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BICYCLES AND SPANNING TREES*

KENNETH A. BERMANY

Abstract. Let G be a connected multigraph and let (A, +, 0) be any Abelian group. For k an integer,
let A(k) denote the subgroup of A given by A(k)={ae A|ka=0}. A bicycle over A is a cycle over A that
is also a cocycle. The set B(A) of bicycles over A determines a group. In this paper we show that the
spanning tree number ¢t of G has a unique factorization ¢t =t,t, - - - t,, such that ¢; is a multiple of ¢,
i=1,2,--+, m—1and such that for every Abelian group A the group B(A) of bicycles over A is isomorphic
to A(t) X A(t,) X+ - - X A(t,,). Using this result we obtain a number of results on the spanning tree number
including two formulae for the spanning tree number.

1. Introduction and definitions. Let G be a connected multigraph with vertex set
V and edge set E. All multigraphs considered in this paper will be without loops. A
tree of G is a connected subgraph that has no circuits. A tree may consist of a single
vertex. A spanning tree is a tree that spans the vertices. Throughout this paper ¢ will
denote the number of spanning trees.

Let (A, +,0) be an Abelian group. A weighting of the vertices over A is a mapping
f from V into A. For ve V, we will refer to f(v) as the weight of f on v. Let Wy (A)
denote the set of vertex weightings over A. The set Wy, (A) determines a group where
addition is given by

(1.1) (fit£2)(v) = fi(v) +£>(v)

for f,, f€ Wy(A) and v € V. Analogously, we have a group Wi (A) of edge weightings
over A.

Now consider a commutative ring (R, +, -, 0, 1). (Note that (R, +, 0) is an Abelian
group.) The set Wy, (R) of vertex weightings over R determines a module over R where
group addition is given by (1.1) and scalar multiplication is given by

(1.2) (M)(v) = A(f(v))

A€R, fe Wy(R) and v e V. Analogously, we have a module Wg(R) of edge weightings
over R If F is a field then the set Wy (F) of vertex weightings over F and the set
We (F) of edge weightings over F determine vector spaces over F.

Orient the edges of G arbitrarily. For ve V, let N*(v) and N~ (v) denote the set
of edges having head v and tail v, respectively. A cycle over A is a weighting ¢ of the
edges such that for each vertex ve V
(13) T de)= T ).

ete NT(v) e eN (v)
The set C(A) of cycles over A is a subgroup of Wg(A).

For ec E let h(e) and t(e) denote the head and tail of edge e, respectively. The

coboundary operator 6 is the mapping from Wy (A) to Wz(A) given by

(1.4) 3f(e) =f(h(e))—f(t(e))

for fe Wy(A) and e€ E. A coboundary or cocycle over A is a weighting y of the edges
such that y = 8f for some fe Wy (A). The set Y(A) of cocycles over A is a subgroup
of Wg(A).

Note that if we reverse the direction of an edge e and replace the weight on e
with negative that weight then a cycle remains a cycle and a cocycle remains a cocycle.
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2 KENNETH A. BERMAN

Thus, in this sense, the definition of a cycle and a cocycle is independent of the
orientation chosen. Cycles and cocycles are studied in electrical network theory [4].
Tutte [11] studied cycles and cocycles over the integers mod k in connection with face
k-colorings of a plane graph and vertex k-colorings of a general graph.

A bicycle over A is an edge weighting over A that is both a cycle and a cocycle.
The group B(A) of bicycles over A is the intersection group of the cycle and cocycle
groups over A, i.e., B(A) = C(A)N Y(A). Bicycles, particularly over the field of integers
mod 2, have been studied by a number of authors. See [3], [6], [7], [8], [9].

For k an integer, let A(k) denote the subgroup of A givenby A(k)={a e A|ka =0}.
In § 2, we show that the spanning tree number ¢ of G has a unique factorization
t=tt, - - t, such that ¢ is a multiple of #.,, i=1,2,---, m—1 and such that for
every Abelian group A the group B(A) of bicycles over A is isomorphic to the direct
product group A(t,) X A(t,)X- - - X A(t,,). We call the factorization ¢t = t,¢,- - - t,, the
principal factorization of t. This result has various implications. One immediate implica-
tion is the following existence theorem. There exists a nonzero bicycle over an Abelian
group A if and only if A contains a nontrivial subgroup whose order divides the
spanning tree number. The latter result generalizes an existence theorem of Shank (see
[6]) on bicycles over a field.

In § 3, we obtain a formula for the factors in a principal factorization. In § 4, we
show that a planar graph and its dual is an example of a pair of graphs that have the
same spanning tree number with the same principal factorization.

Let Z, denote the ring of integers modulo k. We will refer to a bicycle over Z,;
as a k-bicycle. For convenience, we denote the module of k-bicycles by B(k), i.e.,
B(k)= B(Z,). In § 5, we show that the number B(k) of k-bicycles is given by

(1.5) B(k)= l;[l g.cd.(k t;)

where t=t,t, - - t,, is the principal factorization of the spanning tree number ¢ and
where g.c.d. (x, y) denotes the greatest common divisor of the integers x and y. As an
immediate corollary of this we have B(k) divides ¢ for all k=2 and B(k)=tif kisa
multiple of & We use this to prove a number of divisibility results on the spanning
tree number.

A k-bicycle b is reducible if the weight of b on each edge is divisible by d where
d is a noninvertible element of the ring Z,. Otherwise b is irreducible. Let y(k) denote
the number of irreducible k-bicycles and set y(1)=1. In § 6, we show that if there
exists an irreducible k-bicycle then k is a divisor of ¢ Further, the total number of
irreducible k-bicycles over all the positive integers k equals the spanning tree number,
ie.,

(1.6) t=§1 (k).

Let p be a positive prime number and i a positive integer. The set pB( p)=
{pb|be B(p')} is a submodule of B(p'). Consider the quotient module

B(p")

pB(p')’

That is, B(p’) consists of congruence classes of elements from B(p‘) where two
p'-bicycles b, and b, are congruent if b, — b, = pb, for some p'-bicycle b,. The quotient
module B(p') is a vector space over the field of integers mod p. We will refer to B(p')
as the quotient p'-bicycle space. Let p(p') denote the dimension of B(p’). In § 7, we

(1.7) B(p)=
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show that the prime factorization of the spanning tree number ¢ is given by

(1.8) =11 pp(p)+p(p2)+p(p3)+~~
peP
where ? denotes the set of positive prime numbers.
In § 8, we employ the above result to strengthen a theorem of Shank [8] on
left-right paths and spanning trees in planar graphs.

2. Characterization theorem. Let G be a connected multigraph with vertex set
V={v,, v, -, v,} and edge set E. Let (A, +, 0) be an Abelian group. In this section,
we characterize the group B(A) of bicycles over A.

Before stating the main theorem we discuss some preliminary results. For ve 'V,
let N(v) denote the set of edges incident with vertex v and let d(v) denote the degree
of vertex v. For ee N(v), let v, denote the end vertex of edge e different from v. A
weighting f of the vertices over A is balanced if for every vertex v

(2.1) d(v)f(v)= L )f(ve)-

ee N(v

Let L(A) denote the set of balanced vertex weightings over A. Then, L(A) is a subgroup
of Wy (A). A vertex weighting is constant if the weight on every vertex is the same.
Clearly a constant vertex weighting is balanced. The following proposition is a joint
result (unpublished) of the author and H. Shank.

PrOPOSITION 2.1. The coboundary operator & is a surjective homomorphism from
the group L(A) of balanced vertex weightings over A to the group B(A) of bicycles over
A whose kernel is the group of constant weightings over A.

Proof. Itisimmediate that the kernel of & is the group of constant vertex weightings.
Let fe Wy (A). We wish to show that g=3§f is a cycle iff f is a balanced vertex
weighting. Now g is a cycle iff for every vertex v

Y, gleh= ¥ )g(e")

ete Nt (v) e eN(
. §+( )(f(h(e*))—-f(t(e*)))= . %_( )(f(h(e"))—f(t(e")))

& ¥ flh(eN+ %ﬂ( )f(t(e"))= ) g_( )f(h(e'))+e+e§+( )f(t(e+))

ete N+(v)

ed(0)f(v)= L flv).
ee N(v)
The last equation is true iff f is a balanced vertex weighting.
COROLLARY 2.2. The group L(A) of balanced vertex weightings is isomorphic to the
direct product of A and the group B(A) of bicycles over A, i.e.,

(2.2) L(A)=A X B(A).

The Kirchhoff matrix K= (k;) is the n X n matrix such that k; = (degree of vertex
v;) for ie{1,2,- -, n} and k; = —(the number of edges joining vertices v; and v;) for
i,je{l,2,---,n}, i#j (k;=0 if there are no edges joining v; and v;). Let K[i:j] be
the matrix obtained from the Kirchhoff matrix K by stroking out the ith row and the
Jjth column and let det K[i:j] denote the determinant of K[i:j]. The ij-cofactor C; of
the Kirchhoff matrix is given by C;=—1"" detK[i:j]. The following theorem is a
classical result known as the matrix-tree theorem.

MATRIX-TREE THEOREM The spanning tree number t of G is equal to any cofactor
of the Kirchhoff matrix, i.e. Vi,je{1,2, -, n}

t=(-1)"* det K[i:j].



4 KENNETH A. BERMAN

For references the matrix-tree theorem see [1], [4], [10].

Let M =(m;) be an n Xn integer matrix. For A an Abelian group let A" be the
group obtained by taking the direct product of A with itself n times. Let H(M, A)
denote the set of all x =(x;, x,," - -, x,,) € A" satisfying the homogeneous equations

(2.3) § m;x; =0 (i=1,2,---,n).
j=1

We will represent these equations in matrix notation by
(2.4) Mx'=0, xe A"

(x' denotes the transpose of x). Clearly, H(M, A) is a subgroup of A". For x=
(%, X5, * * +, X,) € A" let X denote the vertex weighting over A such that £(v;)=x;
i=1,2,---,n

ProrosiTiON 2.3. Let K be the Kirchhoff matrix. Then the group L(A) of balanced
vertex weightings is isomorphic to the group H(K, A), i.e.,

(2.5) L(A)=H(K, A).

Proof. 1t is immediate from the definitions of a balanced vertex weighting and
the Kirchhoff matrix that Kx’ =0 if and only if £ is a balanced vertex weighting.

We are now ready to state the main theorem. For k an integer, let A(k) denote
the subgroup of A given by A(k)={aec A|ka=0}.

THEOREM 2.4. Let G be a connected multigraph with spanning tree number t. Then
t has a unique factorization t=tt,- - - t,, such that t; is a multiple of t.,, i=
1,2, -+, m—1 and such that for every Abelian group A the group B(A) of bicycles over
A is isomorphic to the direct product group A(t,) X A(t,) X- -+ X A(t,), ie.,

(2.6) B(A)=A(t;)) XA(ty) X+ - - X A(t,,).

Proof. We prove the theorem with the aid of two lemmas. Let M = (m;) be any
n X n integer matrix. By a classical result (see [5]) there exist invertible n X n integer
matrices P and Q (i.e., detP=+1 and detQ==1) and a diagonal matrix D=
diag (d,, d,, - - -, d,) of nonnegative integers such that d; divides d;,,, i=1,2,- -+, n
(by convention 0 divides 0) and such that

2.7) M=PDQ.
The integers d,, d,, - - -, d, are the invariant factors of M.
LEMMA 2.5. Let M be an n X n integer matrix and let d,, d,, - - - , d, be the nonzero

invariant factors of M such that d; divides d;.,, i=1,2,---,r—1. Then
(2.8) H(M, A)=A""XA(d,) X A(d,) X+ - - X A(d,).

Proof. For xe A" let x'=Qx".
Now

Mx'=0 & (PDQ)x'=0 < Dx'=0.

The last step follows since P is invertible. Since Q is invertible it follows that H(M, A)
and H(D, A) are isomorphic groups. It is immediate that H(D, A) = A(d,) X A(d,) X
<+ +XA(d,)=A(d,) X A(d,) X+ - - X A(d,) X A"™". This proves the lemma.

LEMMA 2.6. Let x,, x,, - * *, X, be positive integers greater than 1 such that x; is a
multiple of x4, i=1,2,- -+, r—1 and let y,, y,,- - -, y, be positive integers greater than
1 such that y; is a multiple of y;\,, i=1,2,---,s—1. For A an Abelian group set
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X(A)=A(x;) XA(x;) X+ XA(x,) and Y(A)=A(y,)XA(y,;) X+ xXA(y;). Then
X(A)=Y(A) for every Abelian group A iff r=sand x;=y;, i=1,2,- -, r(=s).

Proof. If r=5s and x;=y, i=1,2,---,r then trivially X(A)= Y(A) for every
Abelian group A. Conversely, suppose that X (A) = Y(A) for every Abelian group A.
Assume that x; # y; for some index i. We show that a contradiction arises. Let p be a
prime that divides x,. Then p divides x; for all i <r since x; is a multiple of x, for all
i <r. Consider the group Z, of integers mod p. Clearly the order of X(Z,) equals p".
The prime p must divide y, since otherwise we would have that the order of Y(Z,)
equals 1 contradicting that fact that X (Z,) = Y(Z,). It follows that the order of Y(Z,)
equals p°. Since the order of X(Z,) must equal the order of Y(Z,) we have that r=s.
Now let j be the highest index such that x; # y, i.e., x; = y; for i > j and x; # y;. Assume
without loss of generality that x; >y, Then there must exist a prime g such that the
exponent ¢ of the highest power of g that divides x; is strictly greater than the exponent
¢’ of the highest power of g that divides y; Consider the group Z,- of the integers
mod g°. It is easily shown that if A is the group Z, of integers mod I then the order
of A(k) equals the greatest common divisor of k and I Thus it follows that the order
of X(Z,) equals [[;_, g.c.d. (x;, ¢°) and the order of Y(Z,) equals [];_, g.c.d. (y; 4°).
Now

g.cd.(x,9°)=q°>q"" =g.cd. (y, 94°).

Since x; is a multiple of x; for i <j

g.cd. (x,q°)=q°=g.cd. (y,q°) fori<j.

Since by assumption x; = y; for i>j we have

g.cd. (x,q°)=gcd.(y,q°) fori>j

Combining these inequalities we have

IX(Z,)| = H g.cd. (x,q°)> I;[l g.c.d. (¥, ¢°) =|Y(Zg)|

i=1
contradicting the fact that X(Z,) = Y(Z,). This proves the lemma.

We now prove Theorem 2.4. Let dy, d,, - - -, d, be the invariant factors of the
Kirchhoff matrix K. Since det K=0 it follows that d, =0. By the matrix-tree theorem
all the (first-order) cofactors equal the spanning tree number t. This implies that
t=d,d,- - - d,_,. Employing Proposition 2.3 and Lemma 2.5 we have that

L(A)=H(K,A)=AXA(d)) X" - xA(d,_,),
and by Corollary 2.2 we have that
B(A)=A(d,) XA(d,) X+ - xA(d,_,).

Now set t;=d,_, i=1,2,---,n—1 and let m be the largest index such that ¢; # 1.
Then t=1t,t,- - - t,, and ¢; is a multiple of ¢4, i=1,2,---, m—1. Also

B(A)=A(t,)) XA(t,) X+ - - X A(t,,).

The fact that the factorization t=1tt, - -t, is determined uniquely follows from
Lemma 2.6.

This completes the proof of the theorem.

We will call the factorization t = t,t, - - - t,, the principal factorization of t.

COROLLARY 2.7. Let G be a connected multigraph with spanning tree number t.
Then there exists a bicycle over an Abelian group A iff A contains a nontrivial, finite
subgroup whose order divides t.
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Proof. First suppose there exists a nonzero bicycle over A, i.e., B(A) is nontrivial.
Since B(A) = A(t,) X A(t,) X+ + - X A(t,,) where t;is amultiple of #;,,,i=1,2,- - -, m—1
it follows that A(t,) is nontrivial. Let a € A(t,), a # 0. By definition t,a =0. Hence the
order of the cyclic subgroup C of A generated by the element a divides t,. Since t,
divides t, the order of C divides t.

Conversely suppose A contains a finite subgroup S whose order divides ¢ Let
ac8, a#0. Then ta =0 or equivalent (¢, - - - t,,)a =0. This implies that either t,,a =0
or there exists a j, 1=j<m such that t;(¢;,, - tna)=0 and a'=t; 4, - t,a#0.
If the former case is true then A(t,,) is nontrivial since it contains the nonzero element
a, and if the latter case is true then A(#) is nontrivial since it contains the nonzero
element a’. In either case Theorem 2.4 implies that B(A) is nontrivial. Hence there
exists a nonzero bicycle over A.

Corollary 2.6 generalizes the following result of Shank (see [6]).

CoROLLARY 2.8 (Shank). Let G be a connected multigraph having spanning tree
number t. Then there exists a bicycle over a field F iff the characteristic of F is nonzero
and divides t.

Proof. Let p denote the characteristic of F. If p =0 then F cannot contain a finite
additive subgroup other than the trivial subgroup and hence by Corollary 2.6 there is
no bicycle over F. Suppose p # 0 and p divides t. Clearly p is the order of the subfield
(subgroup) generated by the multiplicative identity. By Corollary 2.6 this implies that
there exists a bicycle over F. Conversely suppose there exists a bicycle over F. Then
by Corollary 2.6 F contains a nontrivial additive subgroup whose order divides ¢ But
the characteristic p divides the order of any additive subgroup of F. Hence p divides
t.

The special case of Corollary 2.7 when p =2 was discovered independently by
Chen [3].

3. Formula for the factors in a principal factorization. Assign a linear ordering <
to the vertex set V of the multigraph G. For k a positive integer let ¥} denote the
collection of all sets of k vertices. Consider any two sets R={r,, r,,- -, r.} and
S={sy, 8, -, 5} from ¥, where r;<r; and s; <s; for i <j. Let P, denote the set of
all permutations of {1, 2, - - -, k} and suppose o € P,. An (R, S, o)-forest is a set of k
vertex disjoint trees Ty, T>, - - -, T, whose union spans the vertices of G such that tree
T; contains the vertices r; and s,;); i=1,2,- - -, k Let f,(R, S) denote the number of
(R, S, o)-forests and set
3.1) fi(R,S)= Y signaf,(R,S).

oePy

Now let f; denote the greatest common divisor of f; (R, S) over all sets R, Se€ ¥, i.e.,
3.2) fi=g.c.d. {fi(R, S)|R, Se ¥}

THEOREM 3.1. Let G be a connected multigraph on n vertices whose spanning tree
number t has principal factorization t = t,t, - - - t,,. Set t;, = 1 for k> m and let f, be defined
by (3.2). Then

e
Y fied
Proof. Letd,, d,,- - -, d,_, be the nonzero invariant factors of the Kirchhoff matrix

K. Then t;=d,_, i=1,2, - ++,n—1. Let A; denote the greatest common divisor over
all the minors of K of size i. Set A;= 1. Then by a result in [5] we have d;=A;/A,_,,

(33)
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i=1,2,---,n~1. Thus

An—i

4 ti = ’
(3 ) An—i—l

i=1,2,---,n—-1.

For R, S€ ¥; let K[R:S] be the submatrix obtained from the Kirchhoff matrix by
stroking out the rows corresponding to the vertices in R and the columns corresponding
to the vertices in S. Then by the all minors matrix-tree theorem (This is a stronger
version of the matrix-tree theorem which gives a formula in terms of spanning forests
for the minors of the Kirchhoff matrix. See [2].) we have

(3.5) f(R, S)=+xdetK[R: S].

(The actual sign preceding det K[R: S] is given in [2] but we omit it here since it is
not needed in our proof.) This implies that

(3.6) fi=A,_, i=1,2,---,n—1.

Equation (3.3) of Theorem 3.1 follows from (3.4) and (3.6).

An R-forest is an (R, R, o)-forest where o is the identity permutation.

COROLLARY 3.2. Let F be a connected multigraph whose spanning tree number t
has principal factorization t=t,t,- - - t,.. Then for any set R of k vertices, k=m, the
number fr of R-forests is divisible by titiy * - * tp.

Proof. Observe that f,(R, R)=0 unless o is the identity permutation in which
case f,(R, R)=fg. This implies that f; (R, R) = fz. It follows from the definition of f;
that f, divides fi(R, R). Now fi = (fi/fir1) (fir1/fir2) * - - (fu=a/f2) since fo=1 (f, =
fv =1 since there is only one forest having n trees, namely the forest such that each
tree is a vertex of G). Therefore by Theorem 3.1 we have that f;, = tit,., - - - t,,. Hence
bl - - -ty divides fr as stated in the corollary.

4. Graphs with the same principal factorization of ¢. It is easy to find examples of
graphs that have the same spanning tree number but different principal factorizations.
For example the complete graph on 4 vertices, the graph consisting of a circuit of
length 16 and the graph on 7 vertices consisting of two circuits of length 4 having
exactly one vertex in common each have 16 spanning trees with principal factorizations
16=8-2,16=16 and 16 =4 - 4 respectively.

The following proposition gives natural examples of pairs of graphs having the
same spanning tree number with the same principal factorization.

PROPOSITION 4.1. A planar graph G and its dual G* have the same spanning tree
number with the same principal factorization.

Proof. Embed G in the plane. To obtain dual graph G* from G we place a vertex
in every face of G and join two vertices u and v of G? with an edge e’ whenever the
face f, of G containing vertex u and the face f, of G containing vertex v share a
common edge e. Now orient the edges of G at random. Assume without loss of
generality that the face f, is on the left and the face f, is on the right when travelling
along edge e in the assigned direction. Orient edge e’ of G so that it is directed from
u to v. Now let A be any Abelian group and let f be an edge weighting of G over A.
Consider the edge weighting f' of G* given by f'(e') = f(e), ec E(G). It is a simple
exercise to show that f is a bicycle of G if and only if f' is a bicycle of G It follows
that the group Bs(A) of bicycles over A in G and the group Bg4(A) of bicycles over
A in G* are isomorphic for every Abelian group A. Therefore, by Theorem 2.4, G
and G have the same spanning tree number with the same principal factorization.
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5. Module of k-bicycles and divisibility results on the spanning tree number. Let G
be a connected multigraph and let B(K) denote the module of k-bicycles (i.e., the
module of bicycles over the ring Z, of integers mod k).

THEOREM 5.1. Let G be a connected multigraph with spanning tree number t having
principal factorization t = tyt, - - - t,,. Then the number B(k) of k-bicycles is given by

(5.1) Bl =11 ge.d. (k 1.

Proof. Let A=1Z,. It is easily verified that for I an integer |A(l)| = g.c.d. (k, I). By
Theorem 2.4 we have that

B(A)= A(t;)) X A(t,) X+ - - X A(t,,).
Hence
B(k)=|B(A)|=|A(t)| |A(L)] - - - |A(tm)]

=11 ged. (k ).
i=1

This proves the theorem.

The following corollary is immediate.

COROLLARY 5.2. The number B(k) of k-bicycles divides the spanning tree number
t for all k= 2. Further if k is a multiple of t then B(k)=t.

COROLLARY 5.3. For any k=2, the cardinality of any submodule M of the module
B(k) of k-bicycles divides the spanning tree number t.

Proof. By Lagrange’s theorem the order (cardinality) of any subgroup of a finite
group divides the order of that group. Since a module is an additive group it follows
that the cardinality of any submodule of a finite module divides the cardinality of that
module. Hence the cardinality of a submodule M of B(k) divides B(k)=|B(k)|. But
B(k) divides t by Corollary 5.2.

Corollary 5.3 is useful in obtaining divisibility results on the spanning tree number
as will be demonstrated in the proofs of the following three theorems.

A graph G is strict if it has no multiple edges. The complement graph G° of G
is the graph whose edges join precisely those pairs of vertices not joined in G.

THEOREM 5.4. Let G be a strict graph on n vertices whose complement graph G° is
disconnected have k connected components. Then the spanning tree number of G is divisible
by n*72,

Proof. Let Hy, H,, - - -, H, be the « connected components of G° and let U; be
the vertices of G that belong to H;, i€ {1, 2, - -, k}. Let n; denote the cardinality of
U, ie{l1,2, -+, «}. Then n=n,+n,+- - -+ n,. Consider a vertex n-weighting f of G
such that f(v)=x; for all ve U, i€{1,2, -, k} where x;€Z, and

(5.2) nx;+nx,+ - o+ mx =0.

Then f is a balanced n-weighting since equation (5.2) implies that, for each ie
{l’ 2’ Tt ’ }’

(5.3) (n=n)x;=nx;+- -+ X F 0 X+t

and a vertex v e U, has weight x; and is joined to n; vertices having weight x; (i.e., the
vertices in U;) i,j={1,2,---,k}, i#j. Let M denote the submodule of L(n) (the
module of balanced vertex n-weightings) consisting of all balanced vertex n-weightings
f obtained in this fashion. Let M’ denote the submodule of B(n) consisting of the
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n-bicycles {8f|fe M}. Clearly |M|= n|M’|. Now |M]| is divisible by n*~! because any
solution of (5.2) can be obtained by choosing x,, x, - - +, x,, arbitrarily and solving for
x;. Hence n*? divides |M'|. By Corollary 5.3 we have that n*~2 divides .

THEOREM 5.5. Let G be a multigraph on n vertices whose edges can be partitioned
into q cliques, q <n, such that the size of each clique is a multiple of r for some integer
r=2. Then the spanning tree number t of G is divisible by r" 47"

Proof. Let Q;, Q,, - * -, Q, be the g cliques of G and let V={v,, v, -, v,} be
the vertex set of G. Let C=(c;),x» be the vertex-clique incidence matrix, i.e.,

(5.4) . _{1, v; belongs to clique Q,
) Y 10, v, does not belong to clique Q.

Consider the module H(C, Z,), i.e., H(C,Z,)={xe€ Z}|Cx'=0}. Since C is a g Xn
matrix it follows that r"~? divides |H(C, Z,)|. Let x =(x;, x5, * - * , X,,) be an element
from H(C, Z,) and consider the vertex r-weighting f such that f(v;) = x; for all vertices
v;e V. It is easily verified that f is a balanced vertex r-weighting. The set M of all
balanced vertex r-weightings f obtained in this way is a submodule of L(r), the module
of all balanced vertex r-weightings. Let M’ denote the submodule of the module B(r)
of r-bicycles given by M'={8f|fe M}. Then |[M'|=1/r|M|=1/r|H(C, Z,)|. Therefore
r"~47! divides |M'|. By Corollary 5.3 we have that r"~ 97" divides t.

The line graph L(G) of a graph G is obtained by associating a vertex of L(G)
with each edge of G and joining two vertices of L(G) whenever the corresponding
edges of G are incident. An r-regular graph is a graph in which every vertex has degree
r.

COROLLARY 5.6. Let G be an r-regular graph on n edges having line graph L(G).
Then the spanning tree number of L(G) is divisible by r"~2/""=1,

Proof. Since G is r-regular and has n-edges it has 2n/r vertices. This implies that
L(G) has n vertices whose edges can be partitioned into 2n/r cliques each of size r.
Corollary 5.6 can now be immediately induced from Theorem 5.5.

Let G be a connected multigraph with vertices v, v,, - - *, v, and let I; denote
the number of edges linking vertices v; and v;; i,je{1,2,- - -, n}. We will say that a
multigraph H is divisible by G if the vertices of H can be partitioned into n classes
U, U,,- -, U, such that for i,je{1,2,- -, n} a vertex v in U; either (1) is joined
only to vertices in U; or (2) for every j # i is joined to exactly A; vertices of U; (and
any number of vertices in U;).

THEOREM 5.7. If a connected multigraph H is divisible by a connected multigraph
G then the spanning tree number ty of H is divisible by the spanning tree number tg of G.

Proof. Let L;(H) denote the set of edges in H having one end vertex in U; and
the other in Uj; i,j€{1,2, - - -, n}. For e L;(H), i #j, let € be any edge of G linking
vertices v; and v, Now orient the edges of G such that all the edges joining the same
two vertices are directed the same. Orient the edges of H such that e has tail in U;
and head in U if ¢ has tail v; and head v;. If both ends of e belong in the same class
orient e arbitrarily. For k =2 let bg be any k-bicycle of G. It is easily verified that by
is a k-bicycle of H where for e an edge of H

0, ee€ L; for some i€{1,2,: -+, n},
bs(é), ec L; for some i,je{1,2,---,n}, i#j.

(5.5) by (e) ={

Let My (k) denote the submodule of the k-bicycle module By (k) of H consisting
of all k-bicycles by which correspond to a k-bicycle bg of G in the above fashion.
Then |My, (k)| =|Bg(k)| (where Bg (k) denotes the k-bicycle module of G). In particular
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|My(tg)| = |Bs(ts)|. But |Bg(tg)| = tg by Corollary 5.2. By Corollary 5.3 we have that
| My ()| divides ty. Hence ts divides .

