Y, (oh_p+ 1)(_.rrph,(p))-,/:z.

Proof. Assume that b is fixed, b -> 1. Let G(x) ,>=o g(b, n)x" denote the ordinary
generating function for the numbers g(b, n). In order to obtain G(x) we first form the
generating function b,,(x) for the numbers of 2-sequence alignments in which there
are precisely m columns each of the forms and o and in which the columns come
in sections of at least b. As noted above, there are (’) ways to order the 2m columns
with sum 1. This contributes a factor of (2,,’)x" to b,,(x) since each row gets m l’s
from these 2m columns. Next observe that there are 2m + slots into which may be
inserted either no columns or at least b columns. These slots precede, go between,
and follow the 2m columns with one 1. So each such slot contributes a factor, call it
y= y(x), to b,,(x), where

y =y(x) l+xb+xb+l/.

=I+(xb)/(1--X)
y=(xb--x+I)/(1--X).
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Hence,

(3) Cm(X) (2) xmy2m+1.

We obtain (3) since each alignment coded by bm (x) is determined completely by the
permutation of its columns with sum 1 and by the number s of columns inserted into
each slot. Such an alignment of size n contributes a term x to the sum m(X).

The set of all 2-sequence alignments with columns in groups of size at least b
is the union over m >_-0 of the alignments enumerated by the series m(X). Hence we
obtain"

O(X)-" E (/)m(/)
m>_O

m>=o(2mm)xmy2m+l
--Y m>=O (2)(xy2)m"

Applying the Binomial theorem,

G(x)= y(1-4xy2)-1/2.

Plugging in for y, we obtain

G(x)=(xb--x+ 1)(h(x))-1/2,

where

h(x)=(1--X)2--4X(Xb--x+ l)2

or

h(x) 1-6x +9X2-- 4X3- 8Xb+l + 8xb+2--4X2b+l.

Observe that h(0)= 1 and h()= ()2_ ((_)b /)2< 0, SO that h has a real root in (0, ).
Let/9 be the smallest such root of h. The radius of convergence of G(x) is determined
bythe roots of h(x), so the following lemma implies that G(x) has radius ofconvergence
p.

LEMMA. The unique root of h(x) with the smallest modulus is p, and p is a single
root of h(x).

Proof of Lemma. Let z C, ]z[ _-</9, be a root of h(z). We first show that in fact
]z] =p must hold. We have that

h(z)=(l_z)24z(_z (Zb--z+ l)2’/=0.
Since 0 < z < 1/4, it follows that

4z 1+1 z
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so that

1 1 zb 2

--<--== 1 +
4p 41zl 1-z

<- 1+
1-0/

Next we observe that because 0 is a root of h,

1
1+

4p 1

which implies that the inequalities above are all equalities. It follows that I 0. (This
could have been deduced instead from the well-known fact that a seriesf() oa
with real coecients a 0 and with radius of convergence 0 > 0 has a singular point
at =0 ([5]; confer, e.g., [3]).)

We next obsee that

1+ =1+

where Izl p (0, ]) forces

1+=1+
1-z 1-1el’

so that 1/4z= 1 +(zb/(1--Z)) is real and positive. Hence z itself is real and positive,
which implies that z must be p. Thus p is the unique root with the smallest modulus.

One can then calculate that

h’(p) (1 p)(-1 -/9-1-4bp(2b-1)/2 d- 4p 1/2).
It follows easily from p e (0, ) that h’(p)< 0. Therefore p is only a single root of
h(z). This completes the proof of the lemma.

Returning to the theorem, we define functions s(x), A(x), B(x) by:

h(x)=(p-x)s(x),

A(x) (xb x + 1 )(s(x)) -1/2,
B(x)=(p-x)-’/2.

Then we have that

G(x)=A(x)B(x).

Here A(x) has radius of covergence > p since it follows from the lemma that s(x) has
not root z with Izl--< p. Also, B(x) has radius of convergence p. Again by the binomial
theorem,

p-l X

n_>0

so that

B(x)= Z b,,x"
n=>O
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where

It remains to observe that (b,,_l/b,)-> p as n-->o to apply a theorem of Bender [1,
Thm. 2] to G(x)= A(x)B(x) to deduce that

g(b,n)---A(p)b, as n- c.

Of course, to calculate A(p), we are taking s(p)= lim,_p (h(x)/(p-x))=-h’(p). The
theorem now follows immediately.

Table 1 lists some values of Db and )’b to 4 or more places. These were computed
on a hand computer, using Newton’s method to find the root/9 for each b.

g(b, n).--(ybn-I/2)D, as n-,

where Db __p-1 and /b---(pb--p+ 1)(-’tr’ph’(p))-/2.
For comparison, recall that from (2), for all b, g(b, n)>=(2,,")-(.5641896)n-1/24"

as n-). Table 1 also suggests what happens to D and 3’ as b--), which is
straightforward to derive from the observation that as b--) the smallest root of h(x),
p, increases and approaches 1/4:

TABLE

b D /b

5.8284 .57268
2 4.5189 .53206
3 4.1489 .54290
4 4.0400 .55520
5 4.0103 .56109
10 4.00001 .564183

COROLLARY. As b -, Db -- 4 and Yb 7r-1/2.

Acknowledgment. We thank David Richman for his helpful observations.
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CASCADE ADDITION AND SUBTRACTION OF MATRICES*
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Abstract. The cascade connection of electrical n-port networks motivates the cascade sum of matrices.
The electrical network situation pertains to Hermitian positive semidefinite matrices, while in this work the
cascade addition operation is also considered for arbitrary matrices. Various properties of the cascade sum
are presented, including conditions which guarantee the existence of the cascade sum and the associativity
of the cascade sum. A related operation, the cascade difference, is also treated. The underlying structure of
the cascade operations is developed using the theory of the shorted operator.

Key words, cascade, Shur complement
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1. Introduction. In electrical network theory, it is common to consider the concept
of an n-port network, 11 ], [22]. Such a network will have n pairs of terminals; each
pair is called a port. At each port a current and a voltage is defined. The collection of
port currents will form a port current vector a; the port voltages form the port voltage
vector a. The network then defines a linear operator A: C --> C m, and the vector form
of Ohm’s law is Aa a. If all port currents are possible, that is, if the domain of the
function A is Cm, then A is called the impedance matrix of the network. Here C is
complex m-space.

When two n-port networks are interconnected, a new network is obtained. It is
reasonable to ask if the new network will have an impedance matrix, and if the new
impedance matrix will be a function of the impedance matrices of the interconnected
networks. In many circumstances the answer to these questions is yes [5], [7], [18],
[21]. In this paper we continue the study of these questions in the specific case of the
cascade connection.

We are motivated by the cascade connection of networks, as illustrated in Fig. 1.
The ports of each network are divided into sets, symbolized by () and (). Network
A has nl ports in group () and n2 ports in group (); network B has n2 ports in group
() and n3 ports in group (). Each port in group () of network A corresponds to a
port in group () of network B. The connection is such that the same voltage is measured

a a b
2

0) 8(R)

b

FIG.
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at corresponding ports, and the current into a port (in group 2) of network A is equal
to the current out of the corresponding port of network B. If nl n2 n3 1, then the
lines in Fig. 1 represent actual wires joining the networks. This cascade connection is
important in both network analysis and synthesis 10], 16], [23]. It also arises in many
apparently unrelated areas of science, see, for example, [19].

In terms of partitioned matrices, the network connection ensures the current
equation a2 + bl 0 and the voltage equation a2 =/31. These equations, together with
Ohm’s law, form the starting point of our investigations. The specific network model
remains in the background for motivational purposes.

In our formulation of the network equations we implicitly assume that the connec-
tion is such that the currents at each of interconnected networks are defined as port
currents. That is, the current into one terminal of a port must be equal to the current
out of the other terminal of the same port. This is a standard assumption in the theory
of n-port networks; physically this amounts to assuming that the connection includes
the use of ideal transformers at each port. Without this condition the impedance matrix
of the connection would be a function of the networks themselves, rather than being
a function of the impedance matrices of the connected matrices [16]. Thus our
mathematical theory applies only to the restricted physical setting of networks intercon-
nected with ideal transformers.

In this paper we first consider general complex matrices, without discussing any
particular physical realizations. We derive conditions for the existence of a cascade
sum and ditterences, and develop some other properties of the sum. However, in any
specific physical instance of the cascade connection, the class of matrices will be
restricted. We will consider the special cases of positive semidefinite Hermitian matrices
(corresponding to resistive networks), and almost right definite matrices (corresponding
to passive networks). Other areas of interest include positive real matrices and the
applications of cascade subtraction to classical network synthesis problems, see 17].
One could also consider the special cases arising in other physical settings, including
operators acting on continuous (hence infinite dimensional) systems or connections
of infinite numbers of operators. Examples of infinite networks may be found in the
following references: [4], [10], [24].

We now present the outline of this paper. In 2, we define our environment and
present the appropriate preliminary information. Section 3 contains detailed informa-
tion about the shorted operator (Schur Complement), which is fundamental to our
presentation of cascade addition. In this section, we review and amplify some known
results, and we present some new results. Section 4 deals with the general questions
of the existence of the cascade sum of matrices, the existence of the cascade difference
of matrices and cascade associativity. In 5 we restrict the cascade operation to the
case of positive semidefinite matrices. In 6, we consider two topics motivated by
electrical network theory, duality and the chain matrix, and show how they apply to
the cascade sum. Section 7 deals with passive networks. In it we briefly discuss the
cascade sum of almost right definite matrices. Finally, in 8 we conclude by summariz-
ing this work and briefly mentioning areas of future work.

2. Preliminaries. We consider vectors and linear operators defined on finite-
dimensional complex inner product spaces. For vectors x and y, we use (x, y) to denote
the inner product. For a linear operator A, we use the adjoint A defined by (Ax, y)=
(x, A’y) for all vectors x and y. If A A* we say that A is Hermitian.

When appropriately motivated by the network model, we will speak of current
vectors, for which we will use lower case Latin letters, and voltage vectors, for which
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we will use lower case Greek letters. The terms "’current" and "voltage" are not given
any mathematical meaning; the vectors are merely assumed to lie in spaces appropriate
to the context in which they appear.

Two special cases of matrices will be important. If A is a Hermitian matrix such
that (Aa, a)>-0 for all vectors a, then A is said to be positive semidefinite. If A and B
are positive semidefinite matrices, then we write A >- B when A-B is positive semi-
definite. It is well known that for a positive semidefinite matrix the quadratic form
(Aa, a)= 0 only if Aa- O.

For a matrix A, we let Range (A) and Kernel (A) denote the appropriate subspaces,
and rank (A) and nullity (A) their dimensions.

For a matrix A, the symbol A- denotes any matrix such that AA-A A; such a
matrix is called a 1-inverse. A 1-inverse exists for any matrix A, but it will not be
unique unless A is actually invertible. However, some important matrix expressions
are independent of the 1-inverses appearing therein. A number of elementary results
concerning 1-inverses are summarized below; where proofs are omitted they may be
found in standard textbooks, for example, see [20].