6. Irreducible bicycles. A nonzero k-bicycle b is reducible if there exists a nonin-
vertible, nonzero element d € Z, such that d divides b(e) for all edges e. A k-bicycle
is irreducible if it is nonzero and not reducible.

THEOREM 6.1. Let G be a connected multigraph with spanning tree number t. If
there exists an irreducible k-bicycle then k is a divisor of t.

Proof. Suppose G has an irreducible k-bicycle b. Then the set of all scalar multiples
of b is a submodule of the k-bicycle module B(k) that contains k elements. Hence
the theorem follows from Corollary 5.3.

It is easy to find examples where the converse of Theorem 6.1 does not hold when
k is a composite number. Note that Shank’s result (Corollary 2.7) implies that the
converse holds when k is a prime number.

Let y(k) denote the number of irreducible k-bicycles. Set y(1)=1. Let D(k)
denote the set of divisors of k. The following proposition relates the number of bicycles
to the number of irreducible bicycles.

PrOPOSITION 6.2. For k a positive integer, k=2 let B(k) and y(k) denote the
number of k-bicycles and number of irreducible k-bicycles respectively. Then

(6.1) B(k)= Y v(d)
de D(k)
where the summation is over all divisors d of k.

Proof. Let b be a nonzero k-bicycle. Let k' be the largest positive integer that
divides b(e) for all edges e and let d = k/k’. With the k-bicycle b we associate the
irreducible d-bicycle b’ defined by b’(e) = b(e)/ k' for e an edge of G. (In defining b’
we are using the fact that for d a divisor of k the module Z, may be regarded as a
submodule of Z,.) This determines a bijection between the k-bicycles and the irreducible
d-bicycles where d divides k, d # 1. The zero k-bicycle is counted by y(1).

ProrosITION 6.3. For r and s two relatively prime positive integers

(6.2) y(rs)=y(r)y(s).

Proof. Since Z,,=Z,® Z, (where @ denotes the direct sum of two rings) we have
that B(rs)= B(r)® B(s) (where @ denotes the direct sum of two modules. The underly-
ing set is B(r) X B(s), i.e., be B(r)® B(s)& b(e) = b,(e) X b,(e), ec E for some b, e
B(r) and b, € B(s).) Proposition 6.3 follows from the fact that the direct product b, X b,
corresponds to an irreducible bicycle in B(rs) if and only if b, is an irreducible bicycle
in B(r) and b, is an irreducible bicycle in B(s).

We now state the main theorem of this section.

THEOREM 6.4. Let G be a connected multigraph with spanning tree number t. Then,
the total number over all the positive integers k, of irreducible k-bicycles equals t, i.e.,

(6.3) - § (k).

Proof. By Theorem 6.1, y(k) =0 for every k that is not a divisor of t. Hence by
Proposition 6.2 we have that B(1) =Y ,_ 5, ¥(d) = Y o, v(k). But by Corollary 5.2 we
have that B(t) =t. This proves Theorem 6.4.

7. Prime factorization formula for the spanning tree number. Let p be a positive
prime number and i a positive integer. The set pB(p’) ={pb|be B(p')} is a submodule
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of B(p'). Consider the quotient module

Bl i) — B(p')
B pB(p)

That is, B(p') consists of congruence classes of elements from B( p') where two
p'-bicycles b, and b, are congruent if b, — b, = pb; for some p’-bicycle b;. The quotient
module B(p') is a vector space over the field of integers mod p. We will refer to B(p’)
as the quotient p'-bicycle space. Let p(p') denote the dimension of B(p’). Let ¢,(t)
denote the exponent of the highest power of p that divides the spanning tree
number .

ProrosITION 7.1. Let G be a connected multigraph with spanning tree number t.
Then p(p') = p(p’) for i <j. Further p(p') =0 for all i> &,(1).

Proof. Let i and j be two posmve mtegers such that i <j. Since B(p ) is a vector
space over Z, the cardinality of B(p') equals p*®", i.., | B( p N = p*?). Similarly
|B(p’)| = p**”. With every p’-bicycle b we may associate a p'- blcycle b’ given by
b'(e) = b(e)(mod p’) for e an edge of G. It is immediate that the mapping taking b to
b’ is an injective mapping from B(p’) to B(p'). This implies that |B(p’)|=|B(p’)|.
Hence p(p')=p(p’). By Theorem 5.1 there are no irreducible p -bleClCS for any
i> g,(t). This implies that B(p') contains only the zero bicycle. Thus p(p') =0 for all
i>g,(t). This proves Proposition 7.1.

We now state that main theorem of this section which gives a formula for the
prime factorization of the spanning tree number.

THEOREM 7.2. Let G be a connected multigraph with t spanning trees. For p a
positive prime number and i a positive number let p(p’) denote the dimension of the
quotient p'-bicycle space. Then the prime factorization of t is given by
(7.1) t=11 pp(p)+p(p2)+"'+p(p‘)+"~

peP
where the product is over the set P of all positive prime numbers. (The product over an
infinite number of one’s is one.)

Proof. By Proposition 6.2

(7.2) B(p)=1+y(p)+y(p>)+---+y(p).

Now |B(p')|=p*?". Also, it is clear that |B(p')|=B(p’)/B(p'™"). Hence B(p')=
p*®B(p'™1). By induction we have that

(7.3) B(p’ ) — pp(p)+p(p2)+~ (Pl
Combining (7.2) and (7.3) we obtain
(7.4) prE B e EO T — L y(p) + y(p?) - - -+ (P H

Employing Proposition 6.3 and Theorem 6.4 we have

il pp(p)+p(pz)+ Hp(pH+ H A+y(p)+y(pH+---+y(p)+--+)

peP

= kZ y(k)=t
=1
This proves Theorem 7.2.
CoRrROLLARY 7.3. Let G be a connected multigraph_ with t spanning trees. For p a
positive prime number and i a pos:twe integer let p(p') denote the dimension of the

quotient p "-bicycle space. Then, p' divides t iff p(p)+p(p*)+---+p(p')=i. Further
(p' Ve divides t.
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Proof. If p(p)+p(p*)+- - +p(p')=i then Theorem 7.2 implies that p' divides
t. Conversely suppose p’ divides t. Assume p(p)+p(p>)+- - +p(p')<i. Since by
Proposition 7.1 we have that p(p’) = p(p’) for all j <i it follows that p(p‘) =0. Again
applying Proposition 7.1 we have that p(p’) =0 for all j> i. Since p’ divides ¢t Theorem
7.2 yields

i=p(p)+p(pH)+---+p(p)+---
=p(p)+p(p*)+- - -+p(p).

This is a contradiction. Hence p(p)+p(p*)+- - - + p(p’) = i. This proves the first part
of the Corollary. . ‘
Since by Proposition 7.1, p(p') = p(p’) for all j<i we have that

in(p")=p(p)+p(p*)+- - +p(p).
But by Theorem 7.2 we have that p?(P**(PO++0(?) divides 1. Hence p(?" divides .

8. 2-bicycles in planar graphs. Let G be a planar, connected multigraph embedded
in the plane. In [9], Shank discovered a very simple way of determining the dimension
p(2) of the 2-bicycle space. A left-right path of G is a closed path such that the edge
chosen at each vertex is alternatively the leftmost (labelled L) and rightmost (labelled
R) edge. An edge may be transversed twice as long as it is not transversed in the same
direction with the same label.

THEOREM 8.1. (Shank). Let G be a planar, connected multigraph with L left-right
paths. Then the dimension p(2) of the 2-bicycle space is given by

p(2)=L-1.

Shank employed this theorem to prove that the number ¢ of spanning trees of G
is odd if and only if G has exactly one left-right path. The following theorem which
is an immediate consequence of Theorem 8.1 and Corollary 7.3 strengthens this result.

THEOREM 8.2. Let G be a planar, connected multigraph having t spanning trees and
L left-right paths. If there is exactly one left-right path then t is odd. Otherwise 25
divides t.

Acknowledgments. 1 would like to thank J. D. Reid and H. Shank for helpful
comments.
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TELEPHONE PROBLEMS WITH FAILURES*

KENNETH A. BERMAN{ AND MICHAEL HAWRYLYCZt

Abstract. Consider a multigraph G on n vertices whose edges are linearly ordered. The vertices of G
may represent people and the edges two-way communication between pairs of people. A vertex v is
k-failure-safe in communicating with a vertex w if there is a path of ascending edges from v to w even when
any k edges of G are deleted. In this paper, we show that the minimum size u(n, k) of G such that one
vertex communicates k-failure-safe with every other vertex is given by u(n, k)= [((k+2)/2)(n~1)] for
k=n-2and u(n, k)= [((k+1)/2)n] for k=n—2. We also show that for k=1 the minimum size 7(n, k)
of G such that every vertex communicates k-failure-safe with every other vertex satisfies w(n, k) +n—2 [\[; =
7(n, k)= |(k+3/2)(n—1)]. The problem of finding 7(n, k) for k =0 is the well-known telephone problem.

1. Introduction. Consider a multigraph G with vertex set V and edge set E where
E has been assigned a linear order. We will call such a multigraph a communication
network. An ascending path from a vertex v to a vertex w is a path from v to w such
that for any two edges of the path the edge closer to v is smaller in the linear order.
A vertex v communicates with a vertex w if there is an ascending path from v to w
(note that if v communicates with w this does not necessarily mean that w communicates
with v). A vertex v communicates k-failure-safe with a vertex w if there is an ascending
path from v to w even when any k edges of G are deleted.

One model of a communication network is a group of people who have made a
sequence of telephone calls. The people are represented by vertices and the calls
between pairs of people are represented by edges. The edge corresponding to the ith
call occurs ith in the linear ordering of the edges. When a call is made, the two people
exchange all their information. An ascending path from a person P; to a person P;
indicates that P; has received P;’s information. If P; communicates k-failure-safe with
P; then P, is guaranteed to know P;’s information even if there is the possibility that
in up to k of the calls information is not exchanged.

Consider a communication network G on n vertices where one vertex v communi-
cates k-failure-safe with every other vertex. Note that by reversing the linear order of
the edges of G we obtain a communication network in which every vertex communicates
k-failure-safe with v. Let u(n, k) be the minimum number of edges in such a network.
In this paper we show that u(n, k)= [((k+2)/2)(n—1)] for k=n—2 and u(n, k)=
[((k+1)/2)n] for k=n—-2.

A k-failure-safe total communication network is a communication network in
which every vertex communicates k-failure-safe with every other vertex. Let 7(n, k)
be the minimum number of edges in a k-failure-safe total communication network on
n vertices. In § 3 we show that for k = 1, 7(n, k) satisfies w(n, k) +n—2 [\/;] =r(n k)=
[(k+3/2)(n—1)]. The telephone problem which was proposed by A. Boyd and solved
by a number of authors is equivalent to finding 7(n, k) for k=0. For references see
[11, [21, [3], [4], [5], [6]. It is well-known that 7(n, 0) =2n—4.

In § 4 we consider communication networks in which the edges are directed, the
orientation of an edge indicating the direction in which information is passed. One
model of this is a group of people who send telegraph messages to other people in
the group. In a directed communication network a vertex v communicates k-failure-safe
with a vertex w if there is an ascending directed path from v to w even when any k

* Received by the editors November 15, 1983, and in revised form August.1, 1984.
t Department of Mathematics, Wesleyan University, Middletown, Connecticut 06457.
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arcs are deleted. It is shown that the minimum number (i(n, k) of arcs in a directed
communication network in which one vertex communicates k-failure-safe with every
other vertex is given by pi(n, k) =(k+1)(n—1). Further we show that the minimum
number 7(n, k) of arcs in a directed k-failure-safe total communication network is
given by 7(n, k) = (k+2)n—2. The problem of finding 7(n, 0) is called the telegraph
problem. See [4].

2. Communication to a single vertex. In this section, we prove the following
theorem.

THEOREM 2.1. Let w(n, k) be the minimum size of a communication network on n
vertices in which every vertex communicates k-failure-safe with a given vertex. Then

[(%)(n—l)], k=n-2,

win = [(k-‘-l)n-l k=n-2
> , = .

Proof. An ascending tree rooted at v is a tree whose edges are ordered such that
there is an ascending path from every vertex in the tree to v. For k=0, an ascending
tree on n vertices clearly gives the minimum solution. For k>0 there are two cases:
k=n-2and k=zn-2.

Case 1. k=n-2. We first show by construction that u(n, k)= [((k+2)/2)-
(n—1)]. Consider a multigraph G with vertices v,, v, * - *, v, Which is the edge disjoint
union of graphs T and T' where T is a spanning tree such that every vertex of G
different from v, is joined to v, and T' is a simple graph having degree k at every
vertex different from v, and degree either 0 or 1 at v,. Graph T’ can be constructed
as follows: For k even vw; is an edge of T’ precisely when i#1,j#1 and i—j is
congruent mod (n—1) to an element of {1,—-1,2,-2,---,k/2, —k/2}. In the case k
odd, n odd, vv; is an edge of T’ precisely when i#1,j#1 and i—j is congruent
mod (n—1)toanelementof {1, -1,2, -2, --,(k—1)/2, —(k—1)/2, (n—1)/2}. Finally
in the case k odd, n even the pairs v,0,/341, U3Vn/2+2, * * * » Un/2Us—1 and v,v, are edges
of T'. Furthermore, if i#1,j#1 and i—j is congruent mod (n—1) to an element of
{1,-1,2,-2,---,(k—1)/2, —(k—1)/2} then vy is an edge of T'.

We now order the edges of G by first ordering the edges of T' arbitrarily and
then ordering the edges of T arbitrarily. With this ordering G is a communication
network in which every vertex communicates k-failure-safe with vertex v,. To prove
this it is sufficient to show that there are k+1 pairwise edge disjoint ascending paths
from any vertex v; to v;. Let v, v,, - - -, v;, be the k vertices adjacent to v; in T'. The
k+1 paths vv,, v,v,v,, V0, -+ *, UV, 0, are pairwise edge disjoint ascending paths
from v; to v;,.

Since the tree T has n—1 edges and the graph T’ has by a simple degree counting
argument [k(n—1)/2] edges it follows that G has [(k+2)(n—1)/2] edges. Hence
w(n, k)= [(k+2)/2)(n-1)].

We now show that u(n, k)= [((k+2)/2)(n—1)]. Let G be any communication
network in which every vertex communicates k-failure-safe with a single vertex v,. Let
v be any vertex different from v; and let vw be the edge of highest order which is
incident with . If P is any ascending path which terminates at v, and if P contains
the edge vw, then in P vertex w must lie between v and v,. Thus replacing vw with
vv, preserves the property that every vertex communicates k-failure-safe with v,.
Repeated replacements of this kind results in a graph G’ where every vertex
other than v, is adjacent to v,. Clearly every vertex of G’ different from v, must have
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degree at least k+1. It follows that the sum of the degrees of the vertices in G’ is
at least (n—1)+(n—1)(k+1). Therefore the number of edges of G’ is at least
[(n—1)(k+2)/2]. This shows that the number of edges of G is at least [(n—1)
(k+2)/2].

Case 2. k= n—2. The following upper bound construction shows that wu(n, k) =
[((k+1)/2)n]. Let A, r be positive integers such that k+1=A(n—1)+r,r<n-—1. Let
R be a simple graph which has degree r at every vertex different from v, and degree
either r or r+1 at v,. Let K, be the complete graph on n vertices. Consider the
multigraph G on vertex set V which is the union of A copies of K, and one copy of
R, i.e., two vertices u and w are joined with A + ! multiple edges where [ is the number
of edges joining vertices u and w in R (I =0 when there are no such edges). We now
make G a communication network by imposing an order on its edges. First, in an
arbitrary fashion, order all the edges of R not incident with vertex v,. Then order all
the edges of the complete graphs not incident with vertex v, in an arbitrary way. Finally
order all the edges incident with v, in an arbitrary way. The reader can easily verify
that there exists k+1 pairwise edge disjoint ascending paths (of lengths 1, 2 and 3)
from any vertex to v,. Thus every vertex of G communicates k-failure-safe with v,.
Since every vertex in G has degree k+1 except v, which has degree either k+1 or
k+2 it follows that the number of edges of G is [((k+1)/2)n]. Hence, u(n, k)=
[((k+1)/2)n].

Conversely let G be a graph in which every vertex communicates k-failure-safe
with v,. It is clear that every vertex must have degree at least k+1. Hence G must
have at least [((k+1)/2)n] edges and thus u(n, k)= [((k+1)/2)n].

This completes the proof of Theorem 2.1.

3. k-failure-safe total communication networks. In this section we consider com-
munication networks where every vertex communicates k-failure-safe with every other
vertex. Let 7(n, k) denote the minimum size of such a network. As mentioned in the
introduction, the problem of finding 7(n, 0) is the telephone problem and it is well
known that 7(n, 0) =2n —4. The following theorem gives upper and lower bounds for
7(n, k) when k=1.

THEOREM 3.1. Let 7(n, k) be the minimum size of a k-failure-safe total communica-
tion network where k=1. Then 7(n, k) satisfies

[(k+4)(n_1)] —2[Wnl+1=7(n k)= [<k+%)(n—1)_| , k=n-2,

2
[(k;3>n]_2r‘/;]§7(”’k)§l(’”%)("—l)J, k=n-2.

We first show that the upper bound holds by construction. For n odd, we construct
a communication network G as follows. In the case when i is odd, i # 1, join vertex
v; with k edges to vertex v, labeling them 3,5, - - -, 2k+1. In the case when i is even
join v; with k+1 edges to v, labeling them 2,4, 6, - - - , 2k+2. Further join v; and v;,
with two edges, one edge labeled 1 and the other edge labeled 2k+3 for i=
2,4, - -, n—1.The labels determine a partition of the edges into 2k +3 classes. Edges
in the same class are ordered arbitrarily but for i <j all the edges in class i are ordered
before any of the edges in class j.

Consider any two distinct vertices v; and v; in communication network G. It is
an easy exercise for the reader to verify that there exist k+1 pairwise edge disjoint
ascending paths from v; to v, If n is even then we construct G as follows. First do
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the above construction for n—1 vertices. Then join vertex v, to v; with k+1 edges,
one from each of the k+1 new classes 2*,3%,5%7,7%, - - -, (2k+1)", where an edge in
class j* is ordered so that it is larger than any edge in class j and smaller than any
edgein class j+ 1. Again it is easy to verify that every vertex communicates k-failure-safe
with every other vertex. The number of edges in G is |(k+3)(n—1)]. This gives the
upper bound for 7(n, k).

We now obtain the lower bound. Let G be a communication network in which
every vertex communicates k-failure-safe with every other vertex. Let E(r) be the set
of the first r edges in the linear order. Let E'(r) denote the edges that follow these.
Set w=u(n, k). For a positive integer £ £=u, let H be subgraph whose vertex set
includes all the vertices of G and whose edge set is E'(u — £¢). Let K be the connected
component of H with the fewest number of edges and let I be the number of edges
of K. Let C be the subgraph of G whose vertex set includes all the vertices of G and
whose edges consist of the set E(u — £) together with the I edges of K. (Subgraph C
may contain isolated vertices.) Let v be any vertex of K. It is clear that in C every
vertex communicates k-failure-safe with v since every vertex communicates k-failure-
safe with v in G. Hence C has at least u edges. But the number of edges of C is
u — &+ 1 Therefore = £ Since K was the smallest component of H subgraph H has
at least n —n/ ¢ edges. (It is an easy exercise to verify that a graph has at least n —n/¢
edges if each of its components has size at least £) This implies that G has at least
w+n—£—n/¢ edges. To optimize choose £=[./n]. Then we have that |E(G)|=
w+n=2[J/nl,ie.,|E(G)|= u(n k)+n—2[/n]. By employing the formula for u(n, k)
we obtain the lower bound for Theorem 3.1.

For k =1 Theorem 3.1 gives 7(n, k) to within 2n. For k> 1 the bounds of Theorem
3.1 become increasingly less tight as k increases. We propose the following conjecture.

Conjecture. For k=1

7(n, k)=(k+3)n—c
where ¢ is bounded as n goes to infinity.

4. Directed communication networks. In this section we prove two theorems on
directed communication networks which are the analogs of Theorems 2.1 and 3.1.
THEOREM 4.1. Let fi(n, k) be the minimum size of a directed communication network

on n vertices in which every vertex v communicates k-failure-safe with a single vertex v,.
Then

a(n k)=(k+1)(n—1).

Proof. Let D be the multidigraph on vertices v,, vy, * - *, v, such that vertex v; is
joined to vertex v; with k+1 arcs directed toward v,,i=2,3,+ - -, n. Clearly every
vertex communicates k-failure-safe with every other vertex and D has (k+1)(n—1)
arcs. This shows that g(n, k)=(k+1)(n—1).

Conversely, let D be a directed communication network such that every vertex
communicates k-failure-safe with every other vertex. Clearly, D must have out-degree
at least k+1 at every vertex v, i # 1, and thus D must have at least (k+1)(n—1) arcs.
This shows that g(n, k)= (k+1)(n—1).

TueorREM 4.2. Let #(n, k) be the minimum size of a directed k-failure-safe total
communication network. Then

#(n, k)=(k+2)n-2.

Proof. We first show that 7(n, k) = (k+2)n—2 by construction. Let v,, v, *, v,
denote the n vertices. We construct a directed communication network D as follows:
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Join vertex v; to vertex v;,, with k+2 arcs directed toward v;,, fori=1,2,---,n—2.
Join v,_, to v, with k+1 arcs directed toward v, and join v, to v, with k+1 arcs
directed toward v,. We now order the arcs of D. The k+2 arcs joining vertex vu; to
vertex v;4, are ordered i, n+i,2n+i,---,(k+2)n+ifori=1,2,---,n—2. The k+1
arcs joining vertex v,_; to vertex v, are ordered n—1,2n—1,---,(k+1)n—1 and the
k+1 arcs joining vertex v, to vertex v, are ordered n,2n, - - -, (k+1)n. We leave it to
the reader to verify that there are k +1 pairwise edge disjoint ascending directed paths
from any vertex of D to any other vertex of D, i.e., D is a directed k-failure-safe total
communication network. Since D has (k+2)n—2 edges 7(n, k) =(k+2)n—-2.

We now show that 7(n, k)= (k+2)n—2. Let D be a directed k-failure-safe total
communication network. Consider the n—2 arcs which occur first in the linear order
and let A be the subdigraph consisting of these n—2 arcs. Since a connected graph
must have at least n—1 edges A is not connected. Therefore for any vertex v of D
there is some vertex v’ which does not communicate with v using only the arcs in A.
Since D is a directed k-failure-safe total communication network, and since the arcs
from A occur first in the linear order it follows that there are at least k+ 1 arcs directed
toward v which do not belong to A for every vertex v of D. This implies that there
are at least (k+1)n arcs not lying in A. Hence D has at least (n—2)+(k+1)n=
(k+2)n—2 arcs showing that 7(n, k)= (k+2)n—2.

This proves Theorem 4.2.

Acknowledgments. We thank the referee for several valuable comments. We thank
Daniel Kleitman for many illuminating discussions.
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Abstract. For a graph I' with vertex set V an algebra of adjacency matrices is defined and viewed as
an equivalence relation on V XV with certain nice properties. This can be used in algorithms to find
automorphisms of graphs and isomorphisms between graphs. It also provides intersection numbers indepen-
dent of the labelling on V which determine the similarity class of the adjacency algebra.

AMS(MOS) subject classification. 05C50

Introduction. This article has two main objectives. The first is to associate as high
a dimensional algebra of n X n matrices as possible with the adjacency matrix of a
labelled graph I' on n vertices. In this way a set of intersection numbers is obtained
which is an invariant for the isomorphism class of I'. The other aim is to show that
these intersection numbers provide a finer decomposition into equivalence classes of
graphs than do graph spectra, even with the more general definition given here. It
therefore seems likely that nice classification theorems must exist using these numbers,
giving more powerful results than from spectra. Indeed the theory of distance transitive
graphs illustrates this (see [1]). However, such results are not given here. What is
provided is the step from a given graph to a coherent configuration as defined by D.
G. Higman [4] and one can then apply his theory. He gives some applications.

The associated algorithm which tests for isomorphism by computing these numbers
(implicitly) has order at worst n® log n and can be applied recursively to the subgraphs
obtained by deleting vertices until isomorphism is established or confuted. The calcula-
tion is then producing generalised intersection numbers corresponding successively to
ordered pairs, triples, quadruples, etc., of vertices. This points to the correct generalisa-
tion to yield invariants which completely determine the isomorphism class of the graph.

Sections 1 to 3 are definitions and elementary properties. Section 4 starts with a
couple of well-known results which can be traced back to Frobenius [3]. From them
is deduced that intersection numbers are more discriminating than the spectrum. In
§ S these numbers are shown to be equivalent to knowledge of the regular representation,
for which a symmetric definition and an easy method of computation are given. Lastly,
in § 6, the names of the labels, hitherto ignored, are traced to ensure that an isomorphism
preserves not just the equivalence classes of edges carrying the same label, but also
the label itself.

The starting point of this paper was a talk by Charles R. Johnson on a joint work
of his with Morris Newman [5]. The author would especially like to thank T. J. Laffey
for many helpful conversations during its development.

The intersection numbers are obtained in the following way. Let A be an adjacency
matrix of a graph I'. Any automorphism of I' acts as a similarity transformation by a
permutation matrix on A. Thus such transformations act trivially on the algebra
generated by all such A for the given graph. A generic matrix of this algebra can be
used to partition the vertex set V of I' into subsets V;, V,,- - -, V, with the property
that any automorphism of I restricted to V; maps onto V;. The V; are unions of orbits
under the automorphism group.

This can be expressed abstractly using equivalence relations on V X V: giving a
“colour” to each edge and vertex. There is a smallest refinement of this colouring of

* Received by the editors August 2, 1983, and in revised form August 6, 1984.
+ Department of Mathematics, University College, Belfield, Dublin 4, Ireland.
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V X V with a property corresponding to closure under multiplication of matrices. This
is called here the completion of the colouring, but is just a coherent configuration in
Higman’s terminology.

The formulae in terms of colours for the product of two matrices in this algebra
define the intersection numbers and determine the algebra up to similarity. Thus they
are identical for isomorphic graphs and can be used as a test for isomorphism. The
adjacency algebra defined in this way is larger than the usual one, being generated by
all possible adjacency matrices instead of a single 0, 1-matrix. It is big enough to show
how closely connected are the ideas of similarity, co-spectrality, and intersection
numbers.

Addendum. The author would like to note that associating a coherent configuration
with a graph is the subject of [10]. This does not seem to be well known despite its
reference in [11]. The first few sections here describe the method.

1. Colourings.

DerinITION 1.1. Let V be a finite set and ¢ an equivalence relation on V X V with
r equivalence classes. Then c is called an r-colouring or colouring of V and the
equivalence classes are called the colours of c. The set of such classes will be denoted
by ¢ and the class of (i, j) € V X V by c(j, j). This should be distinguished from c¢((i, j)),
also called the colour of (i, j), which is always the image of c¢(i, j) under an injective
map. Elements of V are identified with the diagonal of V X V and called vertices, whilst
oft-diagonal elements are called edges.

For example, let I" be a graph on V with edge set E. Then I yields a 3-colouring
of V whose colours are V, E, and (VX V)\(EU V).

DEerFINITION 1.2. For n=|V| and a commutative ring R containing the integers
Z, let My (R) be the set of n Xn matrices with entries in R whose rows and columns
are indexed by V. Any injective map c¢-> R with c(i,j)— c((i,j)) defines a matrix
A=(a;)e My(R) by a; = c((i,j)). Such a matrix is called an adjacency matrix of c.
Conversely, given a matrix A = (a;) € My (R) there is a uniquely determined colouring
for which A is an adjacency matrix, namely that given by c(i, j) = c(k, I)& a; = ay for
all i, j, k, I € V. The colouring so obtained is denoted c,. If the set of distinct entries of
A are algebraically independent over Z (as a subring of R) then A is called a generic
matrix of the colouring it defines. A set of generic matrices (not necessarily for the
same colouring) are called independent if the entries in each matrix are distinct from
the entries in every other matrix and the set of distinct entries from all the matrices is
algebraically independent over Z.

LEMMA 1.3. Letc, d be colourings of V. Then c = dif and only if, c((i, j)) = c((k, 1)) &
d((i,j))=d((k, 1)) forallij ke V.

Example 1.4. The colourings with adjacency matrices

A=

N W =

23 1
1 2| and AT=|2
3.1 3

N = W
- N

are equal.
DEFINITION 1.5. (i) There is a partial ordering = of colourings given by

c=d if, and only if, c(i, j) 2 d (i, j) for all (i, j) € VX V.
(ii) The sum or join c+d is defined by
(e+d)(i,j)=c(i,j)Nd(,j)
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and the meet c A d is defined so that (¢ A d)(i,j) is the smallest union of colours of ¢
containing (i,j) which is also a union of colours of d.

(iii) The rank of a colouring c is the number |c| of equivalence classes of c. Clearly,
1=|c|=n?for n=|V|.

LEMMA 1.6. (i) The colourings of V form a lattice under = with meet and join as
above.

(ii) c+d is the least upper bound for ¢ and d. In particular, c=c+dandd=c+d.
Also c+d is the colouring defined by the sum of independent generic matrices for ¢ and
d. Moreover, c+d=cifd=c

(iii) c A d is the greatest lower bound for c and d. In particular,cnd =candcrd=d
withcand=cifc=d

(iv) The map c—>|c| is order preserving, i.e. c < d implies |c| <|d|. Also |cn d|=|c|=
lc+d|=|c||d|.

DEerINITION 1.7. (i) There is a unique minimal colouring ¢, corresponding to the
zero matrix. This is a 1-colouring with ¢o(i, j)= V X V.

(ii) There is a unique maximal colouring ¢, which is defined by ¢y (i, j) = {(i, j)}.
It has | V|* colours.

(iii) The identity colouring c; is that which corresponds to the identity matrix. It
is a 2-colouring with ¢;(i,i)=V< VXV and ¢;(i,j) = VX V\V for i #]j.

DEeFINITION 1.8. The transpose colouring ¢ is defined by ¢” (i, j) = c(j, i) T where
ST ={(i,)|(j, i) € S} for any subset S of VX V. A colouring c is called symmetric if
c¢=c" and totally symmetric if c(i, j)™ = c(i, j) for all i, j € V. Because (j, i) e c(i,j)7, ¢
is totally symmetric precisely when c(i, j) = ¢(j, i) for all i, je V.

Remark 1.9. Suppose A is a generic matrix for c. Then A" is a generic matrix
for c”.

Example 1.4 illustrates a symmetric colouring which does not arise from a sym-
metric matrix. The totally symmetric colourings are characterised by having symmetric
adjacency marices, whilst the symmetric colourings are characterised by having their
set of adjacency matrices closed under the transpose mapping.

The product cd of two colourings is defined as that obtained from the product of
independent generic matrices for ¢ and d. Hence we have the following definition.

DEerINITION 1.10. The product cd of two colourings ¢, d of V is defined by its
injective image

cd((i, j)) ={c(i, t) xd (1, j)|te V}

or, equivalently,

cd((i, j)) ={(c((i, 1)), d((1,j)))]t € V}

where the elements are counted with appropriate multiplicity. All such sets from here
on will be assumed to have multiplicities attached to their elements, i.e. they are multisets
or bags.

In computations as in Example 1.4 the values c((i, j)) are usually integers. Then
the product class cd(i,j) consists of those directed edges (i,j) yielding the same
| V|-tuple of pairs (c(i, t), d(t,j)) sorted into order. Thus, if ¢, d are the colourings in
Example 1.4, then cd (2, 3) is the set of edges giving the triple (13, 21, 32). If generic
matrices are used, one has x;y,+ x,y;+ x, y, representing this class. Ordering the terms
lexicographically and recording only subscripts yields the previous triple.

THEOREM 1.11. (i) The sum and product operations satisfy the usual associative
and distributive axioms of rings. Addition is commutative but multiplication is not commu-
tative if |V|> 1.
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(ii) cc;zcand cic=c.

(iii) ce=dfif c=d and e =f for colourings c, d, e, f.
(iv) c+d=cdifczc,andd=c,

Proof. (i) Generic matrices which determine colourings satisfy the named axioms
of ring theory. Hence the colourings themselves satisfy these axioms. For |V|>1 let ¢
be the colouring with generic matrix A= (a;) such that a,;=x and a;=y for i #1.
Easily cc” # ¢ "c since the former is a 4-colouring and the latter the 1-colouring.

(ii) (k, I)€ ccr(i, j) implies

{c(k, t) x (2, D|te VI={c(i, t) X c/ (¢, j)|te V}.

Equating terms which contain the diagonal V = ¢,(¢, t) gives c(k, I) = c(i, j) and hence
(k, ) e c(i, j). Thus cc;(i, j) < c(i, j) and cc; = ¢. By symmetry ¢;c=c.

(iii) (k,1)edf(i,j) implies {d(k, t) xf(t,I)|te V}={d(i, t) xf(t,j)|te V} and
hence {c(k, t) xe(t, I)|te V}={c(i, t) xe(t,j)|te V}. Therefore (k,1)e ce(i,j). Thus
df(i, j) < ce(i,j) and ce = df, as required.

(iv) From (ii) and (iii) c=cc; = cd and d = ¢;d = cd, giving c+d = cd.

Lemma 1.12. (i) ¢ =c¢;

(ii) (cd)"=d"cTand (c+d)T=cT+dT;

(iii) cc” and c+cT are symmetric;

(iv) c¢=d implies c" =d” and vice versa;

(v) le|=]c"].

ProvposiTiON 1.13. Let ¢" be the product of ¢ with itself r times for re Z, r>0, and
set ¢®=cp. Take n=|V|>1.

(i) If c= ¢, then there is a positive integer m < n* such that ¢™ = c™*" for all r= 0.

(ii) For each colouring c there are positive integers m, p bounded by functions of n
such that ¢" = c”*" for all r=z m.

Proof. (i) By Theorem 1.11(ii) and (iii), ¢c"=c"¢;=c"*! for all r=0. If ¢; =c°<
c'<---<c" then 2=|c%<|c'|<" - -<|c"| by Lemma 1.6(iv) and so |¢"|=r+1. Now
[c"|=n? yields r<n®. Hence there is a maximal value r=m with this property, i.e.
¢™=c™"!, which gives ¢™ =c™"" for all r=0.

(ii) This is automatic from the finitude of the number of colourings for fixed n.

DEFINITION 1.14. In Proposition 1.13 the minimal m satisfying (i) is called the
order of c, and the minimal value of p satisfying (ii) is called the period of c.

The completion of cis ¢ = (c+¢T +¢;)" for n=|V|, and c is called complete if ¢ = .

Remarks 1.15. Note that c+c” +¢; = ¢;. Thus, by Proposition 1.13, its period is
1and ¢=(c+c” +¢;)™ where m is the order of ¢+ ¢” + ¢;. In computations ¢ is obtained
by successively squaring c+c” +c; The rth squaring gives (c+c” +¢;)* and so ¢
results after at most log, (n>—1) steps. The computation terminates when squaring
returns the same colouring.

¢ is the maximal colouring obtainable from c using ¢; and the operations so far
defined because of the next theorem.

THEOREM 1.16. (i) ¢*=¢; ¢+c=¢; and " =¢,

(ii) If ,=¢, c,=C then ¢,c;=<¢, c,+c,=¢and c] =¢,

(iii) Ifc=d then¢=d,

(iv) ¢=¢,

(v) é¢e;=¢=c¢cand c=c¢,

(vi) c is complete if, and only if, cZ ¢, c" =c and *=c.

THEOREM 1.17. Suppose c is the totally symmetric 2- or 3-colouring of a regular
graph with adjacency matrix A and c; is the colouring associated with A'. Then, forn=|V|,
c=cytc+: - +c,.
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Proof. By Theorem 1.16, ¢; = ¢ and therefore ¢, =¢ where ¢,=cy+c;+- - -+ ¢,
Now c¢ has generic matrix xI + yJ + zA with JA = AJ = dJ for some d € Z and J*>=nJ.
So any polynomial in I, J, A is a linear combination of A%, A',--- A""'and J by
the Cayley-Hamilton theorem. Since = (c+ ¢;)’ for i large enough, ¢ has an adjacency
matrix of this form and ¢= ¢, giving ¢=c,

Remark 1.18. Complete colourings are the same as coherent configurations in the
sense of D. G. Higman [4]. The intersection numbers he has are just the multiplicities
of the various terms in each entry of a product of two independent generic matrices.
Thus completion provides a natural and easy way of associating a coherent configur-
ation with any graph. The completion ¢ is the minimal coherent configuration which
is a refinement of c. If ¢ is totally symmetric then it is an association scheme in the
sense of Bose and Shimamoto [2]. If ¢ is obtained from a strongly regular graph, then
¢=c (see J. J. Seidel [8]).

2. Automorphisms.

DEeFINITION 2.1. Let Sy denote the group of permutations of V. Sy acts naturally
on VXV by o(i,j) = (o1, oj). Thus-oT is well-defined for subsets T of VXV and
o € Sy. In particular, a colouring ¢ with classes ¢;, ¢,, - - -, ¢, yields a colouring oc with
classes ocy, gc,, * * -, oc, where oc, ={(ai, oj)|(i, j) € ck}. The (strict) automorphism
group Aut*c of a colouring c is the subgroup of S, consisting of permutations which
leave the colours fixed, i.e.,

cecAut*c & oc¢=c¢ for each colour ¢ of c

Of less interest here is the group Aut ¢ ={o € Sy|oc = ¢} which may include automorph-
isms which permute the colours nontrivially. For a matrix A= (a;) with associated
colouring ¢, oA = (oay) is associated with oc and so has entries oa; = a,1;,-; Then,
obviously, Aut* ¢ ={o e Sy|ocA = A} whilst Aut ¢ consists of those o for which oA is
also an adjacency matrix of c.

LemMA 2.2. (i) oc+od=o(c+d); (oc)(od)=0o(cd); o(cT)=(oc) for oe Sy;

(i) Aut* (c+d)=Aut* cN Aut*d;

(iii) Aut* (cd)=Aut* cNAut*difc=c;and d=c;;

(iv) Aut* (c¢7)=Aut* c;

(v) c=d implies Aut* c 2 Aut* d.

Proof. (i), iv) and (v) are clear.

(ii) If A, B are independent generic matrices for ¢, d then

geAut* (c+d)ood(A+B)=A+BS(0A=Aand 0B = B)&S o € Aut* ¢ N Aut*d.

(iii) Here o€ Aut* cNAut*d implies o(AB)=(cA)(cB)=AB and so o€
Aut* cd. Thus, Aut* ¢ N Aut* d = Aut* cd without restriction. Assuming (v) and using
(ii) with Theorem 1.11(iv) gives Aut* cN Aut* d = Aut* (c+d)=2Aut* cd and so
equality must hold.

THEOREM 2.3. Aut* ¢c=Aut* (c+c¢” +¢;) = Aut* &

3. Complete colourings.
LemwMmaA 3.1. Suppose c is complete.
(i) c(i,j) # c(k, 1) if 8; # & (Kronecker delta).

(i1) If c(i,j) = c(k, I) then there is a permutation o € Sy with c(i, t) = c(k, ot) and
c(t,j)y=c(ot,l) forall te V.

(iii) If c(i,j) =c(k, 1) then c(i, i) = c(k, k) and c(j,j)=c(L ]).

Proof. (i) is immediate from ¢ Z ;. Using the definition of product and ¢ = c gives
{e(i, t) xc(t, j)|te Vy=c*((i,j)) = c*((k, 1)) ={c(k, t) xc(t,])]te V}. Any bijection
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between these two bags which preserves colours determines a suitable o € Sy in (ii).
In particular, restricting o to diagonal classes yields (iii).

THEOREM 3.2 [3, § 2.10). If V=V, U V,U- - -UV, is the partition of V induced by
the diagonal classes of a complete colouring c then each block V; X V; is a union of colours
of c

COROLLARY 3.3. With the hypotheses and notation of Theorem 3.2, the permutation
o€ Sy in Lemma 3.1(ii) satisfies oV, =V, for each i.

CoOROLLARY 3.4. Suppose V, and V, are diagonal classes ( possibly equal) for a
complete colouring c. Then {c(i, t)|te V,} and {c(t,j)|te V,} are independent of ic V,
and j € V, respectively. The multiplicities of a colour ¢ in i X V, and V, Xj are related by

[ N (i X V)| Vi| = e N (V1 Xj)]| Val.

If a.< V, XV, then | V)| and |V,| divide |c ,|.

Proof. For i,i'e Vy, c(i,i)=c(i",i"). So, by Lemma 3.1, there is a o€ Sy, with
c(i,t)=c(i', ot) for all te V. By Corollary 3.3, o restricts to o,:V,> V,. Hence
{c(i, t)|t € V,}isindependent of i € V,. Independence for the second set follows similarly
or by applying the transpose. This immediately gives the equation relating multiplicities,
both sides having cardinality |¢, N V, X V,|. The last part is now clear.

THEOREM 3.5. The restriction c; of a complete colouring c to V; X V; for a diagonal
class V; of c is a complete colouring with one diagonal class.

Proof. Clearly c;=c; and c¢;=c] because these properties hold for c. Suppose
¢;(j, k) =ci(r, s). Then c(j, k) =c(r,s) and by Corollary 3.3 the permutation o€ Sy
defined in Lemma 3.1 restricts to a map o;: V;> V, such that c(j, t) = c(r, o:¢) and
c(t,k)=c(oit,s) for te V. So cX((j, k))={c(j, t)xc(t, k)|te V;}={c(r, t) xc(t, s)|te
Vi} = ci((r, 5)). This means ¢ = c; and hence ¢; = c?. Thus ¢; is complete.

Remark 3.6 [3, § 8]. In the same way a complete colouring restricts to a complete
colouring on any union of its diagonal classes.

DEFINITION 3.7. The number of colours on the diagonal of a colouring c= ¢; is
denoted ||c||. A complete colouring is called regular if |c||=1 (“homogeneous” in the
terminology of Higman).

Remark 3.8. ||c||*=|c| for complete colourings.

4. Adjacency algebras and determinants. If we regard a matrix in My (R) as a map
VX V- R in the obvious way, then the adjacency matrices of a colouring c are the
maps ¢: VX V- R for which every ¢ '(r), re R, is either the empty set or a colour
of ¢. The adjacency matrices for all colourings d = ¢ are the maps ¢ : V X V- R which
are constant on each colour of ¢, that is, ¢ '(r) is a union of colours of ¢ for all re R.
Such matrices form a free R-module M, = M_(R) of rank |c|. Certainly I € M, if, and
only if, ¢ = ¢;. Indeed, c=d if, and only if, M, < M, The most important observation
is that M, is a ring if ¢ is complete. When R is a field and c is complete M, is therefore
an algebra. M, is the adjacency ring (or algebra) over R of the colouring c.

THEOREM 4.1 (see e.g. Higman [4]). For a subfield K of the complex numbers C
and a complete colouring ¢ the adjacency algebra M. (K) is semi-simple.

For the rest of this section take R =C. Since the only division ring over C is C
itself, Wedderburn’s theorem says that for the decomposition 1=Y", & of 1 into
minimal central orthogonal idempotents and M;= M_g; there is a decomposition
M, =€B'i"=, M; of M, into a direct sum of full matrix algebras M; over C. If M; consists
of e; Xe; matrices, then the minimal irreducible left (or right) M;-modules have
dimension e; and character {;, say. The vector space CY on which M, acts decomposes
as CV =@, &C" where &C" is a direct sum of, say, z; copies of the irreducible
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M;-module with character ;. If CV has character { then { =Y, z;{; and equating
degrees gives n=|V|=Y1" ze and |c|=Y]., €. Clearly z;=1 for each i since the
representation of M, in My(C) is faithful.

By the Noether-Skolem theorem there is an invertible matrix U e My(C) such
that for all Ae M,

U—IAU=diag (DI(A), Tt aQi(A)’ ) D!(Al, Y Dm(A))
multi;ﬁcity z;

is a block diagonal matrix with D;(A) affording ¢;(A).

For generic A, det D;(A) is irreducible as follows. Since D;(A) = (d,;) is generic
for M; every entry is distinct and independent of the others. Let det D;(A) = fg be a
nontrivial factorisation and x = d,,. Without loss of generality deg, f =1 and deg, g =0.
Choose entry y with deg, g =1 and deg, f=0. As fg contains a term which is a multiple
of xy we may assume y=d,, by row and column interchanges. Take d,=d,, =1,
d,, =0 otherwise for r#s, and d,, =1 for r>2. Then det D;(A) specialises to xy—1
which fails to factorise in the required way. So det D;(A) is irreducible.

Thus, if A is generic then [];., det D;(A)% is the factorization of det A into its
irreducible factors. Hence det A determines the e; and z(=1) uniquely. They in turn
determine M, < My(C) up to similarity.

Conversely, to obtain a determinant for a given similarity class, pick a matrix
representation containing a generic matrix whose distinct entries are linearly indepen-
dent and which generates the algebra.

THEOREM 4.2. For a complete colouring ¢, M .(C) is determined up to similarity by
the determinant of a generic matrix, and conversely.

Warning 4.3. R. Mathon [6] has some regular graphs on 25 vertices which yield
complete 3-colourings that are not isomorphic but have similar adjacency algebras
over C. These also appear in [10] and seem to have been computed independently by
several people.

Consider next maps A:c- C: ¢;—> a; from the colours ¢;(1=i=r) of c into C. Let
C° denote the set of such maps. If for each (i,j)€ VXV we are given k such that
c(i, j) = ¢ then the structure of A as an adjacency matrix is given by a; = a, and we
obtain a map det c:C°~> C: A-det (a;). Clearly, from Theorem 4.2:

CoROLLARY 4.4. For a complete colouring c, det ¢ determines the adjacency algebra
M_(C) up to similarity, and conversely.

The maps in C° form an algebra (the regular representation) isomorphic to M.(C)
under the operations induced by the map A =(a;)~> A. where A :c(i, j)— ay.

THEOREM 4.5. Suppose the partition of c into diagonal and off-diagonal colours is
given for a complete colouring c. Then M, (C) is determined up to similarity by multiplication
in C° defined on its natural basis.

Proof. By Corollary 4.4 it suffices to reconstruct det ¢. Multiplication can be
described giving the intersection numbers ny such that A.B.=F,cC* satisfies f; =
Z,.,k ngab. If ¢;=V; is a diagonal colour then a colour ¢; belongs to the block V; X V;
if, and only if, ny; = n;; =1. So |c)| =Y M can be found where the sum is restricted
to j with ¢;< V; X V.. Let A€ C* and compute (A’). for ieN. Then each trace Tr (A")
can be calculated using Tr A=Y/ |¢;|a; where the sum is over diagonal classes. Newton’s
formulae then yield det A and we obtain det c.

This theorem is implicit in Higman [4, § 5]. There is a partial converse to the
above which is given in [9].

Remark 4.6. Det ¢ provides the spectrum of a graph, and, by virtue of the proof
of 4.5, it follows that the intersection numbers determine equivalence classes of graphs
which are at least as fine as those given by the spectrum.
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5. The regular representation of the adjacency algebra. The adjacency ring M, =
M_(R) of a complete colouring c is the set of maps V X V> R which are constant on
colours of ¢ with suitable multiplication. This gives the standard representation of M,
as a ring of matrices operating on R ". The regular representation is given by considering
M, as the set R of maps from the set of colours of ¢ to R. It is obtained as a ring of
matrices as follows.

DEFINITION 5.1. For a colouring ¢ and Ay = (a;)€ My(R) the standard (i.e.
adjacency matrix) representation of A€ M,, define the matrix A, = (a,,) with entries
indexed by colours I, m of c by

= [172m| V28 (4, )N 1(8, ) N mlay.

i,j,te V
These matrices A, acting on R° give the regular representation of M..

Remark 5.2. Higman [4] makes a slightly different definition for complete colour-
ings, namely
a;m = Z I(t, l) N l‘a']

ieV
where (¢, j) € m. This is independent of the choice of ¢, j € V by virtue of Lemma 3.1(ii).
Summing over all such (t#,j) to incorporate this symmetry yields aj,=
lml_‘ Zt,i,jeV l(ta i) n ll I(t’.]) n mlaij' Thus

a, = lll—I/Zlmll/Za;m‘

In other words, rows and columns have been multiplied by certain factors.

PROPOSITION 5.3. Let cg be the colouring defined on a set of |c| vertices by the
regular representation of a colouring ¢ = c;. Then cg is symmetric (respectively, totally
symmetric) if and only if c is. Also, cx = cp.

Proof. First observe that if /€ ¢ and d is the diagonal colour in the same row as
I then ag=|d|"|I7"2 L . nea Ljiijyer @5 = uay for any (i, j) €l and some constant
u # 0 dependent only on I Hence the map (a;)— (a;,) is one-one. It now suffices to
notice from the formula that (a;)” — (a;,)".

Finally, a; contains a nonzero multiple of a; if i, € V are chosen with (¢, i) e,
but for no i can a; appear in a,, if [#m. So cr=c;

Examples 5.4. The following are generic adjacency matrices paired with their
regular matrix images:

fa ¢ ¢ b d df
c a ¢ d b d a b x/ic J2d
¢c ¢ a d d b b a 2d +2¢
b d d a ¢ c¢ and J2¢ V2d a+c b+d ;
d b d ¢ a ¢ V2d V2¢ b+d a+c
ld d b ¢ ¢ aJ
ra b 2d 0 0 0 ]
a b d d b a Y2d 0 0 0
b a d d V2g 2g e+f 0 0 0
g g e 1™ lo 0o o e f Vi
g g f e 0 0 0 f e ~/§g
Lo 0 o +2dV2d a+bl

LEMMA 5.5. If c is complete, the map (a;)— (a;) from the standard to the regular
representation is an R-module ring monomorphism.
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Proof. The property for addition is clear. Suppose (a;) and (aj;) are two adjacency
matrices with images (a;,) and (aj,). Using the formula in Remark 5.2, (b,,)=
(@) (@im) haS by = e, An@m =2 e N72ANV2 L ey (2, ) N ag}{|m] 72| n] 2 x
Yrev [(t k)N m|aj} where (t,j)€ n. Summing over all (¢,j)en and all nec yields
b =172 m| V2 Y v (5 DO I(8, k) N m| Y, agaj which is the Im-entry of the
image of (a;)(a};). As in Proposition 5.3, the map is one-one.

THEOREM 5.6. Let V,, V,, -+, V, be the diagonal colours of a complete colouring
c. Suppose n; is the number of colours in V; XV, so that |c|=Y_, n. Then the matrices
giving the regular representation of M.(C) are block diagonal with blocks of size n; X n;
forisi=st

Proof. Suppose I, me ¢ with [ V;x V. If mg V; x V then a;,, =0 because |(¢, i) N I|
=0 whenever (¢, j) € m. The closure under the transpose map described in Proposition
5.3 ensures that a,,; =0 also. This establishes the block diagonal nature of the matrices,
each block being indexed by the n; colours in V; X V for its rows and columns.

Any map f: V> W of finite sets can be used to obtain a colouring on fV from a
colouring on V. In terms of graphs the map f replaces each set f '(w) of vertices in
V by a single vertex we fV. In practice, f can be viewed as an equivalence relation
on V which identifies various vertices.

DEerFINITION 5.7. (i) Forsubsets S, T of V we define ¢(S, T) ={c(s, t)|s€ S, te T},
counting each c(s, t) with the appropriate multiplicity.

(ii) If f:V> W is a map of finite sets and ¢ a colouring on V then fc is the
colouring on fV defined by fc((i, j)) = c(f i, £ ).

(iii) In case f is written as an equivalence relation ~ on V (mapping V to V)
we write ¢ for the colouring fc on V.

LemMA 5.8. If A=(ay) is a generic matrix for the colouring c on V and 7 is an
equivalence relation on V then ¢ has adjacency marix A with entries

G =|u""}0| 2 L ¥ a; foruveV.

icu jev

Note, however, that A need not be generic for C.

Proof. Put a,,=%, ., %;., a; foru,ve V. Then (a,,) is an adjacency matrix for ¢
Forany linear function f =3, ;.\ A;a; of the a;’slet | f| =X, ;. [A;]- Then ||a,, || = |u]|v]
and ||d,.| =|u|"*v|'*. Hence a,, = a,, if, and only if, d,,= d,,. So (d,,) is also an
adjacency matrix.

THEOREM 5.9. Define an equivalence relation ~ on V by i~j if, and only if,
c(1,i)=c(1, j) where c is a complete colouring. Let A— A be the map M_(R)-> Mz R)
given in Lemma 5.8. Then A is the first block of A, in the regular representation when
the indices are paired c(1, i) with i.

Proof. Let (a;) be an adjacency matrix for ¢, (d;) the image under 7 and (ay,,)
the first block of the regular matrix.

Write i instead of c¢(1, i) to index the regular matrix block. So

7=le( D", DI T _ay

iei

=@M e, D™ ¥ ay=dy

iei,jej

since | Vy| il | =|c(1, i)| where V, is the first diagonal colour.

Remarks 5.10. Naturally, Theorem 5.9 is the fastest way to obtain the regular
representation. Moreover, this representation is independent of the vertex numbering.
By the definitions, it is entirely determined by the intersection numbers, and conversely.
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6. Isomorphisms.

DEFINITION 6.1. Let c and d be colourings on V and W respectively. An isomorph-
ism from c to d is a bijection f: V> W such that fc = d in the notation of Definition
5.7. If, in addition, ¢:c—~>d is a bijection between the colours of ¢ and d then f is
called a ¢-isomorphism if f induces ¢ on the colours. In particular, if V=W and c=d
then an isomorphism is an automorphism and vice-versa; and when ¢ is the identity,
then a ¢-isomorphism is just a strict automorphism. In general, f will map the diagonal
colours of ¢ onto the diagonal colours of d and applying the transpose to colours
commutes with the map f induces on colours. We will require ¢ to have these properties.

If ¢ and d arise from two graphs then ¢ is usually the map which matches
properties of one graph with those of the other. Then the existence of a ¢-isomorphism
from c to d is equivalent to the graphs being isomorphic. By viewing f: V> W as a
re-naming of subscripts, we have (cf. Lemma 2.2(i)) the next lemma.

LeEMMA 6.2. Let f: V> W be injective and c, d colourings on V. Then

(i) a generic matrix for c is generic for fc;

(ii) fed)=f()f(d); f(c+d)=f(c)+f(d); f(cT)=(fe)";

(iii) f(¢)=fe.

DEFINITION 6.3. Let ¢, d be symmetric colourings =c;. Suppose ¢:c>d is a
bijection of colours which restricts to a bijection between the diagonal colours and
which commutes with the transpose map. There is an induced R-module isomorphism
®:R°> R? of regular representations. If ® commutes with multiplication, then it
extends to a map ®*: R¥>R¥:AB> ®(A)DP(B) for A, Be R". This yields a bijection
¢?: c?—> d*. Equivalently, if for all i, je V there are r, s€ W with {¢c(i, t) X d)c(t,j)lte
Vi={d(r, t) xd(t, s)|t € W} then ¢ has a natural refinement to a bijection ¢2: ¢*>~ d?,
namely ¢2c%(i, j) = d*(r, s). Note, however, that ¢> can be found from the multlphca-
tions R®XR®—> R® and R x R4 R¥ without referring back to the standard rep-
resentation. In the same way, it may be possible to define ¢":¢">d’ for all r>0.
Then iteratively one obtains a bijection ¢:é-d inducing ®: R°~> R, If this is an
R-ring isomorphism, i.e. preserves multiplication, or equivalently, ¢*> = ¢, then we say
& is complete.

There is an obvious correspondence between adjacency matrices A = (a;) € M.(R)
and B=(b,)€ M,;(R) when there is a bijection ¢:c->d namely that with a; = b,
whenever ¢c(i, j)=d(r, s). Again, let ®: M (R) > M,(R) denote the map. We say ¢
and d are cospectral (under ¢) if, and only if, det A=det ®A for all Ae M.(R), (i.e.
if, and only if, det ¢ = det dy®) and ¢ gives a bijection between diagonal colours.

THEOREM 6.4. Suppose f:V > W is a ¢-isomorphism of the colourings c, d. Then
there is a natural way of refining ¢ to a complete bijection ¢ : ¢~ d independently of f so
that fis a ¢- -isomorphism from € to d.

Proof. ¢ and d are isomorphic under f by 6.2(iii). Since f(AB) = f(A)f(B) for all
A,Be M.(R), ¢*:c*>d*> may be defined by ¢>c’(i,j)=d*(fi fj)={d(fi, t) %
d(t,fj)lte W}={dc(i, t) X pc(t,j)|te V}. So ¢ is obtained by iteration, and it is
complete.

THEOREM 6.5. Suppose ¢ is a bijection between the colours of ¢ and d, and ¢ can
be refined to a complete bijection ¢ : ¢ d of colours. Then M (C) and Mz(C) are similar,
and c and d are cospectral (under ¢). If V,, - - -, V, are the diagonal colours of ¢ and
¢V, =V, for all i then there is a unitary matrix U, necessarily block diagonal under the
partition given by the V;’s, such that U®A = AU for all adjacency matrices A of ¢. Here
A and ® A have identical characteristic polynomials. There is also a block diagonal matrix
Uq with rational entries such that Ug®A = AUq for all such matrices A. Moreover, U
and Ug may be chosen to have row and column sums equal to 1.
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Proof. The regular representations are identical except for the indexing by ¢ or
d. Now apply Theorems 4.2 and 4.5.