LEMMA 1. Let A be a matrix and A- a 1-inverse. Then
(a) The product AA- is a projection, and Range (AA-) Range (A).
(b) The system AX B has a solution if and only if Range (B)c Range (A). In

this case X A-B is a solution.
(c) Let B and C be nonzero matrices. Then the product BA-C is independent of the

choice ofA- if and only if Range (C)c Range (A), and Range (B*) Range (A*).
For a matrix A one choice of a 1-inverse is the Moore-Penrose pseudo-inverse

A+. The following well-known properties are important for this paper; see [20] for
proofs.

LEMMA 2. Let A be a matrix and A+ its Moore-Penrose pseudo-inverse: then
(a) A+ is the unique 1-inverse that satisfies A+AA+= A+; A+A is Hermitian; AA+

is Hermitian.
(b) AA+ is the Hermitian projection onto Range (A).
(c) A+A is the Hermitian projection onto Range (A*).
(d) If A is positive semidefinite then A+ is positive semidefinite also, and

Range (A+) Range (A).
(e) (A*)+ (A+)*.
(f) Range (A*)= Range (A/).
(g) Kernel (A*)= Kernel (A+).
LEMMA 3. Let A be a positive semidefinite matrix, and Q a matrix with Range (Q)

Range (A). Let B be a positive semidefinite matrix with Range (B) fq Range (A) 0. Then
(a) Range (Q*A/Q) Range (Q*).
(b) (Q*A+Q)/ Q+AQ*+.
(c) Q*A+Q Q*(A+ B)/ Q.
Proof. For part a, if x is a vector such that Q*A+Qx -0, then 0- (Q*A+Qx, x)

(A+Qx, Qx). Thus A+Qx- 0 since A is positive semidefinite. But then Qx 0 since
Range (Q)- Range (A/), and A/ is injective on its range.

Conversely, if Qx 0 then Q*A+Qx 0. Therefore Kernel (Q*A+Q)
Kernel (Q); since both operators are Hermitian, their ranges are equal also.

For part (b), it is straightforward to verify that the conditions of Lemma 2(a) hold.
The proof of part (c) will be deferred until after the proof of Lemma 12. QED
Throughout the paper we will be using partitioned matrices; in all cases we assume

without comment that the dimensions of the blocks are consistent with the indicated
partition. The partitioning of the ports in Fig. 1 gives rise to a natural partitioning of
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the impedance matrices, so that

(1) A=[AIA A12] and B= IB11 B121
AEJ BE1 BEEJ"

A similar partition is used for the cascade sum C of A and B, and in connection with
the discussion of the shorted operator. The voltage and current vectors are also
partitioned to be compatible with the matrix partitions. In order for the equations
defining the cascade sum to be meaningful, it is necessary for A22 and Bll to have the
same dimension; the dimensions of A and B are otherwise arbitrary. Thus we can say
that A is an (ml + m2) by (n1+ n2) matrix, and B is an (m2+ m3) by (n2+//3) matrix;
the cascade sum C is then (ml + m3) by (nl + n3). In particular, it is not necessary for
A and B to be square, although only square matrices are meaningful in the network
model.

In our treatments of the special case of positive semi-definite matrices we will
always assume that mi hi, 1, 2, 3.

3. The shorted operator. The shorted operator, also called the Schur Complement,
is fundamental to the theory of matrix operations induced by network connections,
see [5] and [7]. In this section we develop those portions of the theory necessary for
studying the cascade connection; more extensive treatments are contained in the
references: [4], [9], [12], [22]. Theorem 4 and its corollaries are well known; the
treatment here is different because of the emphasis on the currents and voltages.
Theorems 7 and 13 appear to be new; their corollaries yield new arguments for old
results and serve as an introduction to the arguments to be used in solving cascade
subtraction problems. We will first treat the case of general matrices, and then turn to
the special case of positive semidefinite matrices.

For the electrical network background of the shorted operator, consider the n-port
network A in Fig. 2. The ports of A are partitioned into two sets. The ports in the
second set will be shorted, and an input current will be applied to the ports in the first
set. Thus the impedance matrix is naturally partitioned as in (1). The current vector
a and the voltage vector a will be partitioned in a similar manner.

a
2

FIG. 2

Thus for a current al we seek a current a2 such that the voltage is zero (because
of the short). The map from the input current al to the voltage al will define the
impedance matrix of the shorted network; this map is the shorted operator of A.

The algebraic definition of the Schur Complement is directly analogous to the
network model, but is somewhat more general because the matrices involved are not
assumed to be square. For convenience, we will use a slightly different notation for
the blocks of the partitioned matrix.
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Given a partitioned matrix

and a vector a, we wish to find a vector b such that

If
(i) for each vector a there exists a vector b such that (1) holds;
(ii) the vector a is uniquely determined;

then we say that the matrix M is complementable, and define (M)a- a.
We note that the operator 5(M) is linear, since in (2) a linear combination of

a’s and the same linear combination of b’s will result in the same linear combination
of a’s. Thus we may use a matrix for 5(M).

THEOREM 4. The matrixMis complementable ifand only if Range (C) c Range (D)
and Range (B*) c Range (D*).

Proof. Given a, we must solve Ca / Db 0 for b. But Ca may be any vector in
Range (C), and thus we must have Range (C)c Range (D). Conversely, if the condi-
tion holds we may always solve for b.

Now suppose that a 0. We must ensure that a 0. But

A

Since Db- 0, the necessary and sufficient condition is that Kernel (D)c Kernel (B),
equivalently Range (B*)c Range (D*). In view of Theorem 4, our definition of com-
plementable is equivalent to that given in [9] and [15].

COROLLARY 5. IfM is complementable then M* is complementable and 6(M*)-
(Se(M))*.

Proof. The range conditions for M* are the same as those for M; therefore M*
is complementable.

Now let a and a’ be vectors. We need to show that (6f(M)a, a’)- (a, (M*)a’).
But if

we have

=(a,(M*)a’). Q.E.D.
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COROLLARY 6. Ifthe matrixM is complementable thenfor any choice ofthe 1-inverse

(3) S(M) A- BD-C.

Proof. Since Range (C)c Range (D), we can let b=-D-Ca for any choice of
D-. Then Db DD-Ca -Ca. Then a (A- BD-C)a is independent of the choice
of D- since Range (B*) c Range (D*). Q.E.D.

The next theorem about partitioned matrices is directly related to our work in
subsequent sections, and it also has an interesting relationship to parallel addition.

THEOREM 7. The equation

[a B]5e
C x =0

has a solution X if and only if
(i) Range (A)c Range (B) and Range (A*) Range (C*),
(ii) nullity B _>- rank C rank (A),
(iii) nullity (C*) -> rank (B*) -rank (A*).
Proof. First suppose that there is a solution; that there is a D such that

Range (C) Range (D), Range (B*) c Range (D*), and A BD-C. Then (i) is
obviously satisfied. Since Range (C)c Range (D) implies rank (C)=rank (D-C),
(ii) follows from rank (A)=rank (D-C)- dim (Range (D-C)f3 Kernel (B))=>
rank (C)-nullity (B). Inequality (iii) follows similarly.

For sufficiency, we note that Range (A)c Range (B) and Range (A*)
Range (C*) imply that the matrix Y B+AC/ satisfies A BYC. It is clear that rank
(A)=rank (B/A) =rank (YC). From rank (C)=rank (YC)+dim (Kernel (Y)fq
Range(C)) and (ii) it follows that dim(Kernel(Y)f)Range(C))<=nullity(B).
Thus there is a matrix L with Kernel(L)=(Kernel(Y)fqRange(C))+/- and
Range(L)cKernel(B). In a similar manner it follows from (iii) that there
exists a matrix M with Kernel (M*) (Kernel Y*) fq Range (B*))-, and
Range (M*)c Kernel (C*). We will show that X =(Y+ L+M)/ is a solution to the
shorted subtraction problem.

It is clear that BX+C A, since BL 0 and MC 0 by construction. It remains
to verify the range conditions of Theorem 4. We will show that Kernel (X*)c
Kernel (C*); the other condition will follow by a similar argument.

First suppose x is a vector such that (Y+L)x=O. Then Yx=-Lx
Range (Y) f’l Range (L) Range (B*) f) Kernel (B) 0. Thus Kernel (Y+ L)
Kernel(Y)fqKernel(L). Similarly, if Y+ L+ M)x =O, then (Y+M)x=-Lx
Range Y+ M) f3 Range (L). But Range (M) Kernel (Y*) f) Range (B*)
Range (B*), and Range (Y) Range (B*), so that Range Y+ M) f-) Range (L) 0.
Thus Y+ M)x -Lx =0. Then Yx -Mx Range (Y) fq Range (M) Range (Y)
Kernel Y*) fq Range (B*) 0. Therefore Kernel (Y+L+M)= Kernel (Y+L)f-)
Kernel (M) Kernel (Y+ L).

Next we will show that Kernel (Y+ L)= Kernel (C*). Suppose C*x =0. Then
Yx B/AC+x 0. Moreover, from Range (C) Range (C) f3 Kernel (Y) we
have Kernel (C*) (Range (C)fqKernel (Y))+/-= Kernel (L). Thus Kernel (C*)c
Kernel (Y) f3 Kernel (L) Kernel Y+ L). Consider now an x Kernel Y+ L)
Kernel (C*). That is x Kernel Y+ L) and x Range (C), so that x Cz and
Y+ L) Cz 0. From the previous paragraph, we have Cz Kernel (Y) t3 Kernel (L);
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therefore Cz Kernel (L)f’l(Kernel (Y)f’lRange (C))+/-=0. Thus x=0 and Kernel
Y+ L) Kernel (C*).
Thus Kernel (X*) Kernel (Y + L + M)+* Kernel (Y + L + M)c Kernel
Y+ L) Kernel (C*). Q.E.D.

For matrices A and B, the parallel sum of A and B, denoted by A: B, is defined
to be the Schur Complement of the partitioned matrix

[aa a]oA+B

The parallel sum is another example of a matrix operation induced by a network
connection, see [5]. For appropriate operators A and B an equivalent formula is
A: B (A-1 + B-l)-. Basic results concerning the parallel sum of positive semidefinite
matrices are given in [4], and for general matrices in [21].

COROLLARY 8. Let A and B be m by n matrices. The equation A: X C has a
solution X if and only if

(i) Range (C) c Range (A) and Range (C*) Range (A*),
(ii) rank (A C >-- 2 rank (A) min m, n ).
Proof. The equation A: X C is equivalent to the equation

[A-C a ]A A/X
=0.

By Theorem 7 there is a solution if and only if
(i) Range (A- C) c Range (A) and Range (A- C)* c Range (A*),
(ii) nullity (A) ->_rank (A)-rank (A- C),
(iii) nullity (A*)_-> rank (A*)-rank (A-C)*.

It is an easy exercise to see that the two sets of conditions are the same. This result
was originally proved in [21]. Q.E.D.

When dealing with positive semidefinite matrices, we will assume that in partition
(1) the matrix A and minor A22 are square. We will use the term shorted operator for
this special case of the Schur Complement.

To begin our treatment of the positive semidefinite case, let us first recall four
lemmas which are proved in [1] and [4].

LEMMA 9. Let A be a positive semidefinite matrix, partitioned as in (1), with A22
square, and let S be the subspace corresponding to the first block in the partition. Let
R(A, S) be the set ofpositive semidefinite matrices Xsuch thatX <- A and Range (X) c S.
Then A is shortable and

(a) (A) is the maximum element of(A, S).
(b) Range (6e(A)) Range (A) fq S.
(c) Range (A- (A)) fq S=0.
We note that in Lemma 9 the shorted operator is considered as an operator on

the larger space, whereas the formula (3) gives an operator acting on S only. In the
positive semidefinite case that we are considering here, (A) will be zero on S+/-, and
thus no confusion should result from the identification of the two operators.

LEMMA 10. Let A and B be positive semidefinite matrices, with A <= B. Then (A) <-_

e().
LEMMA 11. Let A be a Hermitian matrix, partitioned as in (1). Then A is positive

semidefinite if and only if A22 and SO(A) are positive semidefinite.
LEMMA 12. Let A and B be positive semidefinite matrices. Then A: B exists and

Range (A: B) Range (A) f) Range (B).
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We can now complete the proof of Lemma 3. Since Range (A)fq Range (B)--0,
we have A: B 0 by Lemma 12. Then Q*A+Q Q*A+AA+Q
Q*A+(A-A: B)A+Q= Q*A+A(A+ B)+AA+Q= Q*(A+ B)+Q. The last equality fol-
lows from Lemma 2 part (b) and the equality Range (A)- Range (Q). Q.E.D.

THEOREM 13. Let A be a positive semidefinite matrix and B a matrix. Then there
exists a matrix X such that

is positive semidefinite and (M) =0 if and only if Range (A)-Range (B).
Proof. Since M is positive semidefinite, we must have Range (B)c Range (A). In

order to have 9(M)=0, by Theorem 7 we must have Range (A)c Range(B), and
thus equality must hold.

Conversely, if the range equality holds, then we take X B*A+B. Lemma 3 part
(b) yields that X/= B+AB*/; and by a straightforward computation we see that
6e(M) 0. Q.E.D.

COROLLARY 14. Let A and C be positive semidefinite matrices. Then there is a
positive semidefinite matrix X such that A: X C if and only if A- C is positive semi-

definite and Range (A C) Range (A).
Proof. If the hypotheses hold, then Theorem 13 ensures the existence of a positive

semidefinite Y such that

A y =0.

Choose Y A(A- C)+A. From A- C _<- A, we have (A- C)+ >= A+, since the ranges
on both sides are equal. Then Y A(A C)/A >- AA/A A. Therefore we may write
Y A+X with X positive semidefinite. Conversely, if A: X C, then

A A+X
-0

and Theorem 13 applies. Q.E.D.

4. The cascade sum. The fundamental equations for the cascade sum are motivated
by the physical model, as illustrated in Fig. 1. In this section we derive the conditions
for the existence of the cascade sum and study some of its properties. Although we
will continue to use the physical terminology of currents and voltages, all of the proofs
will be purely algebraic. We will use the matrix partitioning conventions described in
2.

Given matrices A and B, and a vector c, we seek vectors a and b such that
(i) al Cl,

(ii) b2 c2, (current conditions),
(4)

(iii) a2 + bl 0,

(iv) A21al + A22a2 Blb + B1262, (voltage condition).

Given current vectors a and b satisfying (i)-(iv), we then define the voltage vectors a

and/3 by t Aa, and/3 Bb. The vector 3, is then defined by /1 a, and /2 =/32.
We note that equation (iv) could also have been written a2 =/31.
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DEFINITION. If for all vectors c there exist vectors a and b satisfying (4), and if
moreover the vector y is uniquely determined by c, then we say that the matrices A
and B are cascade summable. Since the relationship between c and y is linear, there
is a matrix C such that Cc =y. The matrix C is called the cascade sum of A and B,
and we write C A B.

In order to discuss existence of the cascade sum, let us introduce the matrix Q
defined by the following matrix multiplication expression:

0 I -I
0 B B] I

Performing the matrix multiplications yields that 0 may be rewritten as follows:

(5) Q= 0 B -B where D=A+B.
A -B D

The construction ofthis matrix Q is indicated by the general theory of matrix operations
induced by network connections [5]. For the present purposes, we obsee that
equations (4) may be rewritten as

Q b wherex=a=-b.
x 0

From the definition of complementability we see that the matrices A and B will
be cascade summable if and only if Q is complementable to the subspace corresponding
to the first two blocks in the paitioned form of the matrix in (5). Our fundamental
existence theorem is then an instance of Theorem 4.
To 15. e maCrices A and B are cascade summable if and only if

Range ([A,-B,]) c Range (D) and Range ([A,-B]) c Range (D*).
oo Apply Theorem 4 to the matrix Q. Q.E.D.
ToN 16. If the matrices A and B are cascade summable, then the cascade sum

A B is given by

(6) A B [All-A,2D-A21 A12D-B12 ].BE1D-A21 BEE-- BE1D-B12

oofi The formula is a direct application of (3) to the matrix Q. Q.E.D.
We note that the formula for A B is independent of the choice of the 1-inverse

D-. It is also clear that except in the trivial cases where [A21 -B2 0 or [A2 -BI
0, the matrices A and B will be cascade summable if and only if the right-hand side
of (6) is independent of the choice of 1-inverse D.

In Fig. 3 we show the cascade connection of three networks. From the physical
model one would expect the cascade sum to be associative, since it should make no
difference whether the wires in the left connection or the right connection are soldered
first. In the algebraic setting, it proves convenient to give a separate definition for the
cascade sum of three matrices.

We say that the three matrices A, B and C are tri-cascadable if for every vector
d there are vectors a, b and c such that
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d a b

FIG. 3

d

al-- dl,
c2 d2,
a2+bl =0,

b2 + Cl 0,

(current conditions),

A21al / A22a2 Bllbl + B1262,
B21b / B22b2 CllC / C12c2, J

| (voltage conditions),

and if the vectors 81 Alia1 + A12a2 and 82 C21c + C22Y2 are uniquely determined by
d.

If the matrices are tri-cascadable, we then have a matrix (A, B, C) such that
8=o(A,B,C)d.

Proceeding analogously to the case of two matrices, we introduce vectors x a2
-bl, and y bE ----Cl, and rewrite the tri-cascade equations

(7) [A011 0 A12 0 1] a 81
C22 0 -C2 c 82

-C12 -B21 y

where D A22/ Bll and E B22/ Cll. The conditions for tri-cascadability are the
same as those for the matrix on the left-hand side of (7) to be complementable to the
subspace corresponding to the first two blocks of the partition.

LEMMA 17. Let A and B be cascade summable matrices. Then (A B)o C exists if
and only if.o (A, B, C) exists; if both exist they are equal.

Proof. Assume that (A B) C exists. Then for vectors dl and dE there exists a
vector y such that (A B)21dl / (A B)E2Y -Clly + C12d2. Moreover the vectors 81
(A B) 11 dl + (A B)12Y and 82 C21y + C22d2 do not depend on y.

By the existence of A B (with dl and y replacing cl and c2 in (4)) we know that
there exists a vector x such that AEld / AEEX -Bllx / B12Y. By the definition of A B
we also have (A B)Eld / (A B)E2Y -BE1X / BEEY, and therefore -BE1X / BEEY
-Clly + C12d. The x and y we have just constructed satisfy (7), with dl, d2 replacing
a, c. Since 81 and 82 are uniquely determined, we have shown that (A, B, C) exists
and is equal to (A B)o C.

Conversely, assume that (A, B, C) exists. Then there exist x and y with AEldl /
A22X -BllX + B12y and -B21 + BEEY -CllY+ C12d2 Moreover 81 Alldl + A21x
and 82 -CElY / C22d2 are uniquely determined. Again we use the definition of A B,
applied to the currents dl and y, to see that (A B)21dl+(A B)EEY=-C11y+ClEd2
and that 81 (A B)lldl + (A B)lEy. Since we still have the uniqueness of 81 and 82,
we have proved that (A B) C exists and equals (A, B, C). Q.E.D.
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LEMMA 18. Let B and C be cascade summable matrices. Then A (B C) exists if
and only if (A, B, C) exists. If both exist then they are equal.

Proof. The proof is essentially the same as for the previous lemma. Q.E.D.
THEOREM 19. Let A, B and C be matrices such that (A B)o C and A (B C)

both exist. Then (A B) C A (B C).
Proof. By Lemmas 17 and 18, both expressions equal (A, B, C). Q.E.D.
Our next theorem deals with the cascade associativity question for just one matrix.

When is A (A A)- (A A)o A? We will note in the final section of this paper that
the existence of the cascade limit operation is an interesting research question, and
that the result below provides a foundation for further analysis of this question.

THEOREM 20. Let A be a matrix. If A A and A (A A) exist, then (A A)o A
exists and A A) A A A A).

Proof. Since A A and A (A A) both exist, Lemma 18 implies that (A, A, A)
exists. Using Lemma 17, we then see that (AoA)oA exists and also equals
o(A,A,A). Q.E.D.

We close our discussion of associativity by remarking that one can construct 2 by
2 matrices A, B and C such that A (B C) exists but (A B) C does not. One can
also construct matrices such that (A, B, C) exists but neither A B nor B C exists.

We now turn to the question of cascade subtraction. Given matrices A and C, we
wish to solve the equation A X C. We assume that all three matrices are partitioned
as in (1). We will also use the abbreviations L All- Cll, and D A22 d-Xll.

THEOREM 21. There exists a solution to the cascade subtraction problem A X C
if and only if all of the following conditions hold:

(i) Range (L)c Range (ALE),

(ii) Range (L*)c Range (A2"1),

(iii) nullity (A12) ->- rank (A21) rank (L),

(iv) nullity (A2*l) _>- rank (A*2) rank (L*),

(v) Range (C12) c Range (ALE),

(vi) Range (C2"1) Range (32"1).

Proof. First, let us use formula (6) to rewrite A X C as

All-- A12D-A21 Cll, equivalently L A1ED-A21,

(8)
A12D-X12 C12,

X21D-A21-- C21

X22 XE1D-X12 C22.
By the definition of L, we must have

5’[ L A12] 0
A21 D

By Theorem 7 conditions (i)-(iv) above are necessary for the existence of D, and
hence Xll. Conditions (v) and (vi) are clear from (8).

Conversely, let us assume that (i)-(vi) hold. From (i)-(iv) we know that an Xll
exists. Then, since Range (Al*2) c Range (D*), we have Range (A1ED-) Range (A12).
In view of (v) we can then take for X12 any value of (A12D-)-C12. Similarly, we can
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use (vi) to solve for X21. Then X22 C22+X21D-X12 and the matrix X has been
constructed. Q.E.D.

5. The cascade sum of lositive semitlefinite matrices. A resistive network is an n-port
network composed of interconnected resistors. The impedance matrix of such a network
will be a real positive semidefinite matrix, although not all such matrices correspond
to networks. Thus we are led to consider the cascade sum of positive semidefinite
matrices.

Throughout this section we will use the Moore-Penrose generalized inverse, rather
than an arbitrary 1-inverse. We do this because the Moore-Penrose generalized inverse
of a positive semidefinite matrix will again be positive semidefinite. In fact most of
our formulas will not depend on this specific choice of a 1-inverse.