There is a unitary matrix U € M,(C) independent of the choice of A such that
®A = U'AU. Decomposing into blocks under the diagonal colours gives ¥, U, ®A, =
Y. AyUy If A is a generic matrix whose elements are independent of those inU, then
equating terms from the block A; yields U;®A; = A;U; and U, =0 for ¢+ i. Hence
U is block diagonal with unitary diagonal blocks.

The matrix Ug is obtained by observing that without loss of generality U has
algebraic number entries and then summing U®A = AU over all conjugates. A=J =
DA gives the row and column sum property.

ALGORITHM 6.6. The graph isomorphism problem is that of finding a permutation
matrix U such that U®PA = AU for corresponding adjacency matrices A, ®A of two
graphs. This has been translated into finding a permutation f: V> W of the vertex
sets which is a ¢-isomorphism of the appropriate colourings ¢, d. By Theorem 6.4 there
must be a complete bijection ¢ : ¢ > d. A basic check for isomorphism therefore involves
iteratively forming ¢*, d*' and ¢ to obtain ¢: &> d. This establishes that the regular
representations are the same so that the standard representations by adjacency algebras
are similar and the graphs co-spectral. The partitioning of the vertices via the diagonal
colours serves to restrict the possible permutations if the graphs are isomorphic and
standard techniques (see [7]) enable a tree of completions to be used to yield
isomorphisms.

To construct the completions for two graphs and the map between their colours,
represent the graphs by adjacency matrices with integer entries that are equal for edges
if and only if they have identical labels in the graphs. These entries can be chosen in
the range 1 to n” for n=|V|. If this can be done in O(n’) time then the 2log, n
squarings lead to an O(n®log n) time bound on completion, assuming that integers in
the range 1..n* can be accessed and compared in unit time. First of all, observe that
even bubble sort will sort the elements of each row into order in O(n®) time, providing
a permutation to reorder the elements as they appear in the row, and information
about repeated elements. The same applies to columns.

Each of the n” elements of the square is given by a formal dot product of a row
with a column. The information about how to sort both row and column must be
combined to sort the n-tuple in linear time. For each distinct value in the row we have
a series of adjacent spaces in the final sorted n-tuple into which terms containing that
value will be placed. Assign a pointer for each such value, setting it to the first such
place which is empty. Now use the column order to take each term in turn, placing it
according to the corresponding row pointer, and incrementing that pointer. This sorts
the n-tuple in O(n) time.

The other part of the squaring procedure involves renumbering entries to obtain
new numbers which are equal if and only if the corresponding sorted n-tuples are
equal. This is done by renumbering using the first term, then taking the new numbering
with the second term, and so on. Thus, all n-tuples must be sorted first, requiring
O(n®) space to be available. Each n-tuple is represented by a vector of 2n integers in
the range 1.. n’. It suffices to show how to incorporate the first element of each into
the new numbering in O(n?) time to achieve the O(n?) time requirement for squaring.

Generally, a unique numbering is obtainable for m ordered pairs of integers in
the range 1..k in O(max (k, m)) time. We apply this to pairs given by the current
matrix numbering with the next element in each vector. The numbering is achieved
by setting k list head pointers to zero and scanning each pair to set up linked lists
connecting pairs with the same initial element; then each list is scanned to form sublists
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divided according to the second element; finally the lists are scanned again, assigning
a new number of each sublist: O(k+ m) time.

The above process must be carried out simultaneously on both graphs to ensure
common renumberings. If at any point a discrepancy arises—differing multiplicities
between the two adjacency matrices—then the graphs cannot be isomorphic, and
indeed, eventually there are no numbers in common in the completions. If the comple-
tions do agree then the graphs are similar if not actually isomorphic.
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UPDATING LU FACTORIZATIONS FOR
COMPUTING STATIONARY DISTRIBUTIONS*

R. E. FUNDERLICt AND R. J. PLEMMONS#

Abstract. The computation of stationary probability distributions for Markov chains is important in
the analysis of many models in the mathematical sciences, such as queueing network models, input-output
economic models and compartmental tracer analysis models. These computations often involve the solution
of large-scale homogeneous linear equations by Gaussian elimination, where A is a Q-matrix, i.e., A= (a;;)
is irreducible, a; =0 for all i # j and has zero column sums. The stationary distributions are the components
of the unique solution vector x of positive components whose sum is one. Stable direct methods for computing
x by triangular factorization A = LU have received considerable attention recently and the purpose of this
paper is to provide a stable method for updating the factors L and U in O(n?) flops in the case where a
column of A is modified. Updating formulas are derived here using an approach similar to that for updating
the Cholesky factor of a symmetric positive definite matrix after the addition of a rank one matrix. The
algorithm is effective more generally for any matrix that has a stable LU factorization and for which the
updated matrix has a stable LU factorization. An error analysis for thw LU update algorithm is outlined
along the lines of that given for the Cholesky update by Fletcher and Powell. Details of the algorithm based
on the error analysis and other considerations are given.

AMS(MOS) subject classifications. 65F05, 15A23, 15A51, 68C15, 60J20

1. Introduction.

1.1. Background. Consider an n X n real irreducible matrix A= (a;) with a; =0
forall i #j and with }.]_, a; =0, for 1 =j = n. Adopting the terminology in Rose (1984),
and elsewhere, we call such matrices Q-matrices. They arise in several areas, including
the analysis of queueing networks (see, e.g., Kaufman (1983)), in the analysis of
compartmental biological models (see, e.g., Funderlic and Mankin (1981)), in the
input-output analysis of economic models (see, e.g., Berman and Plemmons (1981,
Chap. 9), and even in the least squares adjustment of geodetic networks (see, e.g.,
Brandt (1983)). Q-matrices form a subclass of the widely studied class of singular
irreducible M-matrices and thus they possess several important properties (see, e.g.,
Berman and Plemmons (1979, Chap. 6). Of particular interest to us here is that they
possess LU factorizations where L and U are M-matrices. If L is chosen with ones
down its main diagonal, the factorization is unique and u,, =0 (see Funderlic and
Mankin (1981)).

Assume that a Q-matrix A is given in its LU factored form

A=LU=Y lu,

where L and UT are lower triangular matrices with L having ones on its diagonal, the
columns of L denoted by I, and the rows of U by u}. Such factorizations can be
computed in a stable way by Gaussian elimination since Q-matrices are diagonally
dominant. In particular, the elements of A do not grow at all in magnitude during the
factorization process (see, e.g., Funderlic and Plemmons (1981)). The stability of the
LU factorization is not affected by a symmetric permutation PTAP of A, where P is

* Received by the editors January 5, 1984, and in revised form August 6, 1984. This research was
sponsored by the Applied Mathematics Sciences subprogram of the Office of Energy Research, U.S.
Department of Energy under contract DE-AC05-840R21400 with Martin Marietta Energy Systems, Inc.
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Ridge National Laboratory, Oak Ridge, Tennessee 37831.
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Carolina 27695-8205. This author’s research was sponsored in part by the National Science Foundation
under grant MCS-82-19500 and the Air Force Office of Scientific Research under grant AFOSR-83-0255.

30



UPDATING LU FACTORIZATIONS 31

generally chosen to reduce the fill-in in computing L and U where A is large and
sparse. This paper is concerned with computing in an efficient and stable way the LU
factorization of the modified matrix

(1.1) A=A-yel,

where y is such that A remains a Q-matrix. Here the vector e, denotes a unit axis
vector with one as its kth component, zeros elsewhere, and y denotes a column vector.
Thus A is modified only in its kth column. The LU factorization of A will be denoted
by LU with the columns of L denoted by I; and the rows of U by ). Because L and
U are M-matrices their sign pattern implies that if a; # 0 and j> i, then u; #0 and
for j <i if a; #0, then I; # 0. Therefore, if only the nonzero entries of the kth column
of A are modified, then L and U can have nonzero elements only where L and U
have nonzero elements. Thus the same data structure storage scheme for L and U can
also be used to store the modified factors L and U. Of course I and U can be calculated
in O(n®) operations by Gaussian ellmlnatlon on A, but we will be concerned with
updating L and U to compute L and U in only O(n2) operations, in the spirit, of
e.g., Bennett (1965), Fletcher and Powell (1974), Gill, Golub, Murray and Saunders
(1974), or Gill and Murray (1977).

1.2. Modification of one column. Wilkinson (1977) has said that the Sherman and
Morrison formula

1.2) (A=) =A"-[1/(v"A'y-1)]A 'y A~}
where y and v are column vectors is “...perhaps the most widely used result in
numerical linear algebra and linear programming . ..” The earliest appearance of this

formula is probably Duncan (1944, p. 666). The solution to the nonsingular modified
system of equations

(1.3) (A—yT)x=b,
when the solutions to Ax = b and Az =y are known, follows from (1.2) and is given by
(1.4) f=x—-(v"x/(v"z—1))z.

Note that for nonsingular A—yv”, v7z# 1 since otherwise z is in the null space of
A—yo™.

In Funderlic and Mankin (1981) it was shown for Q-matrices that the solution
to a modified homogeneous system can also be obtained from (1.4). In fact if y and
b are any vectors in the range of any matrix A and the solutions to Ax=b and Az =
are known, and if b 1s also in the range of A—yv”, then a solution to (1.3) is also
given by (1.4) when v”z # 1. A continuation of these results to the case of a general
singular irreducible M-matrix was given in Harrod (1982, pp. 76-78). If v"z=1 and
b =0, then a solution is given by x=1z.

If v7z = 1 while b # 0, then there are two cases to consider. The underlying principle
is that for consistent systems Ax = b, a solution is A”b where A™ is any inner inverse
of A, i.e. AA"A=A. Inner inverses are often called {1}-inverses (see e.g. Ben-Israel
and Greville (1974)).)

Case 1. If the range of AT contains v, then since Az=y and v’z =1, it follows
after some manipulation that any inner inverse of A, A”, is an inner inverse of A
Thus x = A7b is a solution of the consistent system Ai b
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Case 2. If v is not in the range of A”, then setting B=1— A~ A where A is any
inner inverse of A implies v"B # 0. It follows that

1
A — BBTw ™A™
v"™BB™p B vv

is an inner inverse of A, and therefore
. 1
x=x—m(BBTva)x
is a solution of (1.3).
Though the above discussion on updating is already more general than necessary
for our purposes, more could be said. When a rank one matrix is subtracted from a
given matrix, the rank of the resulting matrix may only differ by at most one from that
of the given matrix. For example the condition v"z=1 implies that the rank of
A=A-yv" is one less than the rank of A (cf. Case 1 above) if and only if v is in the
range of AT see e.g. Householder (1964, p. 33, ex. 34). Therefore when the rank of A
is less than that of A, the null space of Ais generated by the null space of A and the
vector z. This raises the question, which we shall not pursue, of characterizing com-
pletely the solution spaces for A% = b depending on whether rank(A) is one less, one
more, or the same as that of A. For a further discussion of how the rank of a matrix
A differs from the rank of a difference A— S, see Cline and Funderlic (1979).
Finally, we mention that Meyer and Shoaf (1980) have studied the general problem
of updating Markov chains by updating the group generalized inverse of A. Our
approach is different in that we update a triangular factorization of A instead.

1.3. Homogeneous systems. The main application we have in mind here is the
solution of homogeneous systems of the form

(1.5) Ax=0

where A is a Q-matrix. Our purpose is to compute the unique stationary probability
distribution vector x = (x;), x;>0Y, x; =1, which solves the homogeneous system (1.5).
Here A might be considered to be the transfer rate matrix for a finite, homogeneous,
ergodic Markov process. Both iterative and direct methods for computing x have been
extensively studied in the literature (see, e.g., Kaufman (1983), Funderlic and Mankin
(1980), and Harrod and Plemmons (1984)). A combined direct-iterative method was
studied by Funderlic and Plemmons (1984). Our interest here is in direct methods for
computing x, based upon an LU factorization of A. In particular, if A is updated to
A given in (1.1), then the updated L and U can be used to compute the updated
stationary distribution vector X which solves

A% =0.
A typical application in compartmental analysis would be where one needs to
change the rates at which a material leaves a compartment. For example, the carbon

model depicted by Fig. 1 (Gardner, Mankin and Emanuel (1980) and Funderlic and
Mankin (1981)) could have a transfer rate matrix given by

S50 —.090 0 0 0

-.50 47  -0.061 —0.080 0

A= 0 -.20 0.061 0 0
0 -.18 0 d2 —.0011

0 0 0 -.04 .0011
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STRATOSPHERE
TROPOSPHERE
OCEAN
SURFACE TERRESTRIAL
( l BIOTA
OCEAN
DEEP

GLOBAL CARBON CYCLE: MODEL 3

FI1G. 1. A carbon model.

A simple way, suggested by Funderlic and Mankin (1981), to solve for the
steady-state vector x from the system Ax =0 is to obtain an LU factorization of A:

1 0 0 0 0
-1 1 0 0 0
L=} 0 -.53 1 0 of,
0 -47 -1 1 0
0 0 0 -1 1

S50 —.09 0 0 0

0 38 —.061 —.08 0

U=1{0 0 029 —.042 0
0 0 0 .04 —.0011

0 0 0 0 0

and solve the equivalent system Ux =0, to give
xT =(.0020, .0113, .0370, .0254, .9242),

normalized so that ), x; =1. Let the rates out of the second compartment be changed
so that the second column of A is

a=(-.15,.49, —.18, -.16,0)".
Then if the second column of A is denoted as a, we have
A=A-yel,
where
y=a—a=(.06,-.02, —.02, —.02, 0).
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Then Az =y can be efficiently solved for the vector z using the LU factorization of
A: Lp=y, Uz=p. An unnormalized X may be calculated from (1.4) from which the
normalized

% =(.0038, .0127, .0374, .0253, .9209) "

is calculated. From premultiplying Uz=p by e}, it follows that p,=0. Thus the
back-substitution for z may be started with an arbitrary z, since u,, =0. If the new
second column of A is modified further, new vectors X can continue to be efficiently
calculated from (1.4), with v=e,.

Using the terminology of C. B. Moler, we define a flop to be a floating point
calculation consisting of one addition, one multiplication, and a little indexing, such
as ¢; = s + aygby. Then assuming that the LU factorization of A has already been carried
out, O(n?) flops are required for the solution of Az=u and a single flop is required
for (1.4), since v = ¢, where the kth column of A is being changed.

1.4. Why update L and U? As long as only one column of A is to be modified
in sequence, the strategy of the previous section is quite appropriate. However, if we
now wish to follow a modification of column k by a modification of column j # k,
then there is a problem because we now have no LU factorization of A — yer. Though
in compartmental analysis the modification of only one column occurs frequently, in
many Markov processes several different columns need to be changed. Consider the
following simple queueing network given by Fig. 2, where r; is the probability that a
customer exiting station i will proceed next to station j. At any instant the network is
in one of the six states of Fig. 2.

For example in state 3 there is one customer at station 1 and one customer at
station 3. The rate of transition from state 3 to state 5 is given by w,r,,, where u; is
the service rate of the server at service facility i.

The network of Fig. 2 leads to the following infinitesimal generator or transition
rate matrix (of order equal to the number of states)

[ 511 M1tz Mals 0 0 0
M2T21 §22 M2tz Mtz MaTy3 0
S= | pary  Mars §33 0 M1l Malis |,
0 M2T2q 0 Sa4 M2T23 0
0 M3l M2l M3l32 §s5 M2T23
| 0 0 M3T3y 0 M3T32 Se6 |
2
@ . '24r @ 3 SERVICE FACILITIES (STATIONS)
13 23 EACH CONTAINING A SINGLE
ra rap EXPONENTIAL SERVER.
@ 2 CUSTOMERS
STATE NUMBER 1 2 3 4 5 6
STATE (2,0,0) (1,1,0) (4,0,1) (0,2,0) (0,1,1) (0,0,2)

FIG. 2. A simple queueing network.
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where S has nonnegative off-diagonal elements and zero row sums. The off-diagonal
elements are determined from Fig. 2, i.e. s; is the rate of transition from state i to
state j. The required stationary probability vector x is obtained by solving x"S =0 or
STx =0. To determine an associated stochastic probability matrix Q, consider

STAtx+x=x.
If the scalar At is chosen such that At=d ™', where d =max S, then
Q=AtS+1

Let A=S". Observe that if r; is changed, then 3 columns of A are altered. This s again
illustrates the need to update LU factorizations to obtain updated solutions of Ax=0.

2. Updating LU factorizations of Q-matrices.

2.1. The algorithm. Bennett (1965) gave a general algorithm to update an LDU
factorization of a nonsingular matrix by a rank m matrix XCY”, where X and Y are
n X m matrices. Bennett credits J. C. Butcher with pointing out to him the triangular
factors of a matrix of the form I+xx”. Gill et al. (1974) and Fletcher and Powell
(1974) in the same volume of ‘“Mathematics of Computation” published papers each
of which considered updating an LDL” factorization of a positive definite matrix after
a rank one update oxx”. . It was pointed out that even when a Bennett update of a
general matrix allowed an LDU factorization, the factorization could be unstable (e.g.
Gill et al. (1974)). In particular, the elements of L and U can become relatively large
in magnitude. Furthermore, even for symmetric positive definite matrices the given
matrix dictates branches of the algorithm to insure stability (see e.g. Fletcher and
Powell (1974, p. 1074)). For Q-matrices a similar situation occurs. This will be
elaborated on further in § 3.

The Gill et al. (1974) discussion is particularly compact as they point out that

A+0zzT=LDL" + 02z = L(D+ow")LT = L(LDLT)L",
where v is obtained from Lv = z. Alternatively Fletcher and Powell (1974) write
=Y IdlT and A=Y Idir.
i=1 i=1
They note that vectors T,, z, and the scalars d, and o, can be determined so that the
first components of I, and z, are respectively one and zero and
(2.1) dllll;r+0'ZZT=&1T1717-+0'22222T.

When equation (2.1) is subtracted from

Y diil+ozz" =Y dliT,
i=1 =

Carrying out the process used to determine T, 15 Z25 d, and o, n times gives the complete
factorization of A. A key observation here is that the reduced problem at each step is
that of updating the triangular factorization of a symmetric positive definite matrix.
We chose the Fletcher and Powell approach to derive the formulas for our situation.
To simplify the notation we write the analogue of (2.1) without subscripts and use
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primes for row vectors:
(2.2) W'+ xy' = '+ zw'.

Thus an LU factorization Z:,l liuﬁ of A is to be updated by xy’. Note that we need
only sum to n—1 here since u,=(0,---,0). In this section and what follows, the
vector x is associated with the update rather than with a solutlon to Ax=0. We regulre
column vectors I and z and row vectors &' and w' such that eJz=w'e,;=0and e] I =1.
This gives a problem of dimension one less to be updated:

Z Lui+zw'= Z I,

if I=1,, u=u!, [=1I, and &' = 4}. Further, denote the first components of x, y' and u’
by & n and u. Then relation (2.2) implies

(2.3) d'=u'+¢y,
and
(2.4) Al = ul+nx,

where g = u + &n. These relations follow by premultiplying relation (2.2) by e; and
post multiplying by e,. If there are vectors z and w' that satisfy (2.2), then z must be
a linear combination of x, and I and w' of y’ and u'. Furthermore, z and w' are unique
vectors up to scalar multiples. The choice

(2.5) z=x—¢l

is effective and implies from (2.2) that

(2.6) aw'=puy' —nu'.

The number of multiplications can be reduced in the algorithm by observing that
2.7 I=1+8z

and

(2.8) w=y'—pBi

where B =7/ 4. Except for updating the final one-dimensional problem, 4 must be
nonzero since it is a diagonal element of U. Thus if B: =1/ i;, an algorithm can be
given from (2.3), (2.6), (2.5) and (2.4). Alternatively (2.8) can be used for (2.6), and
(2.7) for (2.4). Define the vectors x, = x, y; = y' and the scalars & = e[ x, 7, = yle, u; =
uje; and g, = u; + &m,. The algorithm therefore takes the form for i=1,2,---,n~—1

(2.9a) ui=ui+&yi,

(2.9b,¢) Yi=pi/ g ot Bi=m/
(2.9d,e) Yier=yyi—Bui or yi,=yi— B,
(2.91) Xip1=Xx; — &l

(2.9g, h) li=yli+Bx; or [ =L+Bx.,.

We observe here that the reduced problem at each step is that of updating the
LU factorization of a Q-matrix, so that a stable factorization exists at each step. This
follows since after each step of Gaussian elimination on A, the unreduced part remains
a Q-matrix (see, e.g., Funderlic and Mankin (1981)).
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2.2. Interpretation as column exchanges and partitioning. In Gill and Murray (1977)
for example, an alternate procedure is discussed for the case where A is updated by
deleting and adding a column. This is known as a column exchange. Here, however,
it is necessary to add the column at the end and the algorithm requires increasingly
more steps as more columns are exchanged. In addition, some pivoting is gnerally
necessary to preserve numerical stability.

The formulas (2.9) can be thought of as being associated with matrices L, L, X,
U, U, and Y with the first three lower triangular and the last three upper triangular,
When the kth column of A is modified and k> 1, then certain elements of L and L
are identical as are certain elements of U and U To see this suppose we are given
the factorization A= LU and wish to update A to A=A- yer, where, as before, we
assume that the updated A remains a Q-matrix. Further, let a, = (s, @, t)” denote the
kth column of A where s has dimension k—1, « is a scalar and ¢ has dimension n—k.
Also let = a—y=(u, B, v)" be partltloned conformally with a,. Then partitioning
A, A, L, U, L and U conformally, we have the following block factorizations:

Ay s Ap L, 0 0 (U, uw, Uy,
A=|zT a wi|=LU=|I] 1 0 0  wy u;
Ayt Axn Ly L Lxn| |0 0 Uy|
and
. Ay u Ap f,“ 0 0 -011 i 012—
A=|zT B wi|=LU=|IT 1 0|0 il i,
Ay v Ap [ Ly, I Ly, L 0 0 Uy

Now observe that
1) L, = L,, and Uy, = Uy, since A,; = Ly, Uy, uniquely,
2) Uy, = LiJAp = Uy,
3) Loy = Ay Uyl = Ly,
4) I = 2TUit = 1,
5) d; =wl —lJUy, = uj.

Then L and U have the block forms

. Lll 0 0 Ull ';l UlZ
L= l;r 1 0 . U = 0 ﬂkk u;r
Ly, I, L, 0 0 0

This means that only the (n — k)-dimensional vector l~2, the (k — 1)-dimensional vector
4,, the scalar 4 and the (n — k)-dimensional matrices L,, and 022 need to be
recalculated in the updating process.

Bunch and Rose (1974) have also considered updating problems in conjunction
with partitioning, tearing and modification schemes for general linear sparse systems.

2.3. Simple Fortran implementation. Here a simple Fortran implementation of the
formulas (2.9) using~(2.9a, ce,f, h) is given by Fig. 3. Let UN and LN be Fortran
arrays that denote U and L respectively. Further assume that UN and LN are the
same as U and L initially. It is assumed that xe; is added to LU so that initially
y' = e is in the Fortran Y vector and x in the Fortran X vector. As the algorithm
progresses the appropriate leading components of X and Y are implicitly assumed zero.
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SUBROUTINE UPDATE(N,K,L,LN,U,UN,X,Y)
REAL L(N,N),LN(N,N),U(N,N),UN(N,N),X(N),Y(N)
NM1=N-1
DO 25 I=1,NM1
XI=X(I)
IF(I.LT.K)GO TO 5
UN(I,I)=U(I,I +XI*Y(I)
BETA=Y(I)/UN(I,
5 CONTINUE
IF(I.LT.K)UN(I,K)=U(I,K)+XI
IP1=1+1

00 10 J=IP1,N
X(3)=X(J)-XI*L(J,1)
10 CONTINUE
IF(I.LT.K)GO TO 20
DO 15 J=IP1,N

UN(T,3)=U(T,3)+XI*Y(J)
( )=Y () -BETA*UN(I,J)
LN(J,I)=L (J,I)+BETA*X(J)

15 CONTINUE
20 CONTINUE
25 CONTINUE
RETURN
END

F1G. 3. A simplified update subroutine.

Though the subroutine of Fig. 3 is not what would be implemented in a high
quality subroutine, it helps illustrate several points: it is not necessary to have matrices
to represent X and Y. If a flop is defined as in § 1.3, then the algorithm, ignoring
lower order terms, takes between 2n” and n?/2 flops as k varies from 1 to n. In the
final suggested algorithm the only array storage required is the original matrix plus
the x and y vectors. See § 4.

3. Error analysis. Fletcher and Powell (1974) have given a complete a posteriori
error analysis for the symmetric positive definite update problem of an LDLT factoriz-
ation. This analysis is quite tedious, but it does carry over for LU factorizations of
diagonally dominant irreducible M-matrices.

A crucial point in the Fletcher-Powell error analysis (1974, inequality 5.16, p.
1080) is that the error term (at the ith stage) contains elements from the Cholesky
factorizations of A and A. These elements are not unacceptably large since the Cholesky
factorizations of A and A are stable. Likewise the error term for the update of a
Q-matrix contains elements of the stable LU factorizations of A and A. What can be
inferred is that if any matrices A and A have given stable LU factorizations and differ
by a rank one matrix, then there is a stable update algorithm which will produce a

stable LU factorization for A from that of A. Following the analysis of Fletcher and
Powell, when the economical (2.9¢) and (2.9h) are used, a; L./ M occurs in the error term
where the bar indicates a calculated value. Thus when the ith diagonal element of U
is large compared with the ith diagonal element of U, unacceptable growth may occur.
To offset this we use the more expensive formulas (2.9d) and (2.9g) when y = w/i < .
This is in line with the Fletcher and Powell choice. When the more expensive formulas
are used, wu/@&; occurs in the error term. For most problems w;/&; is seldom less than
% 50 that realistically the number of flops does not appreciably increase over that given
in the simplified subroutine of Fig. 3.

When g is relatively large with respect to u, lii’ tends to lose the contribution of
x when (2.9h) is used, and conversely when (i is relatively small, cancellation can
occur when (2.9g) is used. Similar comments can be made with respect to xy’.

The Cholesky process can break down for a symmetric positive definite matrix A.
That is, if A is poorly conditioned, a zero or negative element may appear on the
diagonal of L, Wilkinson (1968). Similarly the update process may break down and
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much research has been done to alleviate that problem, e.g. Fletcher and Powell (1974),
Gill and Murray (1977) and Dax (1983). In the symmetric positive definite case no
difficulty can occur when the update is of the form oxx” with o> 0. The difficulty
occurs when o <0 and has lately been called downdating. Stewart (1979) has shown
that when downdating breaks down or nearly breaks down in the Cholesky process,
L is an ill-conditioned function of L and the update. In any case the methods for
preventing or correcting a breakdown for Q-matrices are more complicated than that
for symmetric positive definite matrices. For Q-matrices the distinction of updating
and downdating cannot be made, but rather the analogue of o can change signs at
each step. Though analogous strategies to those for the symmetric case can be made
for Q-matrices we will not pursue such strategies.

4. Implementation based on error analysis and storage. The purpose of this section
is to indicate a way to implement the update algorithm of (2.9) with error analysis
considerations in essentially n”+2n storage locations. Again the problem is to update
an n X n matrix LU by xe; so that

LU=LU+xel.
The algorithm depicted by Fig. 4 assumes that the matrices L and U are stored in the

For i=1,2,..,n-1 (4.1)

fex

Ifi <k, then

(92) | o «ay +¢ (4.2)
For j=i+l,i42,...,n

(2.9f) in cxp—fay

otherwise

t ooy

(R92) | ay«cau+éy

If a;; < 0, then error exit (4.3)

otherwise

(Rob) | ye«t/ay

(%) | Beyi/ay

If y < 1/4, then

For j=a+1,442,., n
t -y
(.94) Yyt ~Bay
(R.92) oy <o+ §t
t « aji
(2.92) gy « YL + Bz;
(2.9f) ;x5 —§t
other;ﬁ;e-
For | j=i+1,i+2,..,n (4.4)
(2.92) o ¢ o+ Ey;
(2.9¢) Yicy;—Bey
(2.9f) zj e xz; — £ ay
(2.9h) o « aj; + B z;

F1G. 4. The update algorithm.
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array A with the diagonal elements of U as diagonal elements of A and those of L
implicitly assumed to be 1. The matrices L and U will overwrite L and U in the array
A. In practice matrix sparsity or architecture considerations may suggest other data
structures. The vectorized formulas (2.9) derived in § 2 are referenced down the left
side of Fig. 4. In the formulas (2.9), x; and y; denoted column and row vectors whereas
in Fig. 4 we start with y'=e; and x is the kth column of A=LU. The x vector is
overwritten at each step of the algorithm and the y’ vector is overwritten from the kth
step on. Thus in Fig. 4 x; and ] are the jth components of the current x and y’ vectors.
The algorithm consists of one outer loop (4.1) with three inner loops. The first inner
loop is all that is executed until i = k. The choice between the other two inner lops is
made depending on how u;;/#; compares with 1/4. The outer loop only goes to n—1
because u,, = t,, =0 for Q-matrices. If the algorithm were to be modified for nonsin-
gular matrices, the outer loop would go to n rather n — 1. While i <k, the vector y' = e,
is unchanged so that from (2.9a), only the kth component of each of the rows of U
are changed by the ith component of x. This is depicted in (4.2). Since the diagonal
elements of Q-matrices are mathematically positive, an error exit is indicated at (4.3)
if 4; =0. The loop at (4.4) depicts the same formulas that were used in the simplified
Fortran subroutine of Fig. 3.