THEOREM 22. Let A, B and C be positive semidefinite matrices, partitioned in a
manner appropriate for forming the cascade sum, and with A and B square. Then

(i) A and B are cascade summable,
(ii) A B is positive semidefinite,
(iii) If B <= C, then A B <= A C,
(iv) (Ao B)o C =Ao (Bo C).
Proof. The cascade sum of A and B will be formed by shorting the matrix Q as

defined in (5). Since A and B are positive semidefinite, and Q is formed from the
direct sum of A and B by a congruence, Q is again positive semidefinite. By Lemma
9 Q is shortable, and thus A B exists and is positive semidefinite. Since congruence
preserves partial order, and by Lemma 10 so does shorting, the cascade sum will also
preserve partial order. Since the cascade sum always exists, by Theorem 19 the cascade
sum will be associative. Q.E.D.

We now wish to discuss the cascade subtraction problem, that is, to solve the
equation A X C. Here A and C are positive semidefinite and we seek a positive
semidefinite X. As in the previous section, let D= A22+ XI, and L=A-C. We
also let S be the subspace corresponding to the first block in the partitions for A and
C. In terms of the partitioned matrices, the equations are

(i) A12D+A21--L,
(9) (ii) AID+XI2 Cl=,

(iii) X22- XE1D+X2 C2.
THEOREM 23. Let A and C bepositive semidefinite matrices. Thefollowing conditions

are necessary and sufficient for the existence of a positve semidefinite matrix X satisfying
AoX=C.

(i) L is a positive semidefinite matrix,
(ii) 5e(A) =< 5(C),
(iii) Range (L)= Range (A12),
(iv) Range (C2) c Range (A12).
Proof. First, we establish that the conditions are necessary. For (i), observe that

XI and A22 are both positive semidefinite, and thus Ax2D/A2x must be also. For (ii)
observe that A 0= 5e(A). Since cascade addition is monotone it follows that A 0=<

A X C. Moreover, Range (A 0)c S; thus A 0_< (C) by Lemma 9 part (a). For
(iii) use (i) and Theorem 13. For (iv) we merely use (9)(ii).

In order to see that the conditions are sufficient, recall again that Range (A21)c
Range (A22). Let/22 be the result of shorting A22 to the subspace Range (A21); then
Range (A22) Range (A22) Range (A21) Range (A21). By Lemma 3 part (c),

A12AEEA21 A12AEEA21
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and thus

LA21
is a positive semidefinite operator, and

9(A) Se(A).
The solution of the cascade subtraction problem is then

[A21L+A12-l22 A21L+C12 ](10) X
CEIL+AlE C22+ C21L+C2

We must show that X satisfies (9), and that X is positive semidefinite.
First, let us show that (9) is satisfied. By hypothesis we know that L is positive

semidefinite with Range (L) Range (A2). Therefore by Lemma 3 part (a)
Range(AEL+A1E)=Range(A21). Since by Lemma 9 part (c) Range(AE2-,22)O
Range (A21)-0, we have, using Lemma 3 part (c) and then Lemma 3 part (b),

A12(A21L+A12 + A22 ,22)+A21 A12(A21L+A12)+321 A12A2LAEA21+ L.

For (9)(i), we have

A1ED+A21 A1E(AE1L+A12+ A22- 22)+A21 L.

For (9)(ii), we have

A1ED+X12 A1E(AE1L+A12+ A22- 22)+AEL+C2 LL+ C12 C2.
Finally, for (9)(iii)

X22- XED+X2 C22 + C2L+C12- C21L+A12(A21L+A12+ A22- 22) + A21L+C12
C22 + C21L+ C12 C2L+LL+C12 C22.

It remains to prove that X is positive semidefinite. As was done with A22 let C22
result from shoing C22 to Range (C21). Then C22 C22 and thus

(11) X [A21L+A12-22 A21L+C12
CEIL+AlE 22+ CEIL+ C12J"

We merely need show that the right-hand side of (11) is positive semidefinite.
This matrix can be factored as follows

0 C21 g+ g++c;d22Cl C12
Clearly L++CC2 is positive semidefinite. By Lemma 11 it is thus sucient to
show that L+ -AAA+ + L+(L+ + C+ CC" +)+L+. Equivalently, using the parallel
sum the condition may be rewritten,

(12) L+ C122C2 + +AE1A22A12
Let us assume for the moment that Range (C12) Range (A12). Then all terms in (12)
have the same range, and we can inve the inequality obtaining

L+ C12C22C21 A12A22AE1
+ +C22C21 towhich, in view of the fact that C12C22C21 C12 is equivalent hypothesis (ii).

It remains to remove the assumption that Range (C12) Range (A12). Let

C C + e
A



622 W. N. ANDERSON, JR., T. D. MORLEY AND G. E. TRAPP

We will show that for sufficiently small e > 0 the perturbed system A X C has a
positive semidefinite solution and that these solutions tend to X. Thus X is positive
semidefinite.

First, let us check the hypotheses of the theorem for C. For (i), we have
+ +L =All- CI + eA12A22A21) L- eA2A22A21. Since L is positive semidefinite, and
12A22A2), we will have L> eA2A22A21 for sufficiently small e.Range (L) Range (A / /

For (ii), note that by Lemma 11 the perturbation term is positive semidefinite,
and thus 5e(C) => 5e(C) => 6e(A).

For (iii), when e is smaller than the largest e which makes L positive semidefinite,
then Range (L) Range (L) Range (A2).

Finally, for (iv) since Range (C2) c Range (A12), Range (C2+ eA2)
Range (A2), and equality holds except for finitely many e.

Therefore, for sufficiently small e > 0 the equation A X C has a positive
semidefinite solution X, which may be obtained by appropriately modifying (10). In
order to establish convergence of the X, it suffices to observe that L+ converges to
L/ since the ranges are the same for sufficiently small e. Q.E.D.

6. Duality and the chain matrix. The dual of a network connection is obtained
by interchanging the roles of currents and voltages, see [5] and [23]. For example, the
series and parallel network connections are duals.

Prior to writing the equations for the dual cascade connection let us recall that
in our original formulation (1) the matrix A is m + m,_ by n + n2, and the matrix B
is m2-1-m by n2d- n3. Then A22 and Bll are both m2 by n2 so that D A22d-Bll is
defined. If A and B are cascade summable, then C A B is m + m3 by nl + t13. In
the dual cascade connection the row and column dimensions are interchanged. That
is, the matrix () is n + r/2 by ml + mE and the matrix (R) is n2-1- n3 by mE-I-m3

Given matrices () and (R) and a vector y we seek vectors a and/3 such that

(13)

(i)

(ii)

(iii)

(iv)

O1 ’)/1

12-- ’)/2, (voltage conditions),

O2 1,

AEla + A22o2+ Bllfll + B12f12-- 0, (current conditions).

Given vectors a and/3 satisfying (13), we then define the current vectors a and b by
a ()a and b ()/3. The vector c is then defined by c al, and c2 b2. We note that
(13)(iv) could also have been written a2 + bl 0.

DEFINIa’ON. If for all vectors 3’ there exist vectors a and/3 satisfying (13), and
if moreover, the vector c is uniquely determined by y, then we say the matrices () and
(R) are dual cascade summable. As before there will then be a matrix (C) such that
(C)y c. This matrix (C) is called the dual cascade sum of( and (R); we write (C) =( o’ (R).

Analogous to the construction of the matrix Q in (5), let us define a matrix Q’,
where ( (22+ ()11

Q’= 0 (R)22 (R)2,.

Then ()o’(g) exists if and only if Q’ is complementable, yielding the range conditions
Range [()21, (R)12] c Range (() and Range [()’2, (R)2"1] c Range ((*).

THEOREM 24. If the matrices A and B are cascade summable, then the matrices A*
and B* are dual cascade summable.
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Proof Letting () A* and (R) B*, we have Range [()2, (R)12]
Range [A*2, B2"1] Range [A*2, -B2"1], and Range (() Range (D*). Therefore
Range [()21, (R)12] C Range (() if and only if Range [A1"2, -B2"1] C Range (D*). A
similar computation holds for the other range condition. Q.E.D.

We note that if

then A* o’ B*= J(A B)*J.
THEOREM 25. Let A and B be cascade summable and invertible. Then ifA-1 and

B-1 are dual cascade summable, A B is invertible and (A B)-I A-1 o, B-1.
Proof Let (A B)c- y, and let ()= A-1 and (R) B-1. Then the vectors a, b, c,

and/3 which satisfy (4) also satisfy (13). Since in (13) c is uniquely determined by
we have (A-1 o’ B-1)(A B)c=(A- o’ B-1)y c, and thus A-1 o, B-1 is a left inverse
for A B. Proceeding in the other direction, we find that A B is a left inverse for
A-1 o’ B-1. Therefore A B is invertible, as desired. Q.E.D.

We note that A and B, being invertible, must of course be square. We have not
explicitly assumed that the partition is such that A B is square; instead, this fact is
part of the conclusion of the theorem. We also note that one can construct 2 by 2
invertible matrices A and B such that the cascade sum exists and is not invertible;
hence A- and B-1 are not dual cascade summable.

COROLLARY 26. If the matrices A and B are positive definite, with A22 square, then
A B is positive definite, and (A B)-1= A-1 o’ B

Proof The result follows immediately from the two previous theorems. Q.E.D.
In electrical network theory one standard approach to the cascade sum is by

means of the chain matrix, see [10], [16], [23]. Next we develop some of the theory
of the chain matrix. We will show that the chain matrix approach is not useful for
computing the cascade sum except in the special case where A and B are square. Even
if one restricts attention to the electrically reasonable situation where A, B, and the
submatrix D All d-BEE are square, the chain matrix is still not always appropriate.

For a matrix A, partitioned as in (1), the chain matrix K(A) is defined by

ix2 ix1 whenever A(14) K(A)
--a2 al a2

We note that if some vectors [-a2] do not arise in Aa a, then the chain matrix is not
defined by (14) for these vectors.

LEMMA 27. A chain matrix K(A) existsfor the matrix A ifand only ifALl possesses
a left inverse. In this case the matrix

(15) [AllA( AllA(A22- A12]Al AlAE2
is a chain matrix for A for any choice of the left inverse A(.

Proof If AI exists, then we can solve AElal + AEEa2--a2 for al to obtain (15).
Conversely, suppose AElX--0 for a vector x. Then from

A,, A121[] =[AlX] we have K(A)[00] =[AlX]A21 A22J
Therefore x- 0. Thus Kernel (A21)- 0, so that a left inverse AI exists. Q.E.D.

LEMMA 28. Let ALl be invertible. Then K(A) is unique; K(A) possesses a chain
matrix K(K(A)) and K(K(A))= A.
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Proofi If A21 is invertible, then the equation A21al d-A22a2--t2 uniquely deter-
mines a in terms of a2 and dE. Thus all pairs dE, a2 are possible, and a and hence
al are uniquely determined by a2 and a2. Thus K(A) is unique. Since (K(A))2 A;1,
which again is invertible, K(K(A)) exists. It is immediate from (14) that K(K(A))=
A. Q.E.D.

We note that if A2 is not square, then it is not possible for both K(A) and
K(K(A)) to be defined. If a nonsquare A21 possesses a left inverse then the chain
matrix exists but is not unique; moreover, whenever a chain matrix exists it will
correspond to many matrices.

THEOREM 29. Let A and B be cascade summable matrices such that chain matrices
K(A) and K(B) exist. Then for any choices of the chain matrices K(A) and K(B) the
product K(A)K(B) is a chain matrix for the cascade sum A B.

Proofi Given the current vector c, we let a, b, a,/3, and 3’ be as in (4). Then

cl a --a2

=K(A)K(B)
-b2 -c2

Even though we have now found a chain matrix for C, we cannot necessarily
recover the matrix C; stronger hypotheses are necessary.

THEOREM 30. Let A and B be matrices with A2 and B2 invertible. Let L=
K(A)K(B) be the product of the chain matrices. Then L21 is invertible if and only ifA
and B are cascade summable, in which case L K(A B), and C K(L).

Proof. First assume that A B exists. In view of the previous theorem we need
only show that C2 is invertible. If A2 is an r by r matrix and B2 is S by s, then
D--A22 d- BI is r by s. By cascade summability we have Range (A2)c Range (D),
and therefore rank (D) _-> r. Since also Range (BE*I) c Range (D*), we have rank (D) _-> s.
Thus rank (D)->_max (r, s), and hence r-s-rank (D). Therefore from (6) we have
CI AllDBI

Conversely, using (15) and matrix multiplication to compute L, we have L21
A(A22+ Bll)B. Since L21 is invertible, the matrix D= A22+ Bll must be also. Then
the range conditions of Theorem 15 are satisfied. By the preceding theorems L is the
chain matrix of C, and C K(L). Q.E.D.

The theorem allows us to present an alternate proof for a special case of Theorem
19. This special case seems to be the only one proved in electrical network literature.

COROLLARY 31. Let A, B, and C be matrices such that A21 B21 and C21 are
invertible, and both A B C and A B C are defined. Then A B C
Ao(BoC).

Proof. The two triple cascade sums are expressed as products of the three chain
matrices, and matrix multiplication is associative. Q.E.D.

7. Almost right definite matrices. The real world model that we used to motivate
the cascade sum ofpositive semidefinite matrices was the cascade connection of resistive
n-port networks. If the electrical networks contain capacitors or inductors, the imped-
ance matrix will contain positive real functions of the frequency, see [11], [17], [23].
In this section we consider one fixed frequency so that the matrices are constant. The
appropriate class of matrices is that of the almost right definite matrices [8].

A complex matrix A is said to be Almost Right Definite if Re (Aa, a)>-_ 0 for all
a, and if Re (Aa, a) 0 only if Aa 0. Here we are using Re for the real part. A positive
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semidefinite matrix is of course almost right definite. We will also require the following
related concept. A matrix A is Almost Definite if (Aa, a)= 0 only if Aa- O.

LEMMA 32. Let A and B be almost right definite matrices; then
a A is almost definite,
(b) S’AS is almost right definite for any matrix S,

(c)
O

is almost right definite.

Proof. For part (a), if {Aa, a} 0, then Re {Aa, a)= 0 and thus Aa 0. For part
(b), we note that (S*SAa, a}=(ASa, Sa}; since A is almost right definite we know
Re (ASa, Sa) >- 0 and hence Re (S*Asa, a) >- O. Moreover if Re (S*ASa, a) 0 then
Re (ASa, Sa} =0 and ASa 0 which implies S’AS =0. Part (c) is obvious. Q.E.D.

THEOREM 33. Let A and B be almost right definite matrices; then A and B are
cascade summable and A B is almost right definite.

Proof. By Lemma 32, the matrix Q of equation (5) is almost right definite whenever
A and B are, and hence Q is almost definite. It is shown in [9], [15] and [18] that
every almost definite matrix is complementable. Therefore A B exists.

For a given current c, let a and b be solutions to (4); then we may write following
string of equalities

(Aa, a)+(Bb, b)= (al, al)d-(o2, a2)d-(fll, bl)d-(fl2, b2)

=(T,, c,)+(T2, c2)=(A Bc, c).

In the second line the two middle terms cancel by (4)(iii) and (4)(iv). Since Re {Aa, a) >=
0 and Re {Bb, b) O, we see that Re (A Bc, c) O. Now suppose Re {A Bc, c) O,
then we must have Re {Aa, a)=0 and Re <Bb, b)=0. Hence Aa =0 and Bb =0, but
then T1 0 and T2 0. Since these voltages are unique, Cc 0 and thus C is almost
right definite. Q.E.D.

8. Summaff and conclusions. In this work we have carefully developed the theory
ofthe cascade sum ofmatrices. We have presented conditions which assure the existence
of the cascade sum and the associativity of the cascade operation. In paicular, for
the case of positive semidefinitc matrices, the cascade sum is always defined and always
associative.

We have also discussed the question of cascade subtraction, both in the general
case and in the network synthesis related case of positive semidefinite matrices.

Two areas of interest were not considered in this work. Cascade addition is not
commutative, even in the positive semidefinite case. Given a matrix A, determining
which matrices B cascade commute with A is a difficult problem. A seemingly unrelated
problem is the question of the cascade limit, which involves the analysis of the infinite
sequence A, A A, A A A,. .. It turns out that when the sequence has a limit, call
it B, that B is a matrix which cascade commutes with the matrix A. Ando [10] has
obtained some very interesting results concerning the cascade limit of positive semi-
definite matrices. However, there seems to be much work remaining in the general case.
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MATHEMATICAL ASPECTS OF THE RELATIVE GAIN ARRAY (A A-r)*
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Abstract. For nonsingular n-by-n matrices A, we investigate the map

A.-.> (A)=_ A (A-1)r

in which denotes the Hadamard (entry-wise) product. The matrix (A) arises in mathematical control
theory in chemical engineering design problems, where it is known as the relative gain array, and also in a

matrix theoretic problem involving the relation between the diagonal entries and eigenvalues. We first give
several elementary properties of and show that the iterates Ok(A) converge to I when A is either positive
definite or an H-matrix. We then discuss, with examples and partial results, several unsolved problems
associated with . These include the range of , inverse images of elements in the range of , fixed points
of , etc.

Key words, relative gain array, Hadamard product

AMS(MOS) subject classifications. 15, 93

1. Introduction. The Hadamard (or entry-wise) product of two n x m matrices
B (bij) and C (cij) is defined by

B C (bijci.i).

For nonsingular n x n matrices A, we investigate the map

A- d(A) =_ A A-r

where "A-r’’ means the inverse transpose, (A-l) , of A. When we write this, we
presume the inverse of A exists.

The product A A-r has arisen in two distinct contexts and may be of interest
in a third.

In mathematical control theory associated with chemical engineering design prob-
lems, (A) is known as the relative gain array (RGA) associated with the gain matrix
A. Bristol introduced the RGA in [1]; it has since enjoyed a variety of applications
[6]. A typical problem is to control a number of outputs Xl,’’ ", xn by manipulating
certain inputs ml,... mn. For example, the outputs might be the products of a
distillation process in which the rates of flow of the inputs are controlled by valves.
The gain matrix A is the Jacobian of the x’s with respect to the re’s, and the RGA is
used in a static analysis of a proposed plant configuration. Generally, changing one
input will affect several outputs. However, for simplicity, one would like to primarily
control each output by manipulating a single input, and it is desirable to pair the
inputs and outputs with this in mind. The RGA has been used to find preferred pairings.
If o" is a permutation of {1, 2,..., n}, we call the entries a11), aEcr(2),""", a) a
diagonal ofthe matrix A (a). In certain chemical engineering applications a diagonal
of the RGA in which the entries are "near" 1 is used to determine the pairing of inputs
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and outputs for further design analysis. In most applications thus far, the matrices are
small (n 2, 3, or 4) and the "good" diagonal is chosen by inspection of the RGA.
Though more sophisticated mathematical analysis of the RGA has begun, our purpose
here is to contribute to the general understanding of the mapping . In particular,
one possibility for determining a permutation tr, and thus a pairing, may arise from
analysis of iteration of .

The matrix (A) also appears in the following matrix theoretic problem. Suppose
hi," ", h, and b11," ", b,, are two sets of n numbers. Mirsky [8] showed that there
exists an n x n matrix B with eigenvalues h
if and only if bll + + bnn hi + + An. Now, if B is diagonalizable, we have
B ADA-1, where D diag (A1," ", An) and A is nonsingular. Writing A (a0) and
A-1= (a0), we see that

j=l

and thus

(*) (bll, , bnn)r (A)(hl,

In 5 we prove a stronger version of Mirsky’s result and use this to show that, except
in the case h An, a necessary and sufficient condition for there to exist a
nonsingular A such that (*) holds is that

We mention a third, more speculative, potential application of , associated with
computational evidence that iterates k(A) often converge to a permutation matrix
associated with a "large" diagonal of A. In the travelling salesman’s problem, a
minimum distance tour of given "cities" is sought. If the i,j entry of A is inversely
related to the distance between city and city j, and if(A) converges to a permutation,
this permutation may be an approximate salesman’s tour and iteration of may
provide a travelling salesman heuristic worthy of study.

This paper is divided into two parts. The first part includes some elementary
observations about the map and features two convergence results about iterates
dpk(A). In particular, we show that

lim dk(A)= I
ko

if either A is a positive definite matrix or an H-matrix. In the second part we discuss
a number of interesting open mathematical problems concerning the map and include
some relevant fragmentary results and examples. These questions include: what is the
range of; what are the fixed points; when does (B) (A); for which A do iterates
of converge and to what, etc. ?

PART I

2. Elementary properties. We begin with some elementary properties of A A-T
and the map .

Observation 1. The matrix A A-" has row and column sums 1.
Observation 2. If D and E are n x n, nonsingular, diagonal matrices, then

dp(DAE) (A).

Observation 3. (A-1) [(A)]T (AT).
Observation 4. If P and Q are n x n permutation matrices, then

dp(PAQ) Pd(A)Q.
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Observation 5. If P is an n x n permutation matrix, then

(P) P.

Observation 6. If A is a nonsingular triangular matrix, then

(A) I.

Observation 7. If A is reducible (i.e., if PAPT is block upper or lower triangular
for some permutation P) then (A) is completely reducible and P(A)P is a direct
sum of diagonal blocks corresponding to the diagonal blocks of PAP.

Observation 1 follows from the Laplace expansion for det (A) in terms of the
eofactors of a fixed row or column. Observation 2 follows from D(A B) (DA) B
Ao(DB) and (AoB)E=Ao(BE)=(AE)oB. To obtain 3, use AoB=BoA and
(Ao B)r=Aro B. Numbers 4 and 5 follow from p-i= pr and (PAQ)o(PBQ)=
P(A B)Q. Six holds because the inverse of an upper (lower) triangular matrix is
again upper (lower) triangular, and the diagonal entries of the inverse are the inverses
of the diagonal entries of the original matrix. Similarly, the inverse of a block upper
(lower) triangular matrix is block upper (lower) triangular with diagonal blocks which
are the inverses of the diagonal blocks in the original matrix. Observation 7 then
follows from this fact and from Observation 4. However, the example below shows
that (A) may be reducible when A is irreducible.

Example 1. Let

A= 1
2

Then A is irreducible. However,

(A) 1 0

-2 2

is reducible.