5. A worked example. If the kth column of A, q,, is to be changed to d,, then
A~=A+(ﬁk+ak)e,;r,

and therefore in the notation of § 2.1, the vector x = d, — a,. Alternatively we can start
with the kth column of A zeroed out so that x = d,. The LU factorization to be updated
in the case of the zero kth column is the same as when a, # 0 except the kth column
of the upper triangular matrix U has as its kth column a zero column. Let

5 =2 0o -2 -1
-2 58 0 —-32 —46
A= |-1 -26 0 -12 -28
-1 -1 0 96 -—1.1
-1 -1.1 0 =32 9.5
The triangular factors of A are
1 0 0 0 o0
-4 1 0 0 o0
L=|-2 -6 1 0 0
-2 -1 =7 1 0
-2 -3 -3 -1 1
and
5 =2 0 -2 -1
0 5 0 -4 -5
U=|0 0 0 -4 -6
0 0 0 6 -6
0 0 0 0 0
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Let xT=(-2,—1,8,—1, —4) and A= A+ xe]. Then to 3 significant digits
1 0 0 (V)

-4 1 0 0 0
L=|-2 -6 1 0 0
-2 -1 =242 1 0
-2 -3 =758 -1 1
and
s -2 -2 -2 -1
0 5 -18 -4 -5
U=|lo 0 652 -4 -6 ,
0 0 0 7.83 -3.25
o0 0 o 0 0
—2 0 0 0 0
-1 -18 0 0 0
X=|8 76 652 0 0
-1 -14 -158 298 0
|—4 —44 -494 -298 0
and
0 0 1 0 0
0 0 1 0 0
y=|l0 0 1 0 0
0 0 0 .613 920
0 0 0 O 1.18

Notice that when A = A+ xeZ, the first column of X is x and the first row of Y is e;.
Since the first n—1 column sums of L are zero, (2.9f) implies that the column sums
of X are zero. For the first k—1 steps of the algorithm, 8 and vy are not calculated.
However, B;=.153, y;=0, B,=.0783, and y,=.766.
Initially the L and U matrices are stored in the A array as
5 -2 0 -2 -1

-4 5 0 -4 -5

-2 -6 0 -4 -6,

-2 -1 =7 6 -6

-2 -3 -3 -1 0
and on return from the algorithm described in the last section the A array is overwritten
by

5 -2 -2 -2 -1
-4 5 -18 —4 -1
-2 -6 6.52 -4 -6

-2 =1 -242 783 =325
-2 =3 =758 -1 0
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THE GEOMETRY OF m-SEQUENCES: THREE-VALUED
CROSSCORRELATIONS AND QUADRICS IN
FINITE PROJECTIVE GEOMETRY*

RICHARD A. GAMEST

Abstract. Hyperplanes H and sets H" of PG(n—1, 2) are identified with pairs of binary m-sequences
of span n. If H" is a quadric, then a three-valued periodic crosscorrelation function between the m-sequences
results. Conjectures concerning three-valued periodic crosscorrelation functions of binary m-sequences
specialize to conjectures concerning the degeneracy of quadrics of the form H'. The main result is that if
n=2%m, with m odd and k=2, H< PG(n—1,2) is a hyperplane and H' is a quadric, necessarily a cone
of order 21+ 1, then 21+1=2*"1+1. This shows that when n =0 (mod 4), there are no m-sequences arising
from quadrics with preferred three-valued periodic crosscorrelation functions. Also, when n=2% m-
sequences arising from quadrics would have three-valued periodic crosscorrelation functions with values
determined by a cone of order at least (n/2)+1.

AMS(MOS) subject classifications. 05, 05B, 94, 94A

1. Introduction and summary. Maximum period linear recursive binary sequences
of span n and period 2" —1 possess many nice autocorrelation and crosscorrelation
properties. For instance, these binary m-sequences, as they are often called, have
two-valued periodic autocorrelation functions, making them useful in applications
involving ranging, radar or spread-spectrum communications. In [11] the crosscorrela-
tion properties of binary m-sequences are surveyed. For instance, it is known [3, p.
82; 5] that the periodic crosscorrelation function of two distinct m-sequences has at
least three different values, and the problem of determining which pairs result in
periodic crosscorrelation functions with exactly three values has received much atten-
tion (see [11] for references, also [13]). The conjectures that motivate this study are:

CoNJECTURE 1 [11]. If n=0 (mod 4), then there are no pairs of binary m-sequences
of span n with a preferred three-valued periodic crosscorrelation function.

CONJECTURE 2 [5]. If nis a power of 2, then there are no pairs of binary m-sequences
of span n with a three-valued periodic crosscorrelation function.

In this paper, a binary m-sequence of span n is viewed as a hyperplane H in
PG(n—1,2)—the finite projective geometry based on GF(2"), thought of as an n-
dimensional vector space over GF(2). Other m-sequences of span n (binary assumed
throughout) then correspond to H"={P'|P < H} for an integer r relatively prime to
2" —1. The periodic crosscorrelation function of the sequences corresponding to H
and H' is computed by intersecting all the hyperplanes of PG(n—1,2) with H". A
three-valued periodic crosscorrelation function results if H" is quadric—a solution to
a quadratic equation—because in this case the hyperplanes of PG(n—1, 2) intersect
H' in sets of three sizes. Although not the only case when three values occur, it is the
case considered here. Such quadrics are necessarily cones of order 2/ if n—1 is even,
and cones of order 2/+1 if n—1 is odd [2]. Quadrics that are the least degenerate,
i.e., 1 =0, yield pairs of m-sequences with preferred three-valued periodic crosscorrela-
tion functions.

As special cases of Conjectures 1 and 2, we have:

ConJECTURE 1. Ifn=0 (mod 4), H < PG(n—1,2) is a hyperplane, r is an integer

* Received by the editors November 17, 1983, and in revised form August 8, 1984.
+ Department of Mathematics, Colorado State University, Fort Collins, Colorado 80523. Present address.
The MITRE Corporation, E-020, P.O. Box 208, Bedford, Massachusetts 01730.
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relatively prime to 2" —1, and H' is a quadric, necessarily a cone of order 21+1, then
I=1; ie, H  is a cone of order at least 3.

CoNJECTURE 2. If n is a power of 2, H< PG(n—1,2) is a hyperplane, r is an
integer relatively prime to 2" —1, and H" is a quadric, then H" is completely degenerate;
i.e., H" is a hyperplane and r=2" mod 2" —1.

The main result of this paper bears on Conjectures 1’ and 2. In § 6 it is shown
that if n=2%m with k=2 and m odd, H < PG(n—1,2) is a hyperplane and r is an
integer relatively prime to 2" —1; then if H" is a quadric, it is a cone of order at least
21+1=2*'+1. In particular, for k=2, H" is a cone of order at least 3, and so
Conjecture 1’ is true. Therefore, if there are any counterexamples to Conjecture 1, they
do not arise from quadrics. When n =2, this result says a quadric H" must be a cone
of order at least (n/2)+ 1. Whether this implies that H™ must itself be a hyperplane
is, along with Conjecture 2, still open.

Actually, the results of this paper suggest a new conjecture for three-valued periodic
crosscorrelation functions of m-sequences. Say that two m-sequences have a three-
valued periodic crosscorrelation function of type I, if the values agree with the values
obtained in the case of a hyperplane H and quadric H" which is a cone of order 2!
or 21+1 for n—1 respectively even or odd. These values do not depend on the
hyperplane H. Now a preferred three-valued periodic crosscorrelation function is of
type 0. Then the conjecture is:

CONJECTURE 3. If two binary m-sequences of span n=2"m, m odd, have a three-
valued periodic crosscorrelation function of type I, then 21+1=2*"1+1.

Conjecture 3 generalizes Conjecture 1, but is a weakening of Conjecture 2. The
result in § 6 shows that Conjecture 3 is true for binary m-sequences that arise from a
hyperplane H < PG(n—1,2) and a quadric H’, r relatively prime to 2" —1.

Section 2 shows how binary m-sequences can be viewed as hyperplanes in a finite
projective geometry and gives the geometric interpretation of the shift and decimation
operations. Section 3 discusses the periodic crosscorrelation function from three
equivalent points of view and shows that the periodic crosscorrelation function is
equivalent to hyperplane intersections in the geometry. The geometry of quadrics and
the relation to pairs of m-sequences with three-valued periodic crosscorrelation func-
tions is given in § 4. Also included in this section are results on quadrics that are
needed in the proof of the main result. Section 5 contains material on linearized
polynomials and subspaces of GF(q) which are fixed by x > x% These results are also
needed in the proof of the main result, which is presented in § 6.

2. The geometry of sequences. By considering the points and hyperplanes of
PG(r, q), the finite projective geometry based on GF(q)""", Singer defined a cyclic
difference set Dc Z,, v=(q""'—1)/(q—1) [4, p. 128]. If s(D) is the anti-incidence
vector of D, i.e., s(D);=0if ie D, s(D);=1if i ¢ D, then s(D) corresponds to a binary
sequence of period v with a two-valued autocorrelation function. If g=2and r=n—-1,
then s(D) is a binary m-sequence of span n [1, 14]. The nonzero elements of GF(2")
can be identified with the points of PG(n —1, 2) and ordered using a primitive element
a:(a'lie Z,,v=2"—1). Then H={a': ie D} is a hyperplane of PG(n—1, 2), and the
sequence s(D) is also denoted by s(H). So a binary m-sequence of span n can be
represented in at least these three ways: the sequence itself, as a Singer difference set
in Z,, v=2"—1, and as a hyperplane in PG(n—1, 2).

These connections are made more explicit with the trace function Tr(x)=
x+x>+-+-+x*", which maps GF(2") to GF(2). Regard GF(2") as an n-dimensional
vector space over GF(2). Then for fixed ye GF(2"), the mapping x - Tr(yx) is
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a linear transformation from GF(2") to GF(2). If y#0, then H,=
{B € GF(2")|Tr (yB) = 0} is a subspace of GF(2") of dimension n—1 (or a hyperplane
of PG(n—1,2)). The corresponding m-sequence is s(H,)=(Tr (ya®), Tr(ya),- - -,
Tr (ya®"")), and y- s(H,) is the field isomorphism given in [7] between GF(2") and
the field formed by the 2" —1 shifts of the m-sequence and the all zeros sequence.

The shift operator E when applied to s =(so, 51, *, S,—;) yields the sequence
Es =(8,_1, S0, * * * , S,—2). Now consider a shift of s(H,):

Es(H,)=(Tr(ya™"), Tr (ya°), - -, Tr (ya""?))
=(Tr (ya™'a®, Tr (ya'a'), -+, Tr (ya 'a®)).

The associated hyperplane is H,,-1={B8¢€ GF(2")|Tr (ya"'B)=0}={aB|Bc H,}=
aH,;i.e., Es(H,) = s(aH,) and the shift of the sequence corresponds to multiplication
of the associated hyperplane by a. This is why a shift to the right was used in defining
E. It follows that aH, is a hyperplane and all the hyperplanes of PG(n—1,2) are
contained in {a'H,|i=0,1,2,- -+, v—1}. This is the basis of the Singer difference set
construction.

Let H < PG(n—1,2) be a hyperplane and s(H) = (so, 1, * * *, 8,—;) the associated
m-sequence. For an integer r consider the sequence s(H)[r]= (¢, t;," -+, t,—;) formed
by taking every r™ term of s(H), i.e., t;=s5,, i=0,1,- - -, v—1 (subscripts modulo v).
The sequence s(H)[r] is a decimation of s(H) by r. It is well known that given one
m-sequence of span n, then, up to cyclic shifts, all m-sequences can be obtained from
it by decimating by integers r which are relatively prime to v [3, p. 78]. If (r, v) =1,
then the m-sequence s(H)[r] equals s(H ™), and so all m-sequences of span n, up
to cyclic shifts, are obtained by considering s(H,) for a fixed hyperplane H <
PG(n—1,2) and re Z¥={ie Z,|(i,v) =1}

Example 1. Consider the primitive polynomial f(x)=x>+x+1 over GF(2). The
m-sequence in this case is s = 1001011 which corresponds to the (7, 3, 1)-difference set
D ={1,2,4}< Z,. The nonzero elements of GF(2%) (represented in terms of o, a',
a® coordinates) are: a®=001, a' =010, a®>=100, > =011, a*=110, a° =111, a®*=101.
The corresponding hyperplane is H ={a’, @®, «*}, and the other m-sequence of span
3 is obtained from H°= H>={a?, a® a°} and is s(H>)=1110100. Figure 1 pictures
PG(2,2) with the line H and the set H> marked.

To end this section, the above example is used to show how quadrics of PG(n —1, 2)
are involved in this study of m-sequences. Consider the quadratic form Q(x,, x;, X,) =
Xg+ X3+ x5+ xox,. Then it can be checked that H? = {(xo, X,, X,)| Q(Xo, X1, X,) =0}, so
H? is said to form a quadric (or conic when n—1=2) in PG(2,2). From Fig. 1 it is
seen that the lines of PG(2,2) intersect H? in sets of size 0, 1, and 2. This is implied
by a theorem given in §4 and will be seen to be equivalent to the fact that the
m-sequences s(H) and s(H?) have a three-valued periodic crosscorrelation function.

010

® H-= { 010, 100, 110}
a &% = {o11, 111, 101)

FI1G. 1. PG(2,2) with H and H>.
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3. Correlation of sequences. For vectors x=(xo, X, ",X,—;) and y=
(Jo» Y1, * * * 5 Yo—1) With complex entries, the periodic crosscorrelation function 0., is
defined by

v—1
0., (=3 xyt,, 1=0,1,---,v—-1
i=0

where y¥ denotes the complex conjugate of y; and the subscripts are computed
modulo v. In the case of periodic sequences over GF(2), the same definition is used,
but the complex conjugation is dropped and the sum is computed over the integers.
In other words, if s =(sg, 51, * *, S,—1) and t =(ty, t;, - * + , t,_;) represent two periodic
binary sequences, then the periodic crosscorrelation function B(S,',’ has values, for
I1=0,1,---,v—1, given by

0(5,‘,)(1) =number of positions that both contain 1’s in the vectors s and E t.

In this paper an alternative definition of the periodic crosscorrelation function is used,
namely,

0(5,2,)(1) =number of positions that both contain 0’s in the vectors s and E't

Actually, in most practical applications, yet a third definition of a periodic
crosscorrelation function is used. The binary sequence so=(so, 51, * * * , Sp—1) is replaced
by the sequence x(s)=(—1%, —1%, - - -/ —1%-1) which has entries £1. The crosscorrela-
tion function 0§,3,) has values, for [=0,1,- -+, v—1, given by

050 (D) = 65 xc0(1) = A = Dy
where
A, =number of positions that both vectors s and E't agree
and
D, =number of positions that both vectors s and E't disagree.

If the sequences involved all have the same weight, say w, i.e., the number of 1’s
in one period is w, and if one of the values of 8{/(1), 82(I) or 8)(I) is known, then
the values of the other two can be computed using the formulas of the next proposition,
the proof of which is easy.

ProrosITION 1. Let s =(sq, $1,° * *, 1) and t =(ty, t,, * * +, t,_,) be binary vectors
each of weight w and length v, and let 6, = 0§f,’(l), i=1, 2, 3. Then specifying the value
of one of 0,, 0,, or 0; determines the values of the other two, namely,

(a) given 0,,

g,=v-2w+0,,
0;=v—4w+40,;
(b) given 6,,
0,=2w—v+6,,
0,=4w—-3v+46,;
(c) given 0,,
0,=(@4w—-v+65)/4,
0,=(3v—4w+65)/4.
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From a geometric point of view, it is best to adopt the second definition of a
periodic crosscorrelation function. Suppose that s(H) and s(H") are m-sequences of
span n with H< PG(n—1,2) a hyperplane and r with (r, v) =1. Then, since the
crosscorrelation counts common 0’s, for [=0,1,--,v—1,

b5ty scn(D)=|H" N a'H|.

Now H, aH,---,a" 'H represent all the hyperplanes of PG(n—1,2) so that the
periodic crosscorrelation function 6,y sy is exactly the hyperplane intersection distri-
bution 64+ of the set H".

4. The geometry of quadrics and correlations of sequences. Quadrics of the form
H"< PG(n—1,2) for a hyperplane H and integer r with (r,v)=1 yield pairs of
m-sequences s(H) and s(H") of span n with three-valued periodic crosscorrelation
functions. This is based on the results of [2], [6], and [16] about the hyperplane
intersection distribution of such quadrics.

In finite projective geometry PG(N, q) of dimension N and order g, a prime
power, the points can be taken as (N+1)-tuples x=(xo, x;,***,xn) Where
Xo, X1, * * * , XN are elements of GF(q) and the (N +1)-tuple px = (pxo, pxy, - * *, PXN)
is regarded as the same point as x for any nonzero element p of GF(q). The null
(N +1)-tuple (0,0, - - -, 0) does not represent a point. The set of points x which satisfy
an equation xC =0 where C is a matrix of size (N +1) Xk with elements in GF(q)
and rank k, k=1,2,-- -, N, is called an (N — k)-flat.

A quadric Q in PG(N, q) is the set of all points x which satisfy an equation
xAx' =0 where A is an upper triangular matrix of size (N +1) X (N +1) with elements
in GF(q) and x' is the transpose of x. If m is the largest integer for which there exists
a transformation of coordinates mapping Q onto a quadric Q' with the equation
xCx' =0, where C is an upper triangular matrix with all elements in the last m columns
equal to zero, then the rank of Q is N+1—m. If m=0, then Q is nondegenerate.
Otherwise, Q is called a cone of order m and has the form V+ Qn_,,, where V is an
(m—1)-flat called the vertex of Q and Qn_,, is a nondegenerate quadric in a com-
plementary (N —m)-flat to V. Here “+” means that if P,€ V and P, € Qn_., then the
line P,P, determined by P, and P, is contained in Q. See [10] for more on quadrics.

The next theorem shows why quadrics are involved in three-valued periodic
crosscorrelation functions.

THEOREM 2. Let N be a positive integer and q a prime power. Let Q < PG(N, q)
be a quadric the size of a hyperplane, i.e., |Q|=(q" —1)/(q—1). Assume that Q itself is
not a hyperplane.

a. If N =2k, then Q must be a cone of even order, say 21, and the hyperplanes of
PG(N, q) intersect Q in sets of three sizes with multiplicities given by

Size Multiplicity
O A=t | L e
q-1 q—1
(ii) A-grit ——qk—l(q;—l_l)
(iii) A+gktit w
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b. If N =2k+1, then Q must be a cone of odd order, say 21+ 1 and the hyperplanes
of PG(N, q) intersect Q in sets of three sizes with multiplicities given by

Size Multiplicity
W B=q2k__1 q2k+2_1—q2k_2’
g—1 q-—1
(ii) B—g*"! ——qk-’(q;—lhl)

Proof. See [6], [16] for the nondegenerate case when N is even and [2] for the
remaining degenerate cases.

PrOPOSITION 3. Suppose s(H) and s(H") are m-sequences of span n with H <
PG(n—1,2) a hyperplane and r with (r,v)=1. If H" is a quadric, which is not a
hyperplane, then s(H) and s(H") have a three-valued periodic crosscorrelation function.
Furthermore, the 1 crosscorrelation values (6 definition earlier) and multiplicities are
given by

(i) —=1+2U"*92 oecurs 2" 1 +2"e7D/2 fimes,

(i) —1 occurs 2" —2""°—1 times,

(iii) —1=2C*9"2 occurs 2" —2"7¢"D/2 times.

o {2l+1, n odd and H" < PG(n—1,2) is a cone of order 2I,
21+2, n even and H < PG(n—1,2) is a cone of order 21+ 1.

Proof. Since H" is a quadric the same size as a hyperplane, the hyperplanes of
PG(n—1,2) intersect H" in the three values given in Theorem 2. Thus, the sequences
s(H) and s(H") have a three-valued periodic crosscorrelation function 6,y su)- TO
obtain the values of G(S?Hr),s( m for the +1 case, the formulas of part (b) of Proposition
1 are used with the intersection sizes of Theorem 2 and w=2""". Only one of the
calculations is included for brevity.

Case 1. nis odd; n—1=2k is even and H" < PG(n—1,2) is a cone of order 2/
and e=2Il+1. Then assuming part (aii) of Theorem 2 applies,

0,=2%"1-1-2*""1 occurs 2¥7/(2¥7' ~1)/2 times.
Then (b) of Proposition 1 gives
03 = 22 . 22k - 3(22k+] - l) +22(22k—1 _ 1 _ 2k+l—l)
— _l _ 2k+l+l
— __1 __2(n+21+l)/2

—_ _1 ___2(n+e)/2

The multiplicity becomes
2k—1(2k—1 _ 1)/2 = 22k—21—l _2k—-l—l = 2n—e—1 __2(n—e—2)/2. D
Notice that for the values in Proposition 3, if e is large, 8%, ,x) takes on large

values, but only very few times, while if e is small, 8% ;) takes on smaller values
more frequently. In most instances, small values of e are desirable and in [11] a
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preferred three-valued periodic crosscorrelation function is defined to have the values
given in Proposition 3 for e =1 if n is odd or e =2 if n is even. A pair of m-sequences
is called a preferred pair if they have a preferred three-valued periodic crosscorrelation
function.

For a hyperplane H < PG(n—1,2) and integer r with (r, v) =1, if H" is a quadric,
then the sequences s(H) and s(H") are a preferred pair of m-sequences exactly when
H' is a cone of the least degeneracy. In the case that n is odd, e=12/1=01=0
and H' is nondegenerate. In the case that n is even, e=2&2I+1=1&1=0and H'
is a cone of order one. In general, say that a pair of m-sequences have a three-valued
periodic crosscorrelation function of type | if the values agree with the hyperplane
intersection sizes of Theorem 2 for a cone of order 2/, if n is odd, or 21+ 1, if n is even.

The construction of quadrics of the form H" given in [6], [16] is related to [11,
Theorem 1], and it follows that if n is odd or n =2 mod 4, there exist values of r such
that H"< PG(n—1,2) is a cone of the least degeneracy. But the data of [9] shows
that for n=0 mod 4 and n =17, there are no cones of order one of the form H', and
indeed, if n is a power of 2 in this range, then H" is never a quadric, except possibly
the completely degenerate case of a hyperplane. Thus, Conjectures 1’ and 2’ of the
introduction are obtained for quadrics of the form H" < PG(n—1,2).

This section ends with two facts about quadrics that are needed in §6. Let
Q< PG(N, q) be a quadric with equation xAx‘=0. A point a € PG(N, q) is a regular
point with respect to Q if a(A+ A") # 0. Otherwise, a is called an irregular point. If it
is clear from context that a particular quadric Q is involved, then the phrase “with
respect to Q”’ is dropped.

TueoreM 4. If Q< PG(N, q) is a nondegenerate quadric, then if q is odd or N is
odd, every point of PG(N, q) is regular. When N and q are even, there is a single point
of PG(N, q) which is irregular. This point is called the nucleus of polarity of Q.

THEOREM 5. For a cone Q< PG(N, q) of order m, the set of irregular points of
PG(N, q) consists of the points of the vertex V if either q or N —m is odd. When q and
N —m are even, the set of irregular points of PG(N, q) consists of the points of a flat
x+ V of dimension m, where x is the nucleus of polarity of the nondegenerate quadric
Qx_m obtained by the intersection of Q and a (N — m)-flat which does not intersect the
vertex V. In any case, a point of the quadric is irregular if and only if it is contained in V.

5. Linearized polynomials and subspaces fixed by x— x?. It is well known that
given a binary m-sequence s, some shift of s, say s*, has the property that s*[2] = s*;
i.e., s* is left fixed by decimation by 2 and is called the characteristic phase of s. See
[15] for a listing of characteristic m-sequences s* through span n=168. If H<
PG(n—1,2) is the hyperplane that corresponds to s*, so that s* = s(H), then s*[2] = s*
is equivalent to H>= H, so H is fixed as a set by the linear map x> x> of GF(2").
Recalling the correspondence between the shifts of an m-sequence and the elements
of GF(2"), the characteristic phase of the sequence corresponds to y—l € GF(2").
This is because the hyperplane H,={a'e GF(2"): Tr(a')= 0} has H1 H, since
Tr (x%) = (Tr (x))*>=Tr (x). That the linear map Tr (x)=x+x>+- - -+x> produces
such a fixed subspace of GF(2") is a special case of a more general 51tuation involving
linearized polynomials.

A linearized polynomial F(z) over GF(q") is a polynomial of the form

h
F()= ¥ fz%, fieGF(g"), fi#0.

If the coefficients of a linearized polynomial F(z) over GF(q") in fact belong to
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GF(q), then F(z) is called a linearized q-polynomial. Linearized polynomials are often
used in algebraic coding theory; see, for instance, [8, Chapter 4]. One application of
linearized polynomials is the characterization of the subspaces of GF(q") that are
fixed by the linear map x - x%.

THEOREM 6. Suppose F(z) is a linearized polynomial over GF(q"). The zeros of
F(z) form a subspace U< GF(q") with U?=U if and only if F(z) is a linearized
g-polynomial.

If F(z)= Z:;O fiz?' is a linearized g-polynomial, then f(z) = Z:;o fz', a polynomial
over GF(q), is called the conventional associate of F(z). F(z) is the linearized associate
of f(z). The subspace U of Theorem 6 is called the fixed subspace of F (or f).

THEOREM 7. If F and G are linearized q-polynomials with conventional associates
f and g and fixed subspaces U, and U,, respectively, then

(i) Usc Us© F|G

(ii) FIG&flg.

(ili) dim Uy = degree of f.

The next theorem bears on the crosscorrelation of s(H") and s(H).

THEOREM 8. Suppose n=2*m, with m odd and let H < GF(2") be the subspace of
dimension n—1 satisfying H*= H. If s is an integer with s|n, i.e., s=2't with 0Si=k
and t|m, then

(i) The subfield GF(2°) < GF(2") is contained in H if and only if i=k—1.

(ii) If GF(2°)< H and r is an integer with (r,2"—1)=1, then GF2°)c HNH".

Proof. (i) H is the fixed subspace of the conventional associate (x" —1)/(x—1) =
(x=1)¥ N ((x™-1)/(x— 1))_2k and GF(2%) is the fixed subspace of the conventional
associate (x*—1)=(x—1)%((x'—1)/(x—1)). So, by Theorem 7, GF(2*)< H if and
only if (x*—1)|(x"—1)/(x—1) if and only if i=k—1.

(ii) If GF(2°) < H, then GF(2°)" < H'. Butsince (r,2" —1) =1, GF(2°)" = GF(2°);
GF(2°)cHNH" 0O

COROLLARY 9. Let H < PG(n—1,2) be a hyperplane with H>= H and r an integer
with (r,2" —1)=1. If n=2%m, with k=1 and m odd, then the crosscorrelation function
Os(ury,s(h) Satisfies

es(H'),s(H)(O) g 2(n/2) - 1.
Proof. Let s =2""m in the theorem. Then
as(H'),s(H)(O) = 'Hr ﬂ Hl 5 2S - 1 = 2(n/2) - 1

since each nonzero member of GF(2°) represents a point of PG(n —1,2) which, by
(ii) of Theorem 8, is contained in H'N H. 0O

6. Quadrics of the form H" < PG(n—1,2). This section contains the main result
of the paper on quadrics of the form H" < PG(n—1,2) when n is highly divisible by 2.

THEOREM 10. Let H < PG(n—1,2) be a hyperplane, r an integer with (r,v)=1
such that H' is a quadric. If n=2"m, with k=2 and m odd, then H" is a cone of order
21+1 with

20+1=2%1+1.

Proof. Without loss of generality, assume that H>= H. Since N =n—1 is odd, by
Theorem 2, H' is a cone of order 21+ 1. Let the 2I-flat V denote the vertex of H" and
suppose X is a complementary (n—2I—2)-flat to V. Then Q,_;—,=H"NX is a non-
degenerate quadric in =. Since X is a flat of even dimension in a projective space over
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a field of characteristic 2, by Theorem 4, Q,_,;_, has a nucleus of polarity x € T with
X & Qn_21-2; i.e., x¢ H". By Theorem 5, the set of irregular points with respect to H"
contained in H" is exactly V. But V>*c (H")*=(H?)"=H" and x - x? is a nonsingular
linear transformation which preserves irregularity so that necessarily V= V. Similarly,
Theorem 5 can be used to show that (V+x)?= V+x. Thus, as subspaces of GF(2"),
V and V+x are both fixed by x-x? have V< V+x, and satisfy dim (V+x)=
dim (V)+1.

Now the results of linearized polynomials are applied. There is a one-to-one
correspondence between subspaces of GF(2") fixed by x- x” and the divisors of
"—1=22"—1=(z"-1)* = (z—-1)*((z" -1)/(z—1))*". Suppose f]z" —1 has fixed
subspace V and g|z" —1 has fixed subspace V + x, and so by Theorem 7 f|g, deg (f) =
21+1, and deg (g) =21+2. If f(x) =(z—1)'h(z) with 0=i=2" and h(z)|((z"-1)/(z—
1))2k, then since ((z™—-1)/(z— 1))2k contains no linear factors, necessarily g(z)=
(z=1)"*h(2).

If V4+x< GF(22'™)c GF(2"), then by part (ii) of Theorem 8, V+x<c HNH';
i.e., x€ H', a contradiction. Thus, it must be the case that V+x¢& GF (22k-""). Now
GF(2%7'™) is the fixed subspace of the divisor (z— )27 ((z"-1)/(z—1))*", and by
Theorem 7, V+x¢& GF(22"'™) if and only if (z—1)"*'h(z) does not divide (z—
1)*7((z™—=1)/(z=1))**"". There are two possibilities: either i+1=2*"'+1 or h(z)
does not divide ((z™ —1)/(z—1))>"".

Case i. If i+1=2"1+1, then

2l1+1=dim V=i+deg (h(z))ziz=2"",

so 21+1=2%"'+1, since k=2. (Only here is k=2 used.)

Case ii. If h(z) does not divide ((z"—1)/(z—1))*"", then since h(z)|((z™ -
1)/(z— 1))2k, there is some factor k(z) of (z™ —1)/(z—1), which must have degree at
least 2, such that k(z)> "*'|h(z). Thus deg (h(z))=2(2*'+1)=2"+2 and

2l+1=dim V =i+deg (h(z)) = deg (h(z))=2"+2,

so certainly 2/+1=2"'+1. O

When k=1 in Theorem 10, then Case i yields 2/+1=1, which is no constraint
on I As was mentioned previously, there are quadrics H" in this case with /=0. When
k=2, Theorem 10 shows that Conjecture 1’ of the introduction is true. More generally,
Conjecture 3 of the introduction about the type of a three-valued crosscorrelation
function of m-sequences is suggested.

A fact which follows from the proof of Theorem 10 that could be useful in settling
Conjecture 2', is noted.

CoROLLARY 11. Let H< PG(n—1,2) be a hyperplane, r an integer with (r,v) =1
such that H" is a quadric. If n is even, then H" is a cone of order 21+ 1 with vertex
VecHNH"

Proof. In the proof of the theorem, i+ 1 must be less than 2*; i.e., i=2*—1. Thus,
the polynomial f with fixed subspace V divides (z" —1)/(z —1)—the polynomial with
fixed subspace H. So by theorem 7, V= H; ie., VS HNH". 0

Finally, the proof of Theorem 10 is valid for PG(n—1, q) exactly when g is even,
i.e., of the form g =2°. This is because the results on regular points, irregular points,
and a nucleus of polarity needed in the proof hold exactly in this case. Now, though
a hyperplane H with H?=H is considered, but the characterization of the fixed
subspaces of x> x7 is used exactly like in the case of g =2. The result when q is odd
is an open problem.
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ON THE NUMBER OF REAL QUADRATIC
FACTORS OF POLYNOMIALS*

ZALMAN RUBINSTEINt

Abstract. A method for determining the number of real quadratic factors of polynomials with real or
complex coefficients is introduced. The method is based on formulating an equivalent problem of finding
the number of real solutions of a certain algebraic system in two variables. Criteria for the existence of
special quadratic factors are also introduced. The method consists of a finite algorithm realizable on a
computer. It can be applied to determine the general decomposition structure of a given real polynomial.
In particular the presence or absence of real or non-real roots can be ascertained.

AMS(MOS) subject classifications. Primary 12D10; secondary 26C10, 30C15

1. Introduction. As is well known, a monic polynomial of degree n having real
coefficients of the form

p(x)=x"+a;x"'+:--+a,

can be factored as follows:
(1) P(x)=(x—x) - (x=x)(x=y)% - (x=y)* [] (x2+cix+di)ﬂi
i=1

where k (k=0) is the number of real simple roots of p, I (I=0) is the number of its
multiple real roots and m(m =0) is the number of distinct irreducible real quadratic
factors of the polynomial p. Equation (1) indicates that p has k distinct simple real
roots, ! distinct multiple roots and m distinct pairs of conjugate complex roots. In
particular, o; =2 for j=1,2,---,] and B;=0 for i=1,2,---, m. A lot of attention
has been given to the enumeration of the various types of the linear factors of a
polynomial. Most especially, there are well-known criteria for the number (k+1) of
distinct real roots of p(x) in terms of the inner determinants or the Newton sums [4],
[71, [9], [10]. In addition, the theory of discriminants yields easily the number [ of
real multiple roots since it is equal to the number of distinct real roots of the greatest
common divisor of the polynomial p and its derivative p’. The greatest common divisor
of two polynomials can be calculated by known methods [12], [13].

The purpose of this note is to indicate a method of finding the number q of distinct
quadratic factors of p in (1). Obviously, since

@) q=(k;l>+l+m

the determination of g combined with the knowledge of k and [ gives also the number
m, i.e. the number of distinct conjugate pairs of zeros of p. In (2) if k+1=1 then (*3)
is taken to be zero. One might mention some special cases of interest, namely when
m =0, i.e. p has only real zeros; or when m =[3n], i.e. p is of even degree and has no
real zeros or p is of odd degree and has a single simple real zero. The number g,
independently of m, can be thought of as a measure of simplicity of the roots of p
ranging from (3) when all the roots are real and simple to 1 when p has only one real

* Received by the editors April 24, 1984, and in revised form September 15, 1984.
t Department of Mathematics, University of Haifa, Mount Carmel, Haifa, Israel. Present address.
Department of Mathematics, University of Colorado, Boulder, Colorado 80309.
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multiple root, that is when p(x) = (x — y,)" or when p(x) = (x*+ ¢,x + d,)"/*"
(1), i.e. p has only one pair of conjugate complex roots.

The method is based on transforming the posed problem to an equivalent problei
of finding the number of solutions of an algebraic system of two equations in tw
independent variables. The latter problem can be treated by various methods recent!
proposed in [1], [2], [3], [12], [13].

2. The main results. Consider the relation

in equatio

(3) (x"+ax" '+ ta,) P tax+ay)=x""?+bx" '+ - - + b,y
Equating coefficients of equal powers of x on both sides of (3) we obtain
a_,a,+age,;+a,=b,,
aga,+a,a,+a,=b,,
(4) :
ap_y0yt+ a,ay+ iy = bpyy,
A+ @i @)+ Ay = bpio,

where we set a_, = a,+, = a,., =0, a, = 1 and for simplicity we assume also that b, ,, #
We shall need the following lemma.

LemMma 1. For fixed n let p,, = a,,a3 ™!

> m=0’ 1’ t .,n;pn1-1=pn+2=0- Ther

(5) Pm = bpmi20 ™" = Pria@y— Pmrray, m=0,1,---,n
Proof. For m=n by (4)
Pn=8n02=by12 = Pri20r = Pni1@1 = bpis.
For m = n—1 one has to verify that
Pna = a,_05= by 110 = Pui1@2— pna;
= b,+10 = ppety = bpryay— by pray.

These relations follow using the last two equations of the system (4). Assume now th
(5) holds for n—k=m=n, where k is a fixed positive integer. Consider the relatio:

A=a  artae,+ap,=by,y,
— n—I+1 __

B=aqa; =Ds
—_ n—l__

C=a,a; " =py,

where [ =n—k. Now

— n—I+1 . —1+1
D—Aa2 —alB—a2C—a;' b,+,-—p1a, — Pi+1Q5.
But also

_ n—I+2 n—I+1 n—I+1 —1 -1+
D=a,_,a; +aa,a; +tapa; —(a a3 )a,—(aas 1)0‘1

I+

— n—l+2 _
=aq,a; =DPi-1.

So (5) holds for m=n—k—1 and the induction is complete.
Remark. The recurrence relations (5) together with the initial conditions

(5’) Dn= bn+2, Dna = bn+1a2— bn+2a1
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determine uniquely the sequence p, p, * * -, p, as functions of the variables «, and
a, and the coefficients by, b,, - - -, b,,,. We are ready to state the main result.
THEOREM 1. Given a real polynomial of degree n+2(n=0)

p(x)=x""4+b,x"""+ .- - +b,,,

where b, ., #0, the number of its distinct real quadratic factors equals the number of
distinct real solutions of the algebraic system

6) A(ay, a2)=a2+l—b2a;+plal+p2a2=0a

Ay(ay, ay)=a,a; —ba;+p, =0,

where p, = p,(a,, a,) is a polynomial in a, and o, of degree at most n —1 in its variables
and p, = p,(a,, a,) is a polynomial in «, and a, of degree at most n —2 in its variables.
The p; are obtained from the second order difference equation (5) with initial conditions (5').

Proof. Put i=0 in (5) to obtain p,= b,a} — p,a, — p,a,. Also po= agal' = al*'.
This gives the first equation of (6).

Next consider the relations p, =a,a5 and a,+a,=b,. These imply the second
equation of (6). Now it is easy to see that since b,,, # 0 implies a,# 0, each value of
a, together with the sequence p,,p,, - ‘-, p, determine uniquely the coefficients
a,, - * -, a, Conversely each pair (a;, a,) which satisfies the system (6), where the p;
are defined by (5) and (5'), and where the a,, are defined by a,, =p,a’ ™', m=
0,1, - -, n,satisfies the system (4). Indeed the second relation of (6) implies a, + a, = b,
since a, # 0. The first relation of (6) implies, by (5) with m =0, that a,= 1. Hence

ataoata,=a,+pa;"a, "‘}’2“2_”+l

=a;"(potpray+pa;)=b,.

Similarly by a straightforward induction one shows that the other equations of (4) are
satisfied.
As an application of Theorem 1 consider the case n =2. The system (6) reduces to

a3—byal+bsa,+bya,a,—ba’=0,

blag— b3a2+(b4— a%)al =0.

(M

Applying a standard elimination procedure [1], [2], one arrives at
flay) = ag— b2a§+ (bybs— b4)013+ (2bybs— b§—- bAb%)ag

8)
( +(bybsby— b3) a3 — bbia,+ b3=0.

Equation (8) can be also derived by calculating the resultant [1] of the polynomials
in (7) regarded as polynomials in the variable @, with coefficients depending on the
parameter a,. One assumes obviously that a3— b, 0.

Since in our example deg p =4, the degree of f has to be (3) = 6, the extremal case
being that of p having six distinct quadratic factors and four simple real roots. In this
case f has all simple real roots.

Below we indicate several examples of polynomials p(x) and their corresponding
f(a) of equation (8) and the number g defined by (2). One notices that since the
second equation of (7) is linear in a, the number of solutions of the system (6) is
equal to the number of distinct real zeros of f(a) provided a*—b,# 0. This can be
verified by the examples of Table 1.
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TABLE 1

p(x) fla) q
(x2=1)(x+1)(x+2) (a—1)(a-2)*(a+1))(a+2) 4
(x2+1)(x—1)(x+2) (a+1)(a=1)(a+i)*(a—i)? 2
(x—1)3(x+2) (a—1)*(a+2)® 2
(x—1)* (a-1)° 1
(x2+1)? (a—1)*(a—-i)X(a+i)? 1
(x=2)(x+2)(x+1)? (=2 (a+2)2(a—1)(a+4) 4
(x=1)(x—-2)(x—-3)(x—4) (a=2)a-3)a—4)(a—-6)(a—8)(a—12) 6
(x—=1)%(x+2)? (a—1)(a+2)*(a—4) 3

The factorization of f(a) in Table 1 is done only for illustration of Theorem 1. In
general, the number of simple real zeros of f(a) can be found via rational operations
by well-known classical means such as those mentioned in the introduction. In the
general case the system (6) is a two-by-two algebraic nonlinear system. Such systems
were considered recently in [2], [3]. In [1] a method of enumeration of the solutions
is suggested based on successive lowering of the degree of one variable of the system.
One should also note that the main purpose of these methods is to avoid the calculation
of the roots of p(z) which is an infinite process. Instead, the above procedure and the
ones ahead are all finite algorithms realizable, for moderate n, on computers.

The question of multiple nonreducible real quadratic factors will not be treated
here. Nonetheless we shall develop below a necessary criterion for the existence of
such factors.

Recall that if r(x)=r,x"+:+-+r, and s(x)=s,x"+ - - - +59, rms, #0, have a
common linear factor I(x), then it follows from the equations r = Ir*, s =Is* that
9) rs* = sr*

where degs*=n—1, degrf=m—-1. If s*(x)=s*_ x"""+-- -+s¥ r*x)=
rk_ix™ '+ - - - +r¥, then equating coefficients of equal powers of x in (9) one obtains
a system of (m+n)—by—(m+n) homogeneous linear equations in the (m+n)
unknowns sg, -« -, s¥_i; r¥, - - -, r¥_, and thus one obtains the well-known condition
Res. (r, s) =0. Now if instead of linear factors we are looking for quadratic factors
q(x), then (9) is satisfied with s¥_, =r¥_, =0, s*_,r¥ _,# 0. This time we have (m+n —
1) equations in (m+n—2) unknowns of the above type, whose matrix

frm Fly o 0 o )
0 T | S To 0 0
0 0 'm -1 o
(10) M =
Sp Sp_1 So 0 0
0 Sn Sn_y So 0 0
\ 0 0 Sy Sn—-1 So Y,
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has (n—1) rows with the r; and (m —1) rows with the s, This matrix is obtained from
the well-known resultant matrix by deleting the last column and the nth row and
(m+n)th row. For a nontrivial solution to exist, rank M =m+n —3. In particular if
p(x) has a multiple quadratic factor the polynomials p(x) and p’(x) have a common
quadratic factor. Consider the example p(x) =x>+x>*—x*+2, m=5,n=4, m+n—-3=
6. The seven-by-eight matrix M has the rows (1,0,1,-1,0,2,0,0),
(0,1,0,1,-1,0,2,0), (0,0,1,0,1,—-1,0,2), (5,0,3,-2,0,0,0,0),
(0,5,0,3,-2,0,0,0), (0,0,5,0,3, -2, 0,0), and (0, 0,0, 5,0, 3, =2, 0). Its rank is seven
and hence p(x) has no pair of multiple roots.
Returning to the general procedure described earlier we consider the example

p(x)=x"+x3+1.
Here b,=b;=b,=0, b,=bs=1, p;=1, p,=—a, and p,=aj—a, The system (6)
becomes in this case
as—a3+ad-2a,a,=0,
a3 +ai—a,=0.
This system can, by the standard elimination method mentioned before ([1], [2], [12],
[13]), be brought to the form
all—aj-2a5+at—a3+1=0,
a,(a5—1)—a3=0.

We are led to the problem of the determination of the number of distinct real roots
of the polynomial

(11) 20— 275+ 2422 +1=0.

The number of distinct real zeros of (11) can be found by the inners procedure [4],
[9], [10]. The number of real roots is found to be two. We have g =2, k=1 and I=0.
Thus m=2 by (2) and the decomposition pattern of p(x) can now be determined
according to formula (1). Obviously one has to apply the computer procedures available
for the inner determinants to deal with the polynomial (11).

In conclusion we shall discuss a criterion for the existence of a quadratic factor
of p(x) of the form x>+ c. This is helpful in situations where there is importance to
whether (0, a,) is a possible solution of the system (6). Assume that

P(x)=(x"+c)q(x)=x"+px" '+ - +pn
Define p,(x) =3(p(x)+p(—x)), pa(x) =3(p(x) — p(—x)). Then
ps(x) =(x*+¢c)g(x) and pu(x)=(x>+c)qa(x).

Thus p,(x) and p,(x) have a quadratic factor in common. Conversely if p,(x) and
Po(x) have a quadratic factor in common, then so does p(x). These observations
combined with the previous results imply the following theorem.

THEOREM 2. For a polynomial p(x)=x"+p,x" '+ ---+p, to have a quadratic
factor of the form x>+ c it is necessary and sufficient that the (n—1)-by-(n—1) matrix
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)
1 ) 23 P4 s Pain; O ce- 0
0 1 ) 23 ) 2 s Daximy O -+ 0
0---0 1 P2 Pa s Pafin)
(12)

P ) Z S Dorin+i1-1 0 e 0
0 ) 4} Ps s Pafin+41-1 0.--0
0..-0 D D3 e p2[§n+§]—l

be singular
To illustrate condition (12) consider p(x) = x>+ 2x>+ x>+ x + 1. The corresponding

singular matrix has rows (1,2,1,0), (0,1,2,1), (0,1,1,0), (0,0,1,1,). p(x) has the
factor x*+1.

3. An alternate approach. The former procedure of finding q by Theorem 1 using
elimination theory has one serious drawback. In some cases the elimination process
introduces extraneous zeros. This is a result of the elimination being in general
nonreversive. In such cases this method is not applicable to finding g through Theorem
1. The alternative of finding q by a combination of classical methods via separate
calculations of k, I, and m in (2) is theoretically possible. However, this procedure is
quite laborious and encounters some of the previously mentioned difficulties.

The unique advantage of the present method of Theorem 1 is that it can be used
both in conjunction with elimination theory as illustrated above or with the classical
method of Kronecker integrals. For a recent detailed account see [14]. This method
of finding the number of simple zeros of multivariate systems is based on Gauss’
theorem for multiple integrals. It gives an explicit integral representation of g (ibid.
(20)-(23)) provided a domain in the (a,, a,)-plane containing all the zeros of the
system (6) can be determined. This indeed can be done for algebraic systems. The
polynomial (11) has all its roots in |z| <3. The possibility of this polynomial having
extra roots compared to the set of @, in the original system is irrelevant to the final
conclusion.

Now the equation ai+a3a;—a,=0 in the variable @, has all its roots in the
region |a,| <1+ max [|a,[, |a,|]. Since |a,| <3 we have |a,| <28 so that all the zeros
of our system lie in the rectangle R in the (a,, a,)-plane defined by |e,|<28 and
|ay| <3. The calculation of g can be done by evaluating the Kronecker integral with
respect to R. Obviously since the result of integration is an integer, the problem of
accuracy is mild when using approximate calculations.

4. Conclusions. It is clear from the method and examples indicated above that
the price of substituting an infinite procedure of finding all the roots of a polynomial
by a finite procedure to solve the problem of determining the number of quadratic
factors of a real polynomial is the relatively large order of the polynomial obtained
at the end of the elimination procedure. In addition, procedures for manipulation of
multivariable polynomials are required. Fortunately such procedures have been worked
out, e.g. [12], [13].



REAL QUADRATIC FACTORS OF POLYNOMIALS 59

One might add in passing that although this discussion has been centered around
polynomials with real coefficients there is no difficulty to treating polynomials with
complex coefficients. In this case the system (6) is an algebraic system with complex
coefficients. It is easy to extend the method of enumerating the distinct real zeros of
real polynomials to complex polynomials. Indeed if p(z) = p,(z) + ip,(z), where p,(z)
and p,(z) are real polynomials, every real zero of p(z) is a real zero of both p,(z) and
p»(z) and hence a real zero of the greatest common divisor of p,(z) and p,(z) and vice
versa. Thus the problem of finding the number of distinct real roots of the complex
polynomial p(z) is equivalent to finding the number of the distinct real roots of an
easily computable real polynomial.

Enumeration problems for polynomials have a definite applied character (see for
example the introduction of [14]; [1], [2], [5]). Recently progress has also been made
to tackle some of the more difficult theoretical questions such as the problem posed
by S. Karlin to characterize all the finite zero diminishing transformations on a given
polynomial [11], [6].

Acknowledgment. The author wishes to thank Mr. Simcha Brudno for some valu-
able conversations and several suggestions relating to this note.
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LABELLED GRAPHS WITH SMALL VERTEX DEGREES
AND P-RECURSIVENESS*

I. P. GOULDENt AND D. M. JACKSONY

Abstract. We show that the number of labelled graphs with vertices of degrees 1, 2, 3 or 4 only satisfy
linear recurrence equations, and are therefore P-recursive. We conjecture that the number of labelled graphs
with vertices whose degrees belong to a given finite set is also P-recursive.

AMS(MOS) subject classifications. 05C30, 05A15

1. Introduction. A sequence {a,|n=0} is said to be P-recursive if it satisfies a
homogeneous linear recurrence equation of finite order, with polynomial coefficients.
Such sequences are of interest because the n-th term can be computed in time that is
linear in n, and space that is independent of n. The formal power series A(x)=
Y =0 anx"/n!, called the exponential generating function for {a,|n =0}, is said to be
D-finite if A satisfies a linear homogeneous differential equation of finite order, whose
coefficients are polynomials in x. Stanley [8] discusses the equivalence of the D-
finiteness of A and the P-recursiveness of {a,,|n§0}, as well as showing that many
combinatorially defined power series are D-finite.

For a<{0,1,:- -}, let Gy, be the set of labelled graphs, each of whose vertex
degrees lies in a, and let G, , denote the set of simple graphs in G, ,. Suppose that
the number of graphs on n vertices in G, , is denoted by g; ,(n), and that the exponential
generating function for G, with respect to vertices is G, ,(x) =Y. -, 8i.(n)x"/n!, for
i=0,1. A p-regular graph is one in which each vertex has degree p, and corresponds
to the choice a ={p} above.

Read [S] has shown that G, (3, is D-finite, and it is implicit in Read and Wormald
[6] that G, 14y is D-finite. Goulden, Jackson and Reilly [2] have shown that G, (53 and
Gy 4 are D-finite. Stanley [8] has asked whether Gy, is D-finite for all p. In this
paper we consider sets a of vertex-degrees with more than a single element. Applying
the methods developed in Goulden, Jackson and Reilly [2], we construct differential
equations which demonstrate that G, , is D-finite for i =0, 1 and all choices of & whose
maximum element (denoted by m(a)) is less than or equal to 4.

Throughout this paper we denote the coefficient of x'x7 - - - in the formal power
series f(xy, X, * - +) by [x)x2- - - 1f. For details of the sum and product lemmas for
labelled configurations see Goulden and Jackson [1].

2. Preliminary cases. Certain G;, can be obtained immediately by elementary
combinatorial arguments, using only the sum and product lemmas for exponential
generating functions. The first simplification is to note that Gy, = "G, for 0€ a,
i=0, 1. Thus G;qu. is D-finite if and only if G;, is D-finite, and so it is enough to
consider only the case @ ={1,2, - - - } in the remainder of this paper.

For the case m(a) =1, we immediately have G, =exp (x°/2) for i=0, 1 since,
for labelled graphs with only vertices of degree 1, the connected components are single
edges, each of which has generating function x?/2.

* Received by the editors August 25, 1983, and in revised form September 17, 1984. This work was
supported by the Natural Sciences and Engineering Research Council of Canada under grants U0073 and
AB235.
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For the case m(a) =2, we consider labelled graphs whose connected components
are paths or cycles. Thus

x x x x2
Go=(1-x)" l/2exp(2 4> Gy y=(1-x)""?exp -5~ 7)

X

2 2
_ 12 X, x°
Go 2 =(1-x)""/"exp (2 4 2(1 x))

2 2
X x x
Gupa=t=0)"exp (33355
so for m(a)=2and i=0, 1, we have directly obtained an expression for G;,. Differen-
tiating these expressions once, we immediately obtain the first order differential
equation ¢,(d/dx)G,,+ ¢¢Gi. =0, where ¢, and ¢, are given explicitly for each such
i and «a in Table 1.

TABLE 1
Differential equations for G; ,(x) with m(a)=2.
a i b, b0
{1} 0 1 -x
{1} 1 1 —-X
{2} 0 2(1-x) x?=2
{2} 1 2(1—x) —x?
{1,2} 0 2(1-x)? —x3+2x%-2
{1,2} 1 2(1-x)? x(x*=2)

For the cases m(a) =3 and m(a) =4, we have no explicit expression for G;,(x),
so we cannot proceed as we have in the previous cases m(a) =1, 2. Instead, we follow
the indirect procedure given in the next section.

3. Symmetric multivariate generating functions for m(a) =3, 4. Suppose that we
are interested in the sequence {c,(n)|n= 0} where c,(n)=[#} - - - t4]T(t), and T(t) is
a symmetric function in the indeterminates t=(t,, t,,- - - ). We say that c,(n) is a
regular coefficient of T(t). Further suppose that T(t) is expressed in terms of the power
sum symmetric functions s; =3, -, tias T(t) = E(s), wheres = (s,, 55, - - - ). Then ¢,(n) =
[yp/n1V(y1, -, ¥,), by the H-series theorem (Goulden, Jackson and Reilly [2])
where V(= H(E), the H-series of E) is the solution to a system of p partial differential
equations derived from a system of partial differential equations for E itself. If these
equations for V can be manipulated in a way that eliminates all differentiation with
respect to y;,*°*,¥,—1, W€ can then set y,=---=y, ;=0 to obtain an ordinary
differential equation for V(0,---,0,y,) =% .., ¢(n)y,/n!, and hence deduce the D-
finiteness of V(0, - - -,0, y,). This procedure has been followed for 3- and 4-regular
graphs in [2]. The following result enables us to carry it out for sets @ with more than
a single element.

ProrosiTION 3.1.

Bua(m) = [ - 7@ (z t}”(“)"‘) T, fori=0,1

j=1 \kea

where
To= 1 (1-u)7, H (A+1t).

1=lsj 1=I<j
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Proof. [t{1- - t%]T; is the number of labelled graphs in which the vertex with
label k has degree d,, for k=1,---,n, when i=0. In the case i=1, we have the
number of such graphs that are simple. Thus

ga(m)= Y - T [tfi--- 11T,

dica d,ca
= dz dz [ ... gmleryymle)=d, ., ymla)=d, T
1Ea n€a
n
=[t;"(°‘) Cen t:,"(")] M ( Y t;n(a)—k) T,
j=1 \kea

and the result follows, since (3, ., t}"(“)—k)lt,.=o= 1. O

This result gives the required numbers of graphs as regular coefficients in symmetric
power series. For each i and «, with m(a) =3 or 4, we denote the expression for this
symmetric power series in terms of s by E,,(s) and determine E,,(s) by applying
exp log to the generating function in Proposition 3.1. For example,

Zoq2a(n)=[11- - 13] H (1+t +t3)To
=[] H (1+t2)(1_13) T,

=[t}--- 2] exp{ Y log (1+1))+log (1—£)""+ Z log (1—-1;)~ }

=1l

=[t‘1‘"'t‘3.]exr>{ X —(( D'+ 59+ Y ¥ —tzt }

Jj=z1 k=1 k I=j k>1

so that

1
Eo,{1,2,4)(s) =exXp {kZ %(ssk + ("l)k_lszk + (Si+ s2k)/2)} .
=1

Similarly, for all @ with m(a)=3 or 4, E,,(s) =exp {a; + b, }, where
ap= Y, (si+s2k)/2k, a1=kZl (—l)k_l(si"szk)/ﬂ(

k=1

and the b,, for m(a)=3 or 4, are given in Table 2.

TABLE 2
Power sum representations for log (G, ) — a; withm(a) =
3,4.
a b,
{3} 1
{1’ 3} Zkzl Szk/k
{2,3} Tiar (D s /k
{1’ 2’ 3} Ekgl (sk_s3k)/k
{4} 1
{1’ 4} Zkgl s3k/k
{2,4} izt (CD sy /k
{3a 4} Zk;l (—l)k_lsk/k
{1’2’4} Zkzl (s3k+(_1)k—ls2k)/k
{1,3,4} Timr (53— s+ (-1)*1s5)/k
{2a 3’ 4} Ekgl (sk_s3k)/k

{1,2,3,4} Lzt (S —sax)/ k
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Of course, g;.(n)=[£; - - t3]1E;.(s) for m(a)=3, and g, (n)=[t} - - {7]E . (s)
for m(a)=4.