3. Convergence of dpk(A) for positive definite A. Throughout this section, A will
be a positive definite Hermitian matrix. The term "positive definite" will mean "positive
definite Hermitian". In order to deal with the complex case, we define dp,(A) AoA-*.
When A is real, (A)= .(A); when A is Hermitian, .(A)= A A-1. A theorem of
Schur states that when A and B are positive definite, A B is positive definite [9],
[10]. Hence .(A) A A-1 is positive definite. Using induction, one sees that (A)
is positive definite for every positive integer k. Thus, we may define the sequence
A<k)= dp(A), and each A<k) is positive definite. We put A =dp(A)= A), and denote
the ij entry of A<k) as a). Our goal is the following theorem.

k(A)=I.THEOREM 1. Let A be a positive definite Herrnitian matrix. Then limk_,
The proof relies on some known results and some preliminary lemmas.
If A and B are Hermitian, then A_>-B means A-B is positive semidefinite.
THEOREM A. 1. (Fiedler) [2], [7]. IfA is a positive definite Herrnitian matrix, then

AoA-r>__L
2. (Johnson) [5], [11]. IfA is a positive definite Hermitian matrix then AoA-1 >-_ L
Theorem A tells us that Atk-> I for all k => 1.
For a Hermitian matrix H, let AI(H)-<A2(H)=< -<_A,(H) denote the eigen-

values of H in increasing order.
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THEOREM B (Schur) [9], [10]. IfA and B are positive semidefinite, then

AI(A) min {b11, ", bnn}--< Aj(A B) -<_ An(A) max {bll, ", bnn}.

We use Theorem B to establish Lemma 1.
LEMMA 1. Let A be positive definite, with A I and AI(A) >- 1. Then

An(AoA-1)<An(A).

Proof By Theorem B,

An(A A-1) __< An(A-I) max {all, , ann}.

Now An(A-I) 1/AI(A)--< 1 and a, _-< An(A) for each i. Furthermore, since An(A) is the
largest eigenvalue of A, a,- An(A) only if An(A) is the only nonzero entry in row
and column i. Suppose exactly r diagonal entries of A are equal to An(A). If r-0,
then max{all,..., a,}<An(A) and we are done. If r=n, then A-An(A)I and
AoA-I=I. Since A#/, we have An(AA-1)=I<An(A). If 0<r<n, we may apply
a permutation similarity to A and thus assume A An(A)Ik)A, where A1 is n k x n
k, positive definite, AI(A) -> 1, and An(A) -< An(A). Now A A-I= Ik(A A-I), so
An(Ao A-1)=A,(AlO A-). Since An(A) is not a diagonal entry of A1, we have
An(A1 A-1) < An(A). Hence, An(A A-1) < An(A).

LEMMA 2. Let A be positive definite and A(k)= (.k)(A). Then either A(k)-- Ifor all
sufficiently large k, or the sequence An(A(k)), for k >-2, is strictly decreasing and bounded
below by 1.

Proof. Theorem A tells us A(k)>--I for k -> 1, so A,,(A(k))_->. 1 when k_-> 1. The rest
of the statement follows immediately from Lemma 1.

Recall that the quantity IIMII maxx#o Ix*Mx/x*x defines a norm on the set of
n x n complex matrices, known as the spectral norm. When A is positive definite,
[IAII An(A). Lemma 2 then tells us that the sequence A(k) either reaches I in a finite
number of steps, or else is monotonically decreasing in norm for k->_ 2. Thus, the
sequence {A(k)} is bounded in norm. We are now ready to prove Theorem 1.

Proof of Theorem 1. If A(r) I for some r, then A(k) I for all k _-> r, and we are
done. So, assume A(k)# I for any k. The sequence {A(k)} is bounded in norm; hence
it has a convergent subsequence. Let

{LIL is the limit of a convergent subsequence of {A(k)}}.
Since A(k) is positive definite and A(k)>- I for all k, we must have L positive definite
and L_-> I for all L . Now the sequence {An(A(k))} is strictly decreasing and bounded
below by 1, so h limk_,o hn(A(k)) exists and h _-> 1. Furthermore, h IILll- An(L) for
every L .

We now claim ,()
_ . Let L. Then L limj_,o A(k?, where kl < k2 < k3 <

is an increasing sequence of positive integers. The map , is continuous, so

P.(L)= (I).(lim\_oo *(Ak))
lim .((A))
j-oo

lim +(A)= lim Akj+.
jeo j-oo

Hence .(L) . Now each L satisfies hi(L) _>- 1, so by Lemma 1, either L I or
A(,(L)) < A(L). But (L) implies hn(b.(L)) h An(L). Therefore, L= I and
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{I}. This means every convergent subsequence of {A(k)} converges to L Therefore,
limk-,oo A(k) I. lq

Remarks. If one could show directly that limk_,oo An(A(k)) 1, this might yield a
cleaner proof of Theorem 1. Some information about the rate of decrease of the
sequence An(A(k)) would be helpful. Also, note that the results and proofs hold for
the map as well as ,.

Finally, we mention a result which is not strong enough to establish Theorem 1,
but seems interesting in its own right. Perhaps a stronger version of the proposition
below would give some insight into the rate of convergence of A(k).

PROPOSITION 1. Let A be positive definite Hermitian and let B A A-. Then

aj

with equality if and only if ao O.
Proofi A and B are both positive definite so aii> 0 and b, > 0 for 1,. ., n. Put

and

Let A DAADA and B1 DnBDa. Both A1 and B have ones on the main diagonal.
The off diagonal entries of A1 and B are, respectively,

and

Now B A A-l= A A-. Thus,

B1 DBBDn DB(A1 A-()Dn A1 (DnA-Dn).

Let aj denote the i,j entry of DnA-(Dn. Since A and B have l’s on the diagonal,
a, 1 for 1, , n. Then DnA-1Dn positive definite implies lai[ < 1 for # j. Hence,
B1 A1 (DnA-IDn) tells us

with equality if and only if a

4. Convergence of tYpk(A) when A is an H-matrix. Let A be an n x n complex
matrix. Define

R,(A)
R,(A)=y__ la,l and r(A)- la,

assuming a,#O. We say A is row diagonally dominant provided R(A)<la, (or
equivalently, ri(A) < 1) for each 1,. , n. We say A is an H-matrix if there exists
a diagonal matrix D such that AD is diagonally dominant. An equivalent definition
is the following. Define the comparison matrix C C(A) of A by putting c, la,,I for
i= 1,..., n and c =-lal when i#j. Then A is an H matrix if and only if C(A) is
an M-matrix. In this section we prove:

THEOREM 2. IfA is an H-matrix, then limk-,oo k(A) L
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Since (A)= (AD), we may assume that A itself is row diagonally dominant.
We break the argument into several lemmas. The main idea is that (A) is "more"
diagonally dominant than A, hence dpk(A) converges to a diagonal matrix as k-.

LEMMA 3. Let A be row diagonally dominant and let B be the row echelon form of
A, obtained by doing Gaussian elimination (without row exchanges) on A. Then B is
also row diagonally dominant and

r(B)<-r(A).

Proof. It suffices to consider the effect of an elementary row operation; one may
then apply induction. At the first stage of Gaussian elimination, we clear out column
1 of A by subtracting (ajl/all) (Row 1 of A) from row j of A. Row 1 of A is not
changed; the new row j, for j-> 2, is:

a2 aj3 a13 ajn aln.0 aj2
\all/ \all/ all/

The new jth diagonal entry is

ajj
\ al/au.

Now

all

a

all

SO

o(A) aU >- (A)IaI- (A)
all

]aj]

lal-r(A)
k=l

k=2 lall
k#j

k=2 lall
kOj

k=2
kj

k=2
kOj

all

(la,,I-o(A)laljl)

alk

Thus, we see that the typical elementary row operation yields a matrix which is at
least as diagonally dominant as the original matrix.

We use Ao to denote the n- 1 x n- 1 minor obtained by striking out row and
row j of A.
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LEMMA 4. IfA is row diagonally dominant, then

Idet A,[-<_ r(A)l det A,,[, for i# j.

Proof. One can easily verify that this holds for 2 x 2 matrices. We assume the
inequality holds for n-lx n-1 matrices and use induction. Let A be n x n and
diagonally dominant. Applying a simultaneous permutation of rows and columns, we
may move a, into the n, n position and ao into the n, 1 position. Since this permutation
similarity does not affect diagonal dominance, it suffices to show

[det A,[ _-< r,(A)[ det A[.
Gaussian elimination does not change det Ani for any 1,. , n, and by Lemma 1,
the ratios r(A) cannot increase. Hence, we may assume A is in row echelon form. Thus,

/11 a12 d13 aln

6[22 d23 a2n
A= a33 a.3

ann
is upper triangular. We have Idet A..I-lalllla221... Idn-ln-ll. Let A[1, nll,j denote
the n- 2 x n- 2 minor obtained by removing rows 1 and n and columns 1 and j from
A. Expanding det A,1 by cofactors along the first row yields

det Anl alj(--1)j det A[1, nll,j].
j=2

Notice that A[1, nll,j is obtained by removing row n and column j from All. Since
All is of size n- 1, and is diagonally dominant, the induction hypothesis tells us

[det A[1, nll,j][-< rj(A)ldet All, nil
Hence

Idet A[1, nll,j]l_-< (A)la_llal... la.-1 .-l.
Since rj(A)< 1 for each j, we see

[detAnll<=la22[la33]’’’lan-ln-ll(=21aljl)
lao-1

Thus, Idet A[_-< r,(A)l det Anl. lq

Remark. Lemma 2 tells us that if A is row diagonally dominant, then A-1 is
diagonally dominant in its column entries--i.e., each diagonal entry of A-1 dominates
the other entries in that column.

LEMMA 5. Let A be row diagonally dominant and put y(A) max {rl(A),
rE(A)," ", rn(A)}. Then (A)= A A-r is diagonally dominant and

y(tI)(A)) <_- (y(A))2

Proof. The i, j entry of A A-r is

(-1)i+a(d,e,t A,o)
det A
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Let B A A-r. Then

1
laolldet Ao[b[- [det A[ g=j=l

ji ji

<
1

Idet AI: la,lr(A)l det A,,I
ji

< 3’(A)Idet A.I laol[det A[ j=l

<= 3,(A)(r(A)la,,I)
det A.
det A

(,(A))lb,,I.
We now prove Theorem 2.

Proof of Theorem 2. Let A be an H matrix. Then AD is row diagonally dominant
for some diagonal matrix D. Since q(A) (P(AD), we may assume A itself is diagonally
dominant. Since diagonal dominance implies nonsingularity, Lemma 5 guarantees that
pk(A) is row diagonally dominant and hence nonsingular for every k.

Let A(k) ek(A) and set 3’ 3’(A). Then 0 _-< 3’ < 1 and by Lemma 5,
Now let Dk be the diagonal matrix

"’ _’k)a)’ ann
then DA() has ones on the main diagonal. Note that D merely rescales the rows of
A(), so DA() is still diagonally dominant and (DA()) (A()). t B() DA();
then b)=l for i=l,...,n and T(B())T(2). We have A(+I)=(A())
(DkA(k)) (B(k)) B(k) (B(k)) -T. Let flf) be the q entry of (B(k)) -T. Then fl(k)__ij
(-1)+(det B)/det B(k)). Since B(k) has ones on the main diagonal, while [b)l <J

2k

for #j, we see that det B(k)= 1 + ek, where limk leg[ 0. Similarly, det B)= 1 + 8k
where limklSk]=0. Hence, limkfl)=l. erefore, limka+)=l. Since

(k+l) =0. Hence limk A(k) I.limk y((k)) limk 72 =0, we have limk a 0

PART 2

5. The range of and diagonals of similar matrices. A basic question about the
map is to determine its range, both for the case where the domain consists of real,
nonsingular matrices, and for the domain of complex, nonsingular matrices. We know
that every matrix in the range of has row and column sums 1. Is the converse true,
or are there additional conditions which fuher restrict the range of ? The following
example shows that not every matrix with row and column sums 1 is the image of a
real matrix, under . The problem for the complex case is not resolved.

Example 2. Let , e2i/n and let V, denote the n x n Vandermonde matrix with
ff(,-1)-l) in position i,j. Then Vl vr= (1/ n) V (1/ n) Q,. Thus, (V,)=
(1/n)V, V, =(1/n)J,, where J, denotes the n x n, all one matrix. However, direct
calculation shows that the equation (A)=]J3 has no real solutions.

Example 2 raises the question: when does (A)=(1/n)J, have a real solution?
If H, is an n xn Hadamard matrix, then (H,)=(1/n)J,. However, a necessary
condition for a Hadamard matrix of size n to exist is that 4 divide n; it is not known
if this necessary condition is also sucient.
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Recall from the introduction, that when D=diag (hi,"" ", h.) and B=A-1DA,
we have

(bll,’", b..)r=(A)(hl, h.) .
We will show that, except when ’1 ’2 An, a necessary and sufficient condition
for (*) to hold for some nonsingular A is that

This follows immediately from the following result about diagonals of similar matrices.
THEOREM 3. Let A be an n x n matrix over a field F, with either char (F)= 0 or

char (F) >- n, and suppose A aI, i.e., A is not a scalar matrix. Let bll, bEE, b,, 6 F.
Then

bll + b22-b -t- bnn tr (A)

if and only if bll, b22,""", b,, are the diagonal entries of an n x n matrix B which is
similar to A and has entries from F.

To prove Theorem 3, we use an induction argument which requires that we first
establish the results for n- 2. Also, the cases n- 3 and n =4 involve some special
arguments which we isolate in separate lemmas. The fact that similar matrices have
the same trace establishes the "if" part of Theorem 3, so we need only prove the "only
if" half.

LEMMA 6. Theorem 3 holds for n 2.

Proof. Let A be a 2 x 2, nonscalar matrix. If A is not diagonal, at least one of the
entries alE a21 is nonzero. Assume alE 0; the other case is similar.

Let

and define

bll all

a12

Note that bll a12x -b all and b22 all -b a22-- bll a22- al2x. Direct computation then
shows that B-S-1AS has diagonal entries bll and bEE.

If A is diagonal, we have

A=
0 tz

with h /. Put

then

bll rh + (1- r)

and

b2 h +/z bll (1 r)h +
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The matrix

S=
1-r -1

is nonsingular and B S-AS has diagonal entries b and b.
LMMa 7. Theorem 3 holds for n 3.
Proof. Let A be a nonscalar, 3 x 3 matrix with entries in F. Then A has a 2 x 2

principal submatrix which is not scalar; we may assume, without loss of generality, that

A12-- ( al’ a12)
a21 a22/

is not scalar. As shown in Lemma 6, for each i, we can find a nonsingular matrix
such that R?IA1ERi has diagonal entries b, and a114-aEE-bii. Thus. for T RiO)1,
with 1, 2, 3, we have

bii
T. IATi .

,
where Ai is 2 x 2. If it is possible to choose b, so that Ai is not a scalar matrix, we
may apply Lemma 6 to Ai, and thus obtain the desired B. Note that we can adjust the
order of the diagonal entries with a permutation similarity.

If Ai AiI2, for 1, 2, 3, further analysis is needed.
If A1 A2 A3 A, then bll b22 b33-- A, and T-1AT is the desired B.
If A A2 A, but A A, then

while

Then

bll b22 tr (A) 2A

b33 tr (A)-2A3

tr (A) b + b22+ b33-" 3 tr (A) 4A -2A3.

Since char (F)# 2, this yields

tr (A) 2A + A3.
Hence, bl b22 A3 and b33--2A-A3. The desired B is then T-IAT3.

Finally, suppose A1, A2, A3 are all distinct. Each Ai must be an eigenvalue of A,
so A has the three distinct eigenvalues A1, A2, A3 and

tr (A) A1 + A+ ’3"
Since b. + 2Ai =tr (A) for each i, we have

bl -A14- A24-

b22-- A1 A24- A3,

b33 A1 4- A2-- A3.
Since Ai- 1/2(tr (A)- b.), the eigenvalues Ai are in F, and A is similar, via a similarity
over F, to

D diag (/ 1,/2,
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Now hi #/2, SO diag (/1, /2) is similar to

( bll * ).AI+AE-bll

But hi + A2-bll 2A1-A3, so A is similar to a matrix of the form

bll * 00 /2A1-A3
0 0 A

Since ’1 3, 2A1-A3 A3. Also b22+ b33-- 2A1, so

is similar to a 2 x 2 matrix with diagonal entries b22 and b33. Hence A is similar, over
F, to some B with diagonal entries bll, bEE, b33. ["]

The last special case to settle is n 4.
LEMMA 8. Theorem 3 holds for n 4.
Proof. Let A be a 4 x 4, nonscalar matrix over F. As in the proof of Lemma 7, we

can find nonsingular matrices T, for 1,. ., n, such that

T71AT
bii * * *.

Ai

where Ai is 3 x 3. If Ai is nonscalar for some i, we apply Lemma 7 to conclude that
there exists a B similar to A with diagonal entries bll,""" b44.

Otherwise, A AiI3, for each i. Then each A is an eigenvalue of A of multiplicity
at least two. There are then two possibilities. Either A1--A2--A3 A4--A, or there are
exactly two distinct A’s, say A1 and A2, and A has eigenvalues A and A2, each of
multiplicity 2.

If A1 A2 A3--A4--A, then b,=tr (A)-3A for each i. From this, it follows that
b, A for each and B T-1AT is the desired matrix.

In the remaining case, we have A A2 and

tr (A) 2A1 + 2A2.

Hence

bll =tr (A)-3A1 2A2-/1

and

b22 tr (A) 3A2 2A1 A2.

Since b33 + b44 A +/2, and since the only possible values for any b, are 2A2- A and
2A1-A2, we have (reordering if necessary),

bll b33 2A2- A1,

b22 b44 2A1 ,2-
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Since AI+A2 =1/2 (tr (A)) F and b11, b22F, wesee 3AIF and 3A2 F. Since char F#
3, the eigenvalues A1 and A2 are in F. Hence A is similar, over F, to a triangular matrix
of the form

,T=
0 0 A1
0 0 0 ’2

Since bll q-b22--b33 d-b44--A l+/2, we may apply Lemma 6 to the 2 x 2 blocks in rows
and columns 1 and 2, and rows and columns 3 and 4 to obtain a B similar to A with
diagonal entries b11, bEE, b33, b44. [-]

We can now present the proof of Theorem 3.
Proof of Theorem 3. We use induction on n. Thus, we assume the result holds for

n- 1 and let A be an n x n, nonscalar matrix. Since we have already proven the result
for n-<_ 4, we assume n _>-5. Then A has a nonscalar, 2 x 2 principal submatrix, and as
in the proof of Lemma 7, we can find nonsingular Tu for 1,. ., n, such that

TT, 1ATi

bii

Ai

where Ai is n- 1 x n- 1. If Ai is not scalar for some i, then the induction hypothesis
says there exists a nonsingular Ri, of size n-lx n-1 such that Bi= RV,IAR has
diagonal entries bll," ", b-l,-l, b+l.i+l, ", b,,. Put S T(10)R), then B S-1AS
has the required diagonal entries.

If A Aft,_1 for i= 1,. , n, then each A is an eigenvalue of A of multiplicity
at. least n-2. Since n->_ 5, the matrix A has at most one eigenvalue of multiplicity
n- 2, or greater, hence ’1 --/2 A A. Then bll bEE bnn. Since b,
tr (A)-(n 1)A, and char (F) # n 1, we must have b, A for every i. Hence TV,IAT
is the desired matrix B. D

Remark. Mirsky [8] proved that when A1 + + A, bll + + b,,, there exists
a matrix B with eigenvalues A1,. , A, and diagonal entries b11, , b,,. Theorem 3
is a stronger version of this resultmit guarantees the existence of a B which not only
has the same eigenvalues as A, but is actually similar to A.

COROLLARY 1. Suppose A 1, , A, are not all equal. Then there exists a nonsingular
matrix A such that

(bll, b,,,,)r P(A)(A1, A,,) r

if and only if

bll "" b22 + + b,,,, A + A2
q- -- AProof. Since (A) has column sums 1, necessity follows by multiplying both sides

of

(b11, b,,,,)r (A)(A1, A,,) r

on the left by the all one matrix J.
To prove sufficiency, let D=diag (A1,’’ ", A,). Then D is not a scalar matrix,

and Theorem 3 gives the result. [3
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Corollary 1 is of interest in the following context. Recall that if xl -< x2 <- -<- x,
and yl <= Y2-<- <= Y, are two sets of real numbers, then there exists a doubly stochastic
matrix P such that

P(x1, x,,) 7" (yl, y,,) 7-

if and only if the vector (Yl,""", Y,) majorizes the vector (x,..., x,)--i.e., y Xl,
Yl + Y2 >- x + x:, "Yl + Y2 + + Yi >- Xl + x2 +" + xi, , Yl + + Y,, Xl, , x,,.
Furthermore, it is known [3], [8] that there exists a Hermitian matrix with eigenvalues
A-<A2<_- -<_h, and diagonal entries hll h22 hnn if and only if
(hl, , h,,) majorizes (A,. ., h,). Since H can be diagonalized by a unitary matrix
U, this means that the doubly stochastic matrix which transforms the h’s to the h’s
can actually be chosen to be the orthostochastic matrix U U-r= U O. Horn [3]
gave the following example to show that not every doubly stochastic matrix is ortho-
stochastic.

Example 3. Let

A= 0

1

Then A is doubly stochastic, but A U U for any unitary matrix U. This raises
analogous questions about the range of . If (A) is nonnegative, then (A) must
be doubly stochastic. Furthermore, we see that the range of is "large enough" to
provide a (A) to transform (h,. ., h,) to (bl, ., b,,), (assuming the A’s are not
all equal, and A + h, b, + + b,,), just as the set of orthostochastic matrices
is "large enough" to transform x=(x,... ,x,,) into Y=(Yl,’",Y,) whenever y
majorizes x. Furthermore, the matrix of Example 2 is in the range of ; in fact it is
its own image under . Does the range of contain all doubly stochastic matrices?
If not, is there a nice characterization of those doubly stochastic matrices which are
also in the range of ?

We conclude this section with one more example. It is known that an n x n, doubly
stochastic matrix cannot have an r x s block of zeros when r + s => n + 1. The example
below shows this is not true for (A).

Example 4. Let

A= 1

0

Then

has a 2 2 block of zeros.