4. Univariate generating functions for m(a)=3, 4. It is now a straightforward
matter to obtain a system of partial differential equations for E,,(s). For example

(4=2(-1)"+5)Eo 124, k=0 (mod 6)
—a—E _JB+s)Eo 2.4 k=3 (mod6)
a5 02T (1 op(— 1)k 59 Eo (124 k=2, 4 (mod 6)

$iE 0,01,2,435 k=1,5(mod 6).

Carrying this out for all &« with m(a)=3, we find that the H-series V(y,, y,, y3) =
H(E,,) satisfies the system

Vi=(c+y)V+y,Vi+yV,,
(1) 2V,= Vi =(d+fr) V+ iV,
3Vi=3Vip+ Vin=(e+y))V,

where V ;... denotes 3/3y; 9/3y; - - - V, and the values of ¢, d, e, f corresponding to each
(i, @) are given in Table 3.

TABLE 3
Parameter values for system (1).
a c d e i f
{3} 0 f 0
{1,3) 0 24f 0 |1 -1
2,3} 1 -1+f 1
{1,2,3} 1 1+f 2

For m(a)=4, the H-series V(y,, y,, y3, y4) satisfies the system
Vi=(c+y)V+y,Vi+y; Vot y, Vs,
2V,— Vi =(d+gy,)V+gy;Vi+ gy, Vs,
3Vi—3V+ Vin=(ety)V+y,V,,
4V,—4V3-2Vy,+4 Vi — Viin-(ftgy)V,

(2

where the values of ¢, d, e, f, g corresponding to each (i, @) are given in Table 4.

TABLE 4
Parameter values for system (2).

a c d e f i g
4 0 g 0 1|0
{1,4} 0 g 3 1 1 -
{2, 4} 0 24g 0 -1
{3, 4} 1 -1+g 1 0
{1,2,4} 0  2+4g 3 -1
{1,3,4} 1 -1+g 4 -4
{2,3,4} 1 1+g =2 2
{1,2,3,4} 1 1+g 1 -2




64 1. P. GOULDEN AND D. M.. JACKSON

The two special cases of system (1) corresponding to 3-regular graphs and simple
graphs have been given in [2]. If we remove all partial derivatives with respect to y,
and y, from system (1) by means of the elimination scheme given in [2], and then set
y1=y,=0, we obtain a second order differential equation for G;,(x)= V(0,0, x). If
this equation is denoted by

2

$5) 25 Gy () $1(5) - Gy () + () Gy () =0,

then the values of ¢, ¢,, @, for each (i, @) with m(a) =3 are given in Table A of the
Appendix. The values of g;,(n), n=0, - - -, 10, deduced from the differential equations
are given in Table B, for checking purposes.

Similarly, two special cases of system (2) have been given in [2]. The elimination
scheme which was used in [2] to obtain a second order differential equation for
Gi.(x)=V(0,0,0, x) will only work in 4 of the 16 cases that arise from m(a)=4
(including the two cases reported in [2]). This is because our elimination scheme
involved finding linear equations in derivatives with respect to y, and y,. For 4 sets
of values of ¢, d, e, f, g, the two equations given in [2] involve only Vy,, Vi, V, Vi,
so Vi, is eliminated to yield a second order ordinary differential equation. For the
other 12 sets of parameter values, the two equations involve Vy, V,, V, V},, V|. Thus
we derive a third equation from these, involving Vi, Vi, V4, V, Viy, Vi, and eliminate
Vi1, Vi between these three equations to yield a third order differential equation.

Since these third order differential equations have large polynomials as coefficients,
we do not give them here. The four cases with second order differential equations are
i=0, 1 and a ={4}, {2, 4}. The cases with @ ={4} have been reported in [2], so we
omit them, and give the values of ¢, ¢, ¢, for the differential equation

d2
$(3) 55 Gua(5) + 1(¥) - G (1) + Bu(x) Gy (x) =0
with a ={2, 4} in Table C of the Appendix. The values of g;;,4(n) for n=0,---,10
are given in Table D.

5. A comjecture. In general, for any a, it is routine to derive a system of m(a)
partial differential equations for V(y, y2,* * *, Ym(a))- These can, of course, be trans-
formed into a system of simultaneous recurrence equations in m(a) dimensions, which
can be used to give the required number, g;,(n) =[ymn/n'1V, in time which is of
order n™* ). To enable us to calculate 8i.(n) in time which is linear in n, we must first
reduce the system of partial differential equations for V(yy, -, Ym()) to a single
ordinary differential equation for V(0, - - - 0, ¥,.()), as We have done in the previous
section when m(a) =3, 4. When m(a) =5, we can find elimination schemes to perform
this reduction, but the computation becomes very lengthy. For example, for the 5-regular
simple graphs, with i=1, a={5}, we have carried out the very time-consuming
elimination, and have obtained a differential equation for G, (5(x). Unfortunately, it
is of sixth order, and the degrees of the polynomial coefficients exceed 100. The first
20 values of g, s(n), deduced from this equation, agree with the results of McKay
[4]. This differential equation demonstrates that G, (x) is D-finite, but there is
certainly no guarantee that it is the lowest-order ordinary differential equation with
polynomial coefficients which can be found for G, 5(x).

The differential equations that we have obtained lead us to make the following
conjecture.

CONJECTURE 5.1. The numbers g, ,(n) and g, ,(n), of labelled graphs and simple
labelled graphs, respectively, with n vertices, each with degree in «, are P-recursive for
any finite a.
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From the results of this paper, it seems that k-regular graphs are computationally
equivalent to graphs whose vertex-degrees lie in a, where @ has maximum element k.
It might be that certain choices of a, say @ ={0, 1, - - -, k} would be more convenient
to work with, in proving P-recursiveness, than k-regular graphs because of more
“freedom” in constructions, while yielding equivalent results.

6. Plane partitions. If p(iy, - - -, i,) is the number of plane partitions with i; copies
of jforj=1,---, n, then . .
pliy, -, i) =0ty 1 TT (A=) [T (1—at) ™
. L= 1<j
=[] T (+4) IT (1 -1) 7,
j=1 I=j
from Stanley [7] or Macdonald [3]. Thus if g,,(n) is the number of plane partitions

with m copies of each of 1,2, - -, n, then

‘Im(”) = gO,{m-—l,m}(n)'

Thus, we have demonstrated that {g,,(n)|n = 0} is P-recursive for m =4, and conjecture
that it is P-recursive for all m.

Appendix.

TABLE A
Polynomial coefficients in ordinary differential equations for G, ,(x) when m(a)=3.

i a J @;
0 {3} 0 x(x1%—10x%+24x° — 4x* — 44x? — 48)
1 —3(x'°—6x®+9x5+18x*+10x2-8)

2 9x3(x*~2x%-2)

0 {1, 3} 0 x(x'°—18x%+120x® —272x* —324x2—120)
1 —3(x'°—14x8+41x°+36x*+2x2-8)
2 9x3(x*—4x2-2)
0 {2,3} 0 x4+ x10—6x°—4x®+11x7 —15x5+8x° — 2x3+ 12x2 - 24x - 24
1 —3(x'*-2x%+2x%—6x> +8x*+2x>+8x%+ 16x —8)
2 9x3(x*—x2+x—2)

0 {1,2,3} 0 x11—2x1%—14x°+24x3+74x" — 61x° —99x°
—55x*—180x> —48x2 —96x —24

1 =3(x1°—10x% - 6x7 +22x5+8x> +20x* +26x* + 16x —8)
2 9x3(x+2)(x*-2x%+x—1)
1 {3} 0 —x3(x*+2x2-2)?
1 (x4 6x3+3x5—6x*—26x%+8)
2 9x3(x*+2x2-2)
1 {1,3} 0 —x(x*—4x?+2)(x*—2x%+12)
1 3(x10-2x8 - 5x5—18x%+8)
2 9x3(x*-2)
1 {2,3} 0 —x2(x°+ x8+8x7 +14x5+15x° +9x* —24x> - 22x% +16x+12)
1 3(x'°+10x® — 4x7 +16x° — 2x° — 14x* + 34x> — 24x% ~ 16x + 8)
2 9x3(x*+3x2+x—-2)
1 {1,2,3} 0 —x(x1%—2x%—6x7 - 12x%+ x° — x*+39x> — 10x2 +24)
1 3(x1042x8+2x" —4x%+8x° — 2x*+10x3 — 16x> — 16x +8)
2 Ix3(x*+x%+x-2)
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TABLE B
Initial values for g; ,(n) when m(a)=3.

i a {g.(n)]0=n=10}

0 {3} 1,0,2,0,47,0,4720,0, 1256395, 0, 699971370

0 {1,3} 1,0,5,0, 186, 0, 22960, 0, 6831650, 0, 4071581010

0 {2,3} 1,1, 4,23,214, 2698, 44288, 902962, 22262244, 68446612, 21940389584

0 {1,2,3} 1,1,7,47, 521, 7233, 129443, 2811701, 73203561, 2229207953, 78389689559
1 {3} 1,0,0,0,1,0,70,0,19355, 0, 11180820

1 {1,3} 1,0,1,0,8,0,730,0, 188790, 0, 102737670

1 {2,3} 1,0,0, 1, 10, 112, 1760, 35150, 848932, 24243520, 805036704

1 {1,2,3} 1,0, 1,4, 41,512, 8285, 166582, 4054953, 116797432, 3912076929

TABLE C
Polynomial coefficients in ordinary differential equations for Gipa(x), i=0,1.

i Jj &

0 0 (=x™+6x"+2x12 - 76" +112x'°+96x° +356x2 — 1320x7
~568x°+768x°+9248x*+12224x> — 2496 x> —3968x —768)
1 4(x" —4x"2—6x' +36x'°— 6x°+24x2 —352x7 +380x°
+152x° +2104x* — 1472x> — 688x2 +256x + 96)
2 —16(x —2)%x*(x +1)*(x* = 2x*+2x> - 2x%+12x + 4)
1 0 X2 (x12+6x" +14x'°+ 12x° — 16x8 +24x7 + 116x° — 184x°
—456x*+480x> + 512x% — 704x + 192)
1 4(x"+4x'2—2x"1 —20x1°+2x° + 40x® — 104x7 — 204x°
+200x° +328x* —288x> — 208x2+320x — 96)
2 —16(x —1)2x%(x +2)%(x*+2x = 2)(x*+2)

TABLE D
Initial values for g, i, 4(n) and g, (5 4(n).

i {8i2.0(n)[0=n=10}
0 1,2,9, 65,751, 13044, 320803, 10609256, 453774440, 24375801464, 1607240682376
1 1,0,0,1,3,38,730,20670, 781578, 37885204, 2289786624

Acknowledgments. The calculations were carried out by the symbolic algebra
system called VAXIMA at the University of Waterloo. VAXIMA is based on the
MACSYMA system developed at the Massachusetts Institute of Technology.
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AN ANALOGUE OF THE SHANNON CAPACITY OF A GRAPH*

MARTIN FARBERT

Abstract. The Shannon capacity of a graph G is the value a,(G)=sup, Y a(G"), where a(G") is the
independence number of the strong product of n copies of G. We introduce an analogue of the Shannon
capacity, namely «,(G)=inf, {/x(G"), where k(G") is the independent domination number of the strong
product of n copies of G. The Shannon capacity measures how rich a language can be, where the language
is to be transmitted through a noisy channel. The parameter «,, on the other hand, measures how sparse
such a language can be, if it is maximal with respect to inclusion.

AMS(MOS) subject classifications. 05C70, 90C05

Introduction. In 1956 Shannon [11] posed a problem in information theory which
has led to many interesting graph theoretical questions. Suppose that we wish to
transmit messages using letters from an alphabet &. Due to noise in the channel,
certain letters can be confused when transmitted. To be precise, when we transmit a
letter, say j, any letter in a nonempty set S; might be received. We say that two distinct
letters, j and k, can be confused if S; N Sy is nonempty. Let b, be the maximum number
of n-letter words between which there is no confusion, where two distinct words can
be confused iff their ith letters are the same or can be confused for each i. Shannon’s
problem is to evaluate sup,, Y b,.

Shannon’s problem can be stated in graph theoretical terms. Consider the graph
G4 =(V, E) which has one vertex for each letter in & and in which two vertices are
adjacent iff the corresponding letters can be confused. Recall that the independence
number of any graph H, which we will denote by a(H), is the maximum number of
pairwise nonadjacent vertices of H. Thus b, = a(G,). Also, the strong product of the
graphs H,=(V,, E,), - - -, H,=(V,, E,) is the graph H, X H, X- - - X H,, on the vertex
set V; XV, X- .- XV, in which two distinct vertices are adjacent iff their ith coordinates
are equal or adjacent in H,, for each i. It follows that b, = a(G'), for each n, where
G, is the strong product of n copies of Gy, and that Shannon’s problem is to evaluate

a,(Gy)=sup Ya(G%).

The parameter a, is known as the Shannon capacity.

The determination of the Shannon capacity of an arbitrary graph appears to be
quite difficult. Indeed, the Shannon capacity of the 5-cycle, Cs, was not determined
until 1978 [7], and the Shannon capacity of each odd cycle of length greater than 5
is still unknown. There has been a recent surge of interest in the study of the Shannon
capacity, and numerous analogues have been introduced (see, for example, [5]). The
purpose of this paper is to study another interesting analogue of the Shannon capacity.

A set S of vertices of the graph G =(V, E) is dominating if every vertex in V\S
is adjacent to some vertex in S. The domination number of G, denoted y(G), is the
cardinality of a smallest dominating set in G, and the independent domination number
of G, denoted «(G), is the smallest possible cardinality of a set which is both

* Received by the editors November 29, 1983, and in revised form August 13, 1984. The material in
this paper is taken from the author’s Ph.D. thesis which was written under the supervision of Dr. Pavol Hell.

t Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario, Canada
N2L 3Gl.
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independent and dominating. Notice that k(G) is the cardinality of a minimum
cardinality maximal independent set in G. We define

ys(c)sixnlfvy(c") and k,(G)=inf¥x(G").

The parameter y, has been studied previously [8] and is, in fact, easy to evaluate (see
below). We are interested in studying the parameter x,, which we refer to as the
k-capacity. Other work on the independent domination number of strong products of
graphs can be found in [9]. It is straightforward to verify that « is submultiplicative,
and hence

KS(G)=5LT03K(G").

It is worth noting that, while the Shannon capacity of G yields an upper bound
on the cardinality of a set of n-letter words which are pairwise nonconfusable, the
k-capacity of G yields a lower bound on the size of a maximal such set. In other
words, the k-capacity of G yields a lower bound on the size of a worst-possible set
of pairwise nonconfusable n-letter words, where we are not obviously wasteful, i.e.,
where we would add another word to the set if possible.

Several related parameters are useful for the study of the Shannon capacity and
its analogues vy, and «,. For a given graph G=(V, E) let € be the set of all cliques
(i.e., maximal complete subgraphs) of G; and, for each vertex v, let N[v] be the closed
neighborhood of v, i.e., the set consisting of v together with all vertices adjacent to v.
(For graph theoretical definitions which are not given here, see [1].)

Consider the following “fractional” versions of the parameters a, v, and «:

af(G)Emax{ Y ox: Y x,=1VCe %, x,=20Vve V},

veV veC

'yf(G)Emin{Z X,: % xvzl‘v'ueV,xugo‘dveV},

veV ve N{u]

Kf(G)Emin{Z X Y X%=1VCe% Y x,=Z1VueV,and x,=0Vve V}.

veV veC ve N[u]

We note that a(G) is usually referred to as the Rosenfeld number of G.

It is known that a,(G)= a,(G) [10] (cf. [11]) and v,(G) = v,(G) [8] (cf. [5]),
for every graph G. (Since linear programs can be solved in polynomial time [6], it
follows that y,(G) can be evaluated efficiently. Also, the quantity a(G) has been
shown to be computable in polynomial time when G is perfect [4]. Since a(G) = a;(G)
when G is perfect it follows that a,(G) can be computed efficiently for a perfect graph
G.) In light of these facts, one might expect that «,(G)= k,(G) for every graph G.
Unfortunately, this fails to be true even for trees. The problem is that, unlike a; and
Y5 Ky is not multiplicative. (The multiplicativity of a, and v, follow easily from the
duality theorem of linear programming.) It is known that k(G) = k,(G) whenever G
is chordal [3], and hence, whenever G is a tree. On the other hand, there are infinitely
many trees T for which x,(T) <k (T) (see Theorem 1).

In the remainder of this paper we will present lower bounds on the k-capacity
and use them to evaluate the «-capacity for several classes of graphs. As is common
in the study of the Shannon capacity, we will use linear programming duality. However,
we do so in a novel way (see the proof of Theorem 1).
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The bounds. Notice that y(G)=«(G), for every graph G, and hence y/(G)=
Y:(G) = k:(G) = k(G). Since v,(G) is easy to evaluate, it provides a practical lower
bound on «,(G). In general, this bound is not tight. However, it suffices to obtain
exact values for several classes of graphs. For example, it is straightforward to verify
that y,(C,)=n/3 and «(C,)=[n/3], for each n. Thus, «,(Cs,)=n, for every n. As
another example, we show that y,(T) = «k,(T) = «(T) for each tree T which contains
no edge each of whose ends has degree at least 3. (On the other hand, v,(T) <«,(T) <
k(T) for the smallest tree T which does not satisfy these conditions—see Theorem 1.)
It is known that y(T') = y,(T") for every tree T’ [2]. Thus, it suffices to show that
k(T)=vy(T). Choose a minimum cardinality dominating set D in T which minimizes
the number of edges in the subgraph induced by D. If there are no edges in this
subgraph, then «(T) = y(T). Otherwise, there is an edge uv with u, v e D. At least one
of its ends, say u, has degree at most 2. Since D\{u} is not a dominating set, u has
exactly one neighbor, say x, which is not dominated by D\{u}. Thus (DU {x})\{u} is
a dominating set which induces one less edge than D induces, contradicting the choice
of D.

We now present another lower bound on «,(G) and use it to obtain exact values
for the k-capacity of certain trees which do not satisfy the condition y,(G)=k(G).
This bound is, in general, tighter than y,(G).

We define

k(G) =inf ¥ (G").
By definition, k;(G) = k,(G). Also, v/(G) = k4(G), since 7y, is multiplicative.

For each m=1, let H,, be the tree on the vertices ug, Uy, " -, Up, Vg, V1, * * *, U
depicted in Fig. 1. Notice that for each m, y,(H,,)=y(H,)=2 and «(H,)=m+1.

Uy

uz

FI1G. 1

THEOREM 1. For each m, «,(H,,) = 23/;, where H,, is the tree depicted in Fig. 1.
Proof. Let m=1 and let

Im={(u0aui): i=1a2,. '.’m}U{(vbuO):i=1,2,“ ',m}
U{(UO, Ui): i=1’2a”.am}U{(ub UO):i=1a2,'. 'am}'

It is straightforward to verify that I, is an independent dominating set in H2, of
cardinality 4m. Consequently, «,(H,,) = 2/m. It remains to show that k,(H,,) = 2m.
It suffices to show that k,(H,,) Z2/m, i.e., that k(H?) = (4m)"'? for every n. To do
this, we will utilize the dual of the linear program associated with x;(G), namely:

P(G): Maximize Y y,— ¥ z¢

ueV Ce®
subjectto: Y y.— Y zc=1, VveV,
ue N[v] Csv

y.=0, VueV,
cho, VCe&.
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By the duality theorem of linear programming, it suffices to show that the optimal
value of P(H?,) is at least (4m)"/?, for each n. We will do this by giving a canonical
feasible solution to P(HZ,) of value (4m)"/?, for every n.

Let C* be the clique (edge) of H,, induced by {u,, v}, and let n > 0. We will call
a vertex of H, a p-vertex if exactly p of its coordinates are endvertices of H,, and
we will call a clique of H}, a p-clique if it is a product of n—p copies of C* and p
other cliques of H,,. (Notice that every clique of H, is a product of n cliques of H,,
and vice versa.)

The following facts about H}, are easy to verify:

(1) There are exactly (2m)" n-vertices.

(2) There are exactly n(2m)" ™" (n—1)-cliques.

(3) Each p-vertex is equal or adjacent to exactly m""? n-vertices.

(4) Each p-vertex is in exactly (n—p)m"?~' (n—1)-cliques.

Using these facts we will show that the following is a feasible solution to P(H,)
of value (4m)™*:

v

{m‘(”/z)(1+(n/2) In m) if v is an n-vertex,
0 otherwise
{m"‘"/z) Inm if C is an (n—1)-clique,
ZC = .

0 otherwise.

(Here, In m denotes the natural logarithm of m.)
If v is a p-vertex then, by (3) and (4), we have

n
Y oy~ Y zc= m”"’m“"/2<1+—ln m) —(n=p)m" P 'm"" "D nm
ue N[v] Cov 2

= m("/z)"’<1+-§ln m) -m™?P(n—p)lnm

= m("/z)“’(l —-(g—p) In m)

=1

Note that the last inequality follows from applying the first derivative test to the
function f defined by f(x)=m*(1—x In m). Since each y, and z. is nonnegative it
follows that this is a feasible solution to P(H,). Finally, using (1) and (2), we see
that this solution yields an objective value of

X V= L Zc= (2m)”m“"/2<1+§ln m) -n2m)" 'm""? Inm

ueV Ce®
= (4m)”/2(1+§ln m) —(4m)"/2§ln m

= (4m)"">. a

Now, for each m=1 and k=1, let G,, be the tree on the vertices
{r, 0,00, = ¢, U, Wy, Wa, * = *, Wy Xq, X, * *, X2} depicted in Fig. 2. Notice that
Y (Gmi) = ¥Y(Gmi) =m+1 and «(G,,x)=m+k for all m and k.

THEOREM 2. For each m= k=2, k,(Gnx) = m+k, where G, is the tree depicted
in Fig. 2.
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FiG. 2

Outline of proof. The proof is similar to that of Theorem 1. Since k(G,,x) = m+k,
it suffices to show that k,(G,,x)Zm+k We establish this inequality by giving a
canonical feasible solution to P(Gr, ) of value (m+ k)", for each n.
We will call a vertex of G, an (a, b, ¢, d)-vertex if a of its coordinates are in
{x1, X2, -+ +, xm2}, b of its coordinates are in {v,, v,, - * -, 1y}, ¢ of its coordinates are
in {w;, w,, - - -, w,,}, and d of its coordinates are r. Also, we will call a clique of G, «
an (a, b, ¢)-clique if it is a product of a cliques induced by some w; and x;, b cliques
induced by r and some v,, and ¢ cliques induced by r and some w;
The following facts about G, . are easy to verify:
(1) For each a=0,1,2,---,n, there are exactly (J)m*k"* (a,n—
a, 0, 0)-vertices.
(2) Foreacha=0,1,2,---,n—1 there are exactly n(";")m***'k"*' (a,n-
a—1,1)-cliques.
(3) The number of (a’,n—a’,0,0)-vertices which are equal or adjacent to a
specific (a, b, ¢, d)-vertex is
mk? ifa'=a+c
0 otherwise.

(4) The numberof (a’, n—a’—1, 1)-cliques containing a specific (a, b, c, d)-vertex
is
em® k¢ ifa'+1=a+c,
dm'k?' if a’=a+c and
0 otherwise.

Using these facts, together with the fact that k = m, one can show that the following
is a feasible solution to P(G, ) of value (m+k)":

v

{m"’(1+a Inm) if visan (a,n—a,0,0)-vertex,a=0,1,2,---,n,
0 otherwise,

{m"’ Inm if Cisan(a,n—a—1,1)-clique, a=0,1,2,---,n—1,
Z =
‘" lo otherwise.

We leave the details to the interested reader. 0O

Concluding remarks. Notice that every graph G considered in the preceding section
satisfies

(3.1) Kfs(G)=Ks(G)'

If (3.1) were true in general then the «-capacity of many other graphs could be
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evaluated. For example, this would imply that «,(C,) = n/3 for every n. Although we
know of no counter-example to (3.1), we suspect that it does not hold in general.
Indeed, we conjecture that KS(C4)=\3/£1. To see that 4/ 3§KS(C4)§~3/4, notice that
v7(C,) =4/3. On the other hand, if we number the vertices of C, by 0, 1,2, 3 so that
[i, j]is an edgeiff i+j is odd, then {(0, 0, 0), (1, 2, 3),(2, 3, 1), (3, 1, 2)} is an independent
dominating set in C3.

It would be interesting to determine classes of graphs which satisfy (3.1). We
conjecture that (3.1) holds for trees.

Since vy, appears to be a poor lower bound on «k,, and kg is not multiplicative,
the most obvious problem which comes to light is to find a good multiplicative lower
bound on «.

Acknowledgment. We would like to thank Dr. Pavol Hell who suggested the
problem of studying the x-capacity, and who supervised the Ph.D. thesis from which
this paper was extracted.
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PROBABILITIES FOR INTERSECTING SYSTEMS AND
RANDOM SUBSETS OF FINITE SETS*

P. C. FISHBURNT, P. FRANKLY, D. FREEDS, J. C. LAGARIAST AND A. M. ODLYZKO*%

Abstract. Let &%, be a family of subsets of {1, 2, - - -, n}, each two of which have at least k elements in
common, and let S be a random subset (sample) of {1,2, - - -, n} obtained by choosing each i = n indepen-
dently with probability p,. Assuming that1>p,=p,=-- = p, >0, we investigate the problem of determining
an %, that maximizes the probability that at least one of the sets in %, will be included in S.

Complete solutions are obtained for the following cases: for k=1, p, = p for all i, or variable p;, with
izp,orp,>3; for k=2, p,=p=}forall i and small p,,,. A partial solution is given for k=2 when p, = p
for all i.

1. Introduction. Let %, be a family of subsets of n={1,2, .-, n} for which
1=k<n and

(1) |[ANB|zk for all A, Be %,
and let p=(p,, p2, " * *, Pn) be a probability vector with
1>p1§p2§‘ * 'gpn>0'

Our aim is to determine intersecting families %, that maximize the probability P(%,, p)
that at least one member of %, will be included in a random subset S of n that
independently contains each i=n with probability p, We thus add a probabilistic
dimension to the theory of intersecting systems initiated by Erd6s, Ko and Rado (EKR)
[3] and surveyed recently by Deza and Frankl [2].

Let

F*={Bcn: Ac B for some Ac F}.

Clearly, % satisfies (1) and P(ZFy, p) = P(%, p). It is also easily shown that if p=p’
(pi= p:! for all i), then P(%, p)= P(%, p’). Unless it is stated otherwise, all %, in
what follows will be maximal intersecting systems, i.e., %= %, and no set can be
added to %, without violating (1).

The simplest case of probabilistic EKR theory has k=1 and p constant, say p;=p
for all i. To illustrate, suppose each card in a 52-card deck is to be independently
chosen with probability p for a sample S of the deck. %, is a maximal family of
subdecks, each two of which have at least one card in common, and P(%,, p) is the
probability that some subdeck in %, will be included in S. The following results were
first established indirectly by Ahlswede and Katona [1] in their Theorem 4.2 and were
independently derived by the present authors. If p <3, then the maximum of P(%,, p)
over &, equals p, and this value is realized when %, consists of a one-card subdeck
and all of its supersets. If p >3, then max P(%,, p)> p, and any maximizing %, contains
all subdecks with more than half the cards plus half the subdecks with exactly 26
cards. If p=3, then max P(%,, p)=3, and this is realized by every maximal %,.

The results for constant p and k=1 are discussed along with two variable-p
generalizations for k=1 in the next section. The first generalization has 3= p,; the
second has p, > 3. Definitive results for k=1 are not presently known for other cases.

* Received by the editors July 26, 1983.

t AT & T Bell Laboratories, Murray Hill, New Jersey 07974.

} Centre National de la Recherche Scientifique, Paris, and Consultant, AT & T Bell Laboratories.

§ University of California, Berkeley, California 94720. This work was done while this author was a
summer employee at AT & T Bell Laboratories, Murray Hill, New Jersey 07974.
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Later sections consider k=2. Section 3 shows that a P-maximizing %, consists
of {1,2,- -, k} and its supersets if p;., through p, are small. Section 4 proves that
collections of large subsets of n maximize P when p is constant and p = 3. Section 5
gives a partial result for all constant p when k=2. It is hoped that further research
will add substantially to these results.

Several notations apply throughout the paper. If not indicated otherwise, A and
B are subsets of n, and A°=n\A. Ff denotes an %, that maximizes P(%,, p), and
F¥* is an %, that uniquely maximizes P(%,, p).

2. Probabilistic EKR theory for k=1. We assume k=1 throughout this section
and will omit the subscript on %, for convenience. Given k=1, a maximal % must
contain A or A°, else there would be B, C € ¥ with B< A° and C < A, thus contradicting
BN C # . Since both A and A° cannot be in %, we have the well-known

LeMMA 1. Every maximal & contains exactly 2"~ subsets of n.

We begin with the constant-p cases. Since all S’s are equally likely when p; =3
for all i, every maximal & is an * for this case, and P(F*, (3, - -,3))=2""1/2" =1
Other values of p are covered by

THEOREM 1. Suppose p; = p for all i. Then

p<3=>F ={{i}}";

+
[p>1 nodd]=>9’**={A: IAlén2 1};

[p>3, neven]

S F*= {A: |A|>g} U {halfof the A with |A| =§, one from each {A, A%} pair}.

The values of P(F*, p) are easily determined from the theorem and reveal an interesting
discontinuity in the limit:

: 1
lim P(F*, p) = {” ifp=3
n—>co 1 ifp>3.
When p >3, the probability that S contains more than half the elements in n approaches
1 as n>o0.

Although Ahlswede and Katona’s results [1] yield a proof of Theorem 1, we
present a full proof to show the application of a basic result of Erdos, Ko and Rado
[3]. Ingenious short proofs of the following are given by Katona [8] and Greene and
Kleitman [6].

LemMmaA 2 (Erdos-Ko-Rado). For each 1 =t <n/2, the largest collection of t-element
subsets of n that are pairwise nondisjoint has cardinality (;-}). This maximum is realized
by the collection of all t-element subsets of n that contain a fixed i = n, and this is unique
up to the choice of i.

To prove Theorem 1, let a, be the number of t-sets (t-element subsets) in %. By

the proof of Lemma 1,
at+an—t=(':>’ t=1,---,n,

with ¥ a,=2""". Let w,=p‘'(1—p)"" so that

P(F,p)=Y aw, withp=(p,---,p).
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If p <3, then w,> w,> - - - > w,, so, by Lemma 2 and a, + a,_, = ("), aw, + a,_w,_, for
t<n/2 is maximized if and only if the t-sets in & are those that contain a fixed i. It
then follows that ), a,w, is maximized if and only if some i is in every Ae &.

If p>3, then w,>w,_,;>- - ->w,, and therefore ¥ a,w, is maximized by making
the a, for t>n/2 as large as possible, namely (7). If n is odd, this yields the unique
maximizer $** shown in the theorem. If n is even, then all maximal % have (ny2)/2
(n/2)-sets, and any such % that contains every A with |A|> n/2 is a maximizer of P.
This completes the proof of Theorem 1.

We now consider variable p with 1>p,=p,=---=p,>0, as we assume
throughout. Our first result in this case pertains to relatively small p,

THEOREM 2. Suppose 3= p,. Then F* = {{1}}*, and F** ={{1}}" iff p,> p».

Proof. Given 3= p,, let & ={{1}}" and let & be any other maximal intersecting
family. Consider p'=(p,, p2,* - *, P2). By Theorem 1, & is an F* for p’, so P(H, p') =
P(%,p’). Let p"=(pa, P2, P3,* * * » Pn)- Since P(A) is not affected by values of the p;
beyond the initial value, but P(%) cannot increase as those values decrease, P(s, p’) =
P(d,p)z P(Z,p)Z P(F,p"), so P(A,p")=P(Fp"). If py=p,, then p=p’, so «
and—by symmetry—{{2}}* are F*’s for p.

Suppose then that p, > p,. As we change from p” to p, P(«) increases from p, to
1. If Be &, then Pr(Bc< S) does not change when p” changes to p if 1¢ B, and it
increases by a factor of p,/p, if 1€ B. Since {1}° € %, it follows that

P(s4,p)=p,=p2(p:/p2)> P(F, p).

Thus & is the unique maximizer if p, >p,. 0O

Our second generalization of Theorem 1 for k=1 takes all p,>3. In this case,
each F* is determined by the greedy algorithm that chooses A from {A, A} if
P(A)> P(A°) and chooses either if P(A)=P(A°), where

P(A)=Pr(A< S) when p applies.

THEOREM 3. Suppose p,>3. Then F*={A: P(A)> P(A°)}U {half of the A with
P(A)=P(A°), one from each such {A, A} pair}.

Remark. As in the final part of Theorem 1, either A or A° can be chosen for #*
in Theorem 3 when P(A)= P(A°). The ensuing proof shows that intersections of
chosen sets will be nonempty. If p,>3 is replaced by p, =3, slight modifications in
the proof show that #* equals {A: P(A)> P(A°)} plus one set from each {A, A°} that
has P(A) = P(A°). The latter choices may require explicit consideration of nonempty
intersections if some p; =3.

Proof of Theorem 3. Given p,>3, let ¥ be an F* as designated in the theorem.
Contrary to the theorem’s conclusion, suppose A, Be ¥ and ANB=. Let C=
n\(A U B). This is not empty, since otherwise B = A", contrary to the definition of %.
By that definition, P(A) = P(A°) and P(B)= P(B°), so

P(A)P(B) -
P(A)P(B) ™

However, the P ratio here equals [[,_. [(1—p;)/p;], which is strictly less than 1 since
pi>13, so a contradiction obtains. Hence A, Be % implies ANB#@. 0O

In contrast to the final conclusions of Theorem 1, where #* consists entirely of
A with |A|Z n/2 when p is constant and p >3, suppose p,=1—¢ and p, =1+ ¢ for all
i=2, £ positive and small. Theorem 3 then implies that F** = {{1}}". However, if ¢
is held fixed and n increases, we will eventually get to an n where %* no longer
contains {1}.
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3. Small p,,, for k=22. We assume k=2 henceforth. The following theorem
generalizes Theorem 2 for small py.,. The p; for i =k can of course be large.
THEOREM 4. Suppose 2= k <n. If either

1
=k=14 d =
2 14 and pc, 2k+1)
or
k=15 and pkﬂé—!—
k+1

then P(F§,p)=pip2° " Pic

We suspect the conclusion also holds for 2= k=14 when p,,;=1/(k+1), but
lack proof. At any rate, P(¥¥, p) =p,p. - * - px clearly implies that Ff = {{1,2, - - -, k}}"
and that this is F5¥* iff p, > pi.,. When pi,,>1/(k+1), the conclusion of the theorem
is not generally true. For example, if py=p,=::-=p,=p>1/(k+1) and %, =
{A:|AN{1,- -+, k+2}{=k+1} then

P(F,p)=(k+2)p*'(1-p)+p**?=p""(k+2—-p(k+1))>p"“

Our method of proving Theorem 4 is essentially the same as a method used

by Frankl and Firedi [5]. The main tool is the following extension of the
Erdos-Ko-Rado theorem.

LEMMA 3 (Frankl [4]). Suppose k=r=n and %,, is a maximum-cardinality set of
r-sets for which |AN B|Z k for all A, B in the set. Let
Fr,={A:|A|l=rand {1,2, -, k}c A},
Fr.={A:|A|=rand |AN{1, -, k+2}{z= k+1}.

Then, up to permutations on {1, - - -, n},

[2=k=14, n= ¢ (r—k+1)(k+1) for some constant
1< ¢, <2 that depends only on k1= %, = F3.,;

[(kz15, n>(r—k+1)(k+1)]=> %, =F%,;
[kz15, n=(r—k+1)(k+1)]=>F, e{F,, Fi.};
[k=15, a(r—k+1)(k+1)=n<(r—k+1)(k—1) for some
constant ¢, <1 that depends only on k1= %, , = L,.

We also use two other results.

Fact 1. If Theorem 4 is true whenever p;., =" - - =p,, then it is true in general.

Proof Let 9?(1'{{1, T k}}+' Let P=(P1, © s Pr+1s P2yt ’Pn) and p,=
(P1, " * 5 P15 Prv1s " * > Pr+r)- If Theorem 4 is true whenever pyyy=- - =p,, then,
since pr1 = pPrs2= - * =P, and in view of the second paragraph in the introduction,

P(Fi,p)=p: " p=P(FL, ) Z P(F, p) Z P(F, D). o
Facr 2. Given p=(py,***,Pwp," **,p) and P¥=P(F¥,p with n components),

it follows that P%,,= P* and hence that lim,_,., P¥ exists.

Proof. Just consider the trivial extension of F§ at n to n+1 by adjoining to %}
the set {AU{n+1}: Ae F}}. O

By Fact 1, it suffices to show that Theorem 4 holds when py.,=---=p,=p,
so assume henceforth that p=(p,,* -, p, P, * *, p). Then Fact 2 yields the desired
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result of

,I.an}o PY¥=pip»* " Pe
We prove this for k=15 in Theorem 4. The proof for 2= k=14 is simpler since it
involves only the central limit theorem.

Given k=15 and py,, = p=1/(k+1),let %, be an arbitrary maximal k-intersecting
system, and let &, ={Ae %,: |A|=s} for s= k. Also let a,=|%,|, b=p, - - - pi, and
f(k,n)=[k—1+n/(k+1)]. Then, for large n, and in view of the first result of Lemma
3 for k=15, namely (}7%) =|%%,|= a, for s <f(k, n), and ¢, <1 in the final result of
the lemma, we have

P(F.p)= T P(F.p)=b ¥ ap™(1-p)"

K [(:—_1’:) - “s]Ps"‘(1 —p)

=b+b —kf(k’”)+[n2/3] Fl |~ |90 S(1=p)"*
=b+bp x 1%kl —|Fellp*(1-p)

s=

=b-b

I ™M=

- n s n—s
+bpt X ( )p (1-p).
s>f(kn)+[n*?1 \ §

The final sum vanishes as n - o by the central limit theorem, and it is easily checked
that

Sfk,n)+[n?/3]

(L) -1920p°0-pr= =3 (") ot g1 -y

=0(n™),

s=f(k,n)

which also vanishes in the limit. Therefore lim P(F¥,p)=b. 0O

4. Large p; for k22. Our main result for k=2 and p, =3 returns to the constant-p
context of Theorem 1. We shall comment briefly on variable p shortly.

The following theorem of Katona [7] and Kleitman [9] illustrates another facet
of standard EKR theory. Let

+k
{A: |A|§£—2——} if n+k is even,
@k=

{A: |Aﬂ{1,-~-,n—1}|§n—l+k

} if n+k is odd.

LeMMmA 4 (Katona, Kleitman). Suppose %, has maximum cardinality. If n+k is
even, ¥ = G If n+k is odd, then %, is either 4, or an isomorph of 4, obtained by
replacing {1, - - -, n—1} in its definition by any other (n—1)-set in n.

THEOREM 5. Suppose k=2 and p,=p =3 for all i. Then F§* = %, if n+k is even,
and Ff=%, if n+kis odd.

Proof. Immediate from Lemma 4 and the fact that p‘'(1—p)"~" is nondecreasing
in t when p=3. 0O

Two factors suggest that the variable-p case for p, =3 is more complex. First,
specific applications of Theorem 3 for k=1 show that ¥* can vary considerably as
the p;=3 change. Second, unlike k=1, maximal %, for k=2 can have different
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cardinalities. For example, with o, ={{1,2, - - -, k}}",

. k—1

lim |(gk|/|dk|=2 .

n->o00o

However, 4, ’s size advantage over &, may be offset under P if p, through p, are near
1 while later p; are near 3.

We illustrate this for k=2 with p,=p,=1—¢ and p;=- - - = p, =3+ 8. Regardless
of n, P(st,, p)=(1—¢)> If & is fixed, then P(%,, p) approaches 1 as n gets large, so that

P(gb p) > P(db P) for n> nO(E, 8)'

However, if § varies with n and approaches 0 sufficiently rapidly, then P(%,, p) will
approach 3 as n gets large, so that

P(st,,p)> P(%,,p) forlarge n.

5. Constant p for k =2. We conclude with observations for constant p and k=2
that augment the small-p; results of Theorem 4 and the large-p; results of Theorem 5.
Our prime question is what happens to %5 for p between &, and 3. The answer we
give is incomplete since it deals only with a small number of maximal %,. However,
it does suggest what the general #% solution may look like when k =2 and p is constant.

For each 1=t=[n/2] (the integer part of n/2), let

F(t)={A:|A|=t+1and Ac{1,2,---,21}}",

the family of (¢+1)-sets in 2t and their supersets in n. It is easily checked that each
F,(t) is a maximal %, set. In previous notation, %,(1) is &,, and %,([n/2]) is %,. Our
partial answer to the question of the preceding paragraph is

THEOREM 6. Suppose p; = p for all i, and %, is restricted to {F,(1), - - - , F»([n/2])}.
Then P(%,, p) is uniquely maximized by

-1
F) I Gr<p<sipfort=12,,[n/2;
FAn/2) i At<p<t.

Thus, as p increases with %, confined to the %,(t), the optimal %,(¢) changes
from %,(1) to %,(2), then to %,(3), and so on, up to F,([n/2]) just before p=3. The
only p where we definitely know that the designated %,(t) is an ¥ are p=¢,and p=3.

Our proof of Theorem 6 is based on a lemma that seems interesting in its own
right. For the lemma let

#(t)={A:|A|=t+1and Ac{1,2,--,2t}}

for t=1,2,- - without specific reference to n, and let P,(p) denote the probability
that a random S chosen from {1,2,- -, 2t} with probability p for each i=2¢t will
include a set in #(t).

LemmMmaA 5. For each t=1,

P,+1(p)—1>,<p)=( 2

tﬂ)p'”(l—p)'[(2t+1)p—t]/t.
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Proof (outline). The lemma claims that

242 (9442 ~ 2t (o4 o~
(M7 )erampre 5 (Y)pra-p
k=t+2

k=t+1 k

~( 2 )pra-prtaie -

This can be verified by expanding both sides to obtain polynomials in p and showing
that the coefficients of p* are the same on both sides for s=t+1, - - -, 2t +2. The latter
step makes extensive use of the identity

a (b+1 b

£ (") =coe(0).

j=0 J a
We omit the details. 0O

Proof of Theorem 6. Since F,(t) = #(t)*for t =[n/2], it follows that P(Z,(t), p) =
P,(p). The identity of Lemma 5 shows that the curves of P,(p) and P,.,(p) cross at

__t
2t+1°

with P,(p)> P,.,(p) when p<t/(2t+1), and P,.,(p)> P,(p) when p>t/(2t+1). The
theorem follows directly from these observations. [

p
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ON THE REDUCTION OF A MATRIX TO TRIANGULAR OR DIAGONAL
FORM BY CONSIMILARITY*

YOO PYO HONGT AND ROGER A. HORNi

Abstract. We study the problem of reducing a given n-by-n complex matrix A to triangular or diagonal
form by a transformation of the form A > SAS™!, where S is a nonsingular n-by-n complex matrix. We also
consider the special case of this reduction in which S is unitary, and a generalization to the problem of
simultaneously reducing a family of matrices in this way. Natural analogues of eigenvalues and eigenvectors
arise in this context; they have both familiar and unfamiliar properties.

AMS(MOS) subject classifications. 15A21, 15A23

1. Introduction. In the theory of univalent complex analytic functions in the unit
disc, an important role is played by quadratic inequalities of the form

(1.1) x*Ax=|x"Bx| forallxeC"

where A and B are n-by-n complex matrices, A is Hermitian and positive semidefinite,
and B is symmetric [1]. Under a nonsingular change of variables x - Sy, the matrices
transform according to the laws A-> S*AS, B> S”BS, and it is easy to show that if A
is nonsingular (and hence is positive definite), there is always a nonsingular S that
transforms A and B simultaneously into diagonal form in this way.

Now suppose that A and B are n-by-n matrices, not necessarily related by (1.1),
with B symmetric and A Hermitian and nonsingular, but not necessarily definite. If
there exists a nonsingular S such that both S*AS=A and S"BS= M are diagonal,
then A'B=(SA™'S*)(($*)"'"MS ")=S(A"'M)S', i.e., A”'B has the property that
there is a nonsingular R such that R(A™'B)R ™" is diagonal. This necessary condition
is also sufficient to ensure that A and B can be reduced simultaneously to diagonal
form by these mixed congruences [3]. It is an example of how the notions of consimilar-
ity and condiagonalizability arise naturally.

A second example is an old, and often rediscovered, result about complex sym-
metric matrices. If A is an n-by-n complex symmetric matrix, there is a unitary matrix
U and a nonnegative diagonal matrix = such that UAU” =3. This may be thought
of as a theorem about diagonalization by unitary congruence, or it may be thought of
as a singular value decomposition, but if we write it as UAU ' =3, we see that it is
of the same form as the first example, but with a unitary consimilarity matrix R = U.

In the next section, we introduce the basic concepts involved with the theory of
consimilarity. In the third section, we treat the problem of reducing a given matrix to
upper triangular from by consimilarity, and in the last section we consider reduction
to diagonal form by consimilarity.

2. Basic notions. We denote by M, the set of n-by-n complex matrices. Two
matrices A, Be M, are said to be consimilar if there is a nonsingular R € M,, such that
A=RBR™. Like ordinary similarity, consimilarity is an equivalence relation on M,,
and we may ask which equivalence classes contain triangular or diagonal representa-
tives. A matrix A€ M, is said to be contriangularizable if there exists a nonsingular

* Received by the editors June 28, 1984, and in final revised form November 7, 1984.

+ Department of Mathematics and Computer Science, University of Maryland, Baltimore County,
Catonsville, Maryland 21228.

t Department of Mathematical Sciences, The Johns Hopkins University, Baltimore, Maryland 21218.
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R e M, such that R™'AR is upper triangular; it is said to be condiagonalizable if R
can be chosen so that R"'AR is diagonal.

If Ae M, is condiagonalizable and R"'AR=A=diag(A,, - -, A,), then AR =
RA. If R=(r,,---,r,) with each r,eC", this identity says that AF,=A;r; for i=
1,2,---,n A nonzero vector x such that AX=Ax is said to be a coneigenvector
of A; the scalar A is a coneigenvalue of A. The identity AR = RA says that every
nonzero column of the matrix R is a coneigenvector of A. Since the columns of R are
independent if and only if R is nonsingular, we see that a matrix A€ M, is con-
diagonalizable if and only if it has n independent coneigenvectors. To this
extent, the theory of condiagonalization is entirely analogous to the theory of ordinary
diagonalization.

But every matrix has at least one eigenvalue, and it has only finitely many distinct
eigenvalues; in this regard, the theory of coneigenvalues is rather different. If Ax = Ax,
then e “Ax = A(e”x)=e “Ax=(e*“A)(e"x) for all 6 €R. Thus, if A is a coneigen-
value of A, then so is e”A for all #€R. On the other hand, if AX=Ax, then AAx =
A(Ax) = A(Ax) =XAx = AAx =|A[’x, s0 a scalar A is a coneigenvalue of A only if |A[?
is an eigenvalue of AA. The example A=({ ~3), for which AA = —21 has no nonnega-
tive eigenvalues, shows that there are matrices that have no coneigenvalues at all; iA
is an example of a 2-by-2 Hermitian matrix with no coneigenvalues. It is known,
however, that if Ae M, and n is odd, then A must have at least one coneigenvalue
[4], a result analogous to the fact that every real matrix of odd order has at least one
real eigenvalue.

Thus, in contrast to the theory of ordinary eigenvalues, a matrix may have infinitely
many distinct coneigenvalues or it may have no coneigenvalues at all. If a matrix has
a coneigenvalue, it is sometimes convenient to select from among the coneigenvalues
of equal modulus the unique nonnegative one as a representative.

The necessary condition we have just observed for the existence of a coneigenvalue
is also sufficient.

PrOPOSITION 2.1. Let A€ M, and let A =0 be given. Then A is an eigenvalue of
AA if and only if +A is a coneigenvalue of A.

__Proof. If A =0, JA =0, and Ax=+vAx for some x#0, then AAx=A(A%)=
AVA x)=vVX AX=vVX VA x= Ax.

Conversely, if AAx = Ax for some x # 0, there are two possibilities:

(a) AX and x are dependent, or

(b) AX and x are independent.

In the former case, there is some u €C such that AX = ux, which says that u is a
coneigenvalue of A. But then Ax=AAx=A(AX)= A(ux)= 1A% = gux=|ul’x, so
|w|=++vA. Since ey is a coneigenvalue associated with the coneigenvector e*x
for any 6cR, we conclude that +./A is a coneigenvalue of A. Notice that
AA(AX) = A(AAx) = A(Ax) = A(A%) and AAx=Ax, so if A is a simple nonnegative
eigenvalue of AA, (a) must always be the case.

In the latter case (b) (which could occur if A is a multiple eigenvalue of AA), the
vector y = AX++/A x is nonzero and is a coneigenvector corresponding to the coneigen-
value +VA since Ay = AAx+VA Ax=Ax+VA Ax=vVA(Ax+VAx)=vAy. O

We have seen that to each distinct nonnegative eigenvalue of AA there corresponds
a coneigenvector of A, a result analogous to a familiar fact in the ordinary theory of
eigenvectors. The following result extends this analogy a bit further.

PROPOSITION 2.2. Let A€ M, be given, and let x,, x,, - - - , X, be coneigenvectors of
A with corresponding coneigenvalues Ay, Ay, -+, A If || #|A;| whenever 1=, j=k
and i #j, then {x,,- - -, x;} is an independent set.
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Proof. Each x; is an eigenvector of AA with associated eigenvalue |A;|*. The vectors
x5, * +, X are independent because they are eigenvectors of the matrix AA and their
associated eigenvalues |A,|% - - -, |A.|* are distinct by assumption. 0

This result, together with Proposition 2.1, gives a lower bound on the number of
independent coneigenvectors of a given matrix, and yields a sufficient condition for
condiagonalizability that is analogous to a familiar sufficient condition for ordinary
diagonalizability. We give a more general condition in Theorem 4.3.

COROLLARY 2.3. Let A€ M, be given. If AA has k distinct nonnegative eigenvalues,
then A has at least k independent coneigenvectors. If k =n, A is condiagonalizable. If
k=0, A has no coneigenvectors at all.

These bounds on the number of independent coneigenvectors are sharp. For A= J,,
an elementary Jordan block

1 1 0
1
J,= eM,,
1
0 1

AA=J? has 1 as its only nonnegative eigenvalue. The coneigenvector equation J,X = x
is easily seen to have only real solutions, so every coneigenvector is also an eigenvector,
and the subspace of eigenvectors is one-dimensional. Direct sums of elementary Jordan
blocks can therefore be used to give examples of matrices A€ M, such that AA has
k distinct nonnegative eigenvalues and A has exactly k independent coneigenvectors,
for any n= k=1.

For a given matrix, the set of coneigenvectors corresponding to a given coneigen-
value is not generally a subspace of C" over C, but is a subspace of C" over R.

The notion of consimilarity can be generalized by replacing the complex field
with an arbitrary field F and replacing the operation of complex conjugation by an
automorphism on F [7, p. 27].

3. Contriangularization and unitary condiagonalization. Any complex matrix can
be reduced to upper triangular form by a unitary similarity, but an analogous reduction
is not always possible for consimilarity. If A€ M,, is given, and if there is a nonsingular
SeM, such that A=SAS™' for some upper triangular AeM,, then AA=
SAS™'SAS™'=S(AA)S7’, and hence AA is similar to AA. But AA has nonnegative
real main diagonal entries, so a necessary condition for a given matrix A to be
contriangularizable is that all the eigenvalues of AA are nonnegative. This condition
is also sufficient to ensure that the contriangularization can be accomplished with a
unitary transformation. Given Proposition 2.1, the proof is similar to the proof of
Schur’s ordinary unitary triangularization theorem.

THEOREM 3.1. Let Ac M, be given. There exists a unitary U € M,, and an upper
triangular A€ M,, such that A= UAU if and only if all the eigenvalues of AA are real
and nonnegative. Under this condition, the main diagonal entries of A may be chosen to
be nonnegative.

Proof. The necessity of the eigenvalue condition has already been shown. To show
that the condition is sufficient, assume that all the eigenvalues of AA are nonnegative,
and let A be an eigenvalue of AA. By Proposition 2.1, there is a coneigenvector v of
A corresponding to the coneigenvalue ++/A. Since v/v*v is also a coneigenvector,
there is no loss of generality if we assume that v is a unit vector and Ad=+vAv.
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unitary matrix that has these vectors as its respective columns. The first column of the
matrix V7 AV, has entries v}Ad =+ v*v=++v18, because of orthonormality and
the relation A5 =+vAv. Thus, all but perhaps the first of the entries in the first column
of VI AV, must be zero. If we write this matrix in partitioned form as

+VX | owT
o o 7T
(3.2) VIAV, = . ! , weC"', A,eM,_,,
. | Az
0 |
we see that
AL AW+ w'A,
(VIAV))(V{AV)) = VIAAV, = : 'I Azgz
c
I

The eigenvalues of AA (all nonnegative by assumption) are therefore A together with
the eigenvalues of A,A,. Thus, the matrix A,e M,_, obtained by this process of
reduction also has the property that all the eigenvalues of A,A, are nonnegative.

The process of reduction can now be repeated with A, and its successors at most
n—1 times to obtain

VI VIVIAV, - Vo= | 5" | =a,
0 ‘o,

where each V, is unitary and A is upper triangular with nonnegative main diagonal
entries 0. If we set U=V, V,---V,_,, we have A= UAUT as desired. 0O

Not every matrix Ae M, has the property that all the eigenvalues of AA are
nonnegative, but Hermitian positive semidefinite matrices and symmetric matrices do
have this property. If A€ M, is Hermitian and positive definite (nonsingular), then it
has a Hermitian positive definite square root A" and AA is similarto A™"/2(AA)AY?=
AY2AAY? which is positive definite (and hence has positive eigenvalues) because it
is congruent to the positive definite matrix A. A limiting argument now shows that if
Ae M, is Hermitian and positive semidefinite, then all the eigenvalues of AA are
nonnegative and hence A is unitarily contriangularizable. The example A = (_% ) shows
that it is not sufficient to assume that A is merely Hermitian. If A is complex symmetric,
however, it is always unitarily contriangularizable because AA = AA” = AA*, and AA*
is Hermitian and positive semidefinite for any A€ M,. But if A is symmetric and
A=UAUT for some unitary U, then A= U*AU = U*ATU = (U*AU)"=A", so A
must be symmetric, too. Since a symmetric triangular matrix must be diagonal, we
conclude that every symmetric complex matrix is unitarily condiagonalizable.

COROLLARY 3.3. A matrix A€ M, is symmetric if and only if there are a unitary
U e M, and a nonnegative diagonal 3 e M,, such that A= USU".

This result is often attributed to Schur [8], but earlier proofs were offered by Hua
[5], Seigel [9], and Jacobson [6]; historical priority must apparently be given to Takagi
[10]. In the setting of consimilarity, complex symmetric matrices are analogous to
normal matrices in the sense that complex symmetric matrices can be reduced to
diagonal form by unitary consimilarity and normal matrices can be reduced to diagonal
form by unitary similarity. Corollary 3.3 may be thought of as an analogue for
consimilarity of the spectral theorem for normal matrices.
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Although our proof of Corollary 3.3 is completely elementary, it may be useful
to have another elementary proof that proceeds directly to the diagonalization without
first proving the triangularization Theorem 3.1. If A€ M,, is a given symmetric matrix,
then AA = AA* is Hermitian and hence AA* = VA V* for some unitary Ve M, and a
real, (in fact, nonnegative) diagonal A € M,. Notice that the matrix B= V*AV is also
symmetric, and BB= V*AVVTAV = V*AA*V = A is real. If we denote the real and
imaginary parts of B by B, and B,, respectively, then B = B, +iB,, B, and B, are real
symmetric matrices, and BB = (B3+ B3)—i(B,B,— B,B,)=A, so B,B,— B,B,=0, i.e.,
B, and B, are commuting real symmetric matrices. There is, therefore, a real orthogonal
Qe M, such that B, = QA,Q" and B,= QA,Q7, with A, and A, both real diagonal.
But then B = B, +iB,= Q(A,+iA,)Q" = V*AV, so A=(VQ)A(VQ)" = WAWT with
a unitary W= VQ and a diagonal A= A,+iA,. This is almost the factorization in
Corollary 3.3, and the argument is completed by observing that A =3D?= DX D with
3 =|A| a nonnegative diagonal matrix and D a diagonal matrix with main diagonal
entries with unit modulus. Then D is unitary and A= WAW” = WDEDW™ = USU"
with U= WD. The heart of this argument is due to Siegel [9], but it seems to be
little-known. The same sort of argument can be used to deduce a normal form for a
complex skew-symmetric matrix under unitary consimilarity.

Symmetry is a necessary and sufficient condition for unitary condiagonalization
and is a sufficient, but not necessary, condition for condiagonalizability