(A)= 1 0

1 0

6. Other problems. We briefly mention some other unsolved problems
concerning .

Problem 1. Suppose B is in the range of . Is there some nice description of
{AI(A B}, the inverse image of B? Observation 2 tells us that (A)- (DAE) for
any nonsingular, diagonal D and E. Are there conditions on (A) which would
guarantee that (A)=(C) only when C DAE? Notice that the inverse image of
the identity matrix includes all triangular matrices, so perhaps some sort ofirreducibility
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condition is needed. The example below shows that (A)= I can hold even when A
is neither triangular nor essentially triangular, i.e., of the form PTPr, where T is
triangular and P is a permutation.

Example 5. Let

1

A= i
1 0 0

1 1 1
1 1

0 1

Then (A)=/, but the graph of A shows that A is irreducible and, therefore, not
essentially triangular. (This example was suggested by a phone conversation with Ed
Bristol.)

Problem 2. In Part 1, we showed that limk_,o k(A) I when A is positive definite
symmetric or when A is an H-matrix. The totally positive matrices (i.e., real matrices
for which all of the determinantal minors are positive) are another class of interest.
We shall say A is inverse totally positive if A-1 is totally positive. The matrix A then
has the "checkerboard" sign pattern (i.e., a0 has sign (-1) i+s) and (A) also has the
checkerboard sign pattern, as does A A-. Is either of (A) or A A- inverse totally
positive? If (A) is totally positive, does the sequence of iterates dk(A) converge to I ?

Problem 3. When do the iterates dk(A) converge, or else terminate with a singular
matrix? When does the sequence k(A) converge to a permutation matrix? If B PAQ,
where P and Q are permutation matrices, we say A and B are permutation equivalent.
Since (B)= P(A)Q, Theorems 1 and 2 tell us that whenever B is permutation
equivalent to either an H-matrix, or a positive definite symmetric matrix, the iterates
k(B) converge to a permutation. Is there some weaker type of diagonal dominance

which will guarantee convergence to a permutation?

7. Fixed points of (1). Suppose limk_, (I)k(A) R. Then R is a fixed point of
(I)--i.e., (I)(R)- R. The most obvious fixed points of (I) are the permutations. However,
there are others, and we shall see by an example that fixed points can be more
complicated than one might first guess. We do not have a complete description of the
fixed points of (I), but mention some properties and exhibit examples.

PROPOSITION 2. Let P and Q be permutation matrices. Then
1) O(P)= P.
2) If P+ Q is nonsingular,

(P(1/2(P + Q)) =1/2(P + Q).

Furthermore, for 0 <- a <- 1, the iterates dPk(ap + (1-- a)Q) converge to P when
t > 1/2 and to Q when t < 1/2.

Proof. We have already observed (1). Since (1/2(P+Q))=PtP(1/2(I+P-Q)), it
suffices to prove (2) for P I.

Let Cr denote the r x r circulant matrix

0 1 0 0

0 0 1 0

0 0 0 101 0 0

The matrix Cr represents an r-cycle. Since any permutation may be expressed as a
product of disjoint cycles, any permutation matrix may be reduced, via a permutation
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similarity, to a direct sum of cycles. Thus, it suffices to consider q(I + C,). The matrix
I + C, is nonsingular if and only if r is odd, in which case

(I / C,)-1 1/2(I C, / C2 C + Crr-2 + C-).

Using Cf C-1= Crr-l, one easily computes

q(1/2(I / C,))=1/2(Io I + C, C,) =1/2(I +

Similarly, computing cbk(ap+(1-a)Q) reduces to the problem of finding
k(aI+(1--a)C,). For r odd, and/3 #-1,

1
(I + Cr)-1

1 + fir
(I- C,+ 2C2 r-Ecr-2/ r-1 cr-1).

We have

1
c(I + tiC,)

l"+ fl"
(I + fl’C,).

For positive integers k,

1
(I +k(I+ ,SCr)

1 + flr’> Cr).

For a # 0,

c(aI +(1 a)C,) =q)(I + tiC),

where/3 (1 a)/a. When 0 < a < 1/2, we have/3 > 1; when 1/2 < a -< 1, we have 0 -</3 < 1.
Hence,

lim k(aI+(1--a)C,)
k-oo

is Cwhen0<=a<1/2andlwhen1/2<a<=l. [3

Remark. Theorem 2 and Observation 4 tell us that ifA is "close" to the permutation
P (i.e., lao-pol<e for suitably small e), then {k(A)} converges to P. Notice this
behavior does not hold near the fixed point 1/2 (P + Q)--the nearby points aP+ 1 a Q,
where a is close to 1/2, determine sequences k(aP+(1-a)Q) which converge either
to P (for a > 1/2) or Q (for a < 1/2), but not to 1/2(P + Q).

Let J denote the all one matrix. Direct computation shows that if J is n x n, the
matrix (1/(n-1))(J- I) is a fixed point of . This is a special case of a more general
result.

PROPOSITION 3. The matrix A is a fixed point of d ifand only if (J-A-r)/(n 1)
is a fixed point.

Proof. The proof relies on the following formula. Let A be an n x n invertible
matrix. Let u and v be n x 1 column vectors and suppose 1 + u rA-rv # O. Then

(A+uvr)-=A-1- (A-lu)(A-Tv)
l +urA-rv

For A nonsingular, define

f(A)
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Let e denote the all one vector; then J ee T. Suppose (A)= A. Then A has row and
column sums 1; hence Ae Are e and erA erAt e r. Using the formula above,

eeT J
(A-1 J)- A+ A+.1-eTe 1-n

Thus,

cyp(f(A)) (J-A-r) (J- A-r) (j- A-r)-r

=(j-A-r)o(j-A-’)-’

=(A-T-J) A+I_ n

A-T J
A-T A-A-

1-n 1-n

Since A is a fixed point, A-T A=A and (f(A))=(A-r-J)/(l-n)=f(A). Now,
when A is a fixed point, f2(A)= A. Hence, A is a fixed point if and only if f(A)=
(J-A-r)/(n- 1) is a fixed point, and the map f acts as an involution on the set of
fixed points.

Remark Since (AT) ((A)) T, we see that A is a fixed point if and only if AT
is a fixed point. Thus, if any one of the four matrices A, Ar, (J-A-T)/(n-1),
(J-A-)/(n- 1) is a fixed point, so are the other three.

We collect together some elementary properties of fixed points in Proposition 4.
PROPOSIrION 4. Let A (aij) be a fixed point and let A-T= (ao). Then A has the

following properties.
1) A has row and column sums 1.
A-T has row and column sums 1.

2) If a; O, then 1, or det A; (-1)+;(det A).
3) ;Every row and column ofA has at least one zero entry.
4) At least one ofthe two matrices A and (J--A-T)/(n 1) has at least n2/2 zeros.
5) IfA is permutation equivalent to a block triangular matrix (no st), with R ofsize

k, T of size n- k, and an n- k x k block of zeros, O, then S O, and so A is
permutation equivalent to R S.

6) Let denote the subset of {1,..., n} corresponding to the positions of the
nonzero entries in row of A. Then for any #j. The same holds for
columns ofA.

Proof. 1) and 2) follow immediately from A A-T A.
If ai; # 0, then ai; 1 and the ij entry of J- A-T is zero. This observation, together

with Proposition 3, yields statements (3) and (4).
Statement (5) is apparent from

0 T 0 T-
To establish statement (6), suppose c_c_ ; for some # j. Without loss of general-

ity, assume 1___N2. By reordering the columns of A, we may assume N=
{1,2, 3,. ., k} and 2={1,2," ., k, k+l,. ., k+r}. But then (2) tells us row 1 of
A-T has l’s in positions 1 through k, while row 2 of A-T has l’s in positions 1 through
k + r. Since A has row sums 1, this forces the inner product of row 1 of A with row 2
of A-T to be 1, which is impossible. Hence N : N;.
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The observations made in Proposition 4 enable us to completely determine the
fixed points of when n _-< 4.

PROPOSITION 5. 1) The only 2 x 2 fixed points are

(10 (01 10).
2) Every 3 x 3 fixed point is either a permutation or an average of two permutations,

1/2( P + Q), where P + Q is invertible.
3) IfA is a real 4 x 4 fixed point, then either A or J A-r / n 1) is permutation

equivalent to a direct sum offixed points of smaller order. IfA is not real, but is a 4 x 4
fixed point, then either A or (J- A-r)/(n- 1) is permutation equivalent to the matrix

(1)l+w
(I

1

+ toC4)=
1 +

or (1/(1-t3))(I + C4), where w ei/3.

w 0 0

0 1

0 0

Proof. The case n 2 follows immediately from statement (3) of Proposition 4
and Observation 2.

Suppose n 3 and A is a fixed point which is not a permutation. A cannot be
permutation equivalent to a direct sum, for such a matrix would be a permutation.
Therefore, every row and column of A has exactly two nonzero entries. Without loss
of generality, we assume the zeros are on the main diagonal. Then (J-A-r)/2 is a
diagonal matrix; hence (J-A-r)/2 I. Thus,

A-r=J-2I and A
l il

Now let n =4. Suppose neither A nor (J-A-r)/3 is permutation equivalent to
a direct sum. Then every row and column of A must have exactly two zero entries.
Permutating rows and columns of A, we may assume every diagonal entry is nonzero.
Then, after simultaneous row and column permutations (which preserve the main
diagonal) and using the fact that A is not equivalent to a direct sum, we have

a 1-a 0 0
0 a 1-a 0
0 0 a 1-
-a 0 0 a

Thus, A= aI + (1- a)C4. Now when I1- al, we know the sequence dpk(A)conver-
ges to I when Il> I1- 1 and to C, when I1- al> lal. If lal I1- cl, and a is real,
a =1/2. But I+C4 is singular. Hence, if A is a real fixed point, either A or (J--A-T)/3
must be a permutation equivalent to a direct sum.

If we permit complex values for a, then I1-11-1 implies 1-ot=eiot or
a 1/(1 +ei) for some 0 < 0-< 27r. Note 0 r. Then A (1/(1 +ei))(I+eiC4). Now,
for e4i 1, the matrix I + eC, is nonsingular, and

l + eiC4)-
1

1 e4i
(I e’C4+ e2’C e3’C34).
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Thus,

d(A) d(I + eiC4)
1 e4i

(I e4iC4).

To have (A)= A, we must have ei= -e4i. Hence e3i= -1, and e is a primitive
sixth root of 1. Thus, 0 r/3 or -r/3. Let to e(’’/3)i. Then to4=-to and

1
(I + toC4) (I + toC4).

l+to

Thus, (1/(l+to))(I+toC4) is a fixed point, as is (1/(1+))(I+C4). [3

Thus, we see that for n _<-4, the fixed points are severely restricted; in fact there
are only a finite number of them. Furthermore, when n <_-4, the real fixed points are
nonnegative and hence doubly stochastic. The example below shows that when n _-> 5,
there are infinitely many fixed points, and the real ones need not be stochastic.

Example 6. Let a be any real or complex number. Put

1 1 0 0 0

1 0 1 0 0
1

A= 0 a 1-a 1 0

0 1-a a 0 1

0 0 0 1 1

Then

1 1 -1 1-2a 2a-1

1 -1 1 2a-1 1-2a

_1 1 1 1 -1

1 1 1 -1 1

1 -1 -1 1 1

The matrix A satisfies (A)= A, regardless of the value of a. Note that if a =0 or
a 1, A is an average of two permutations.
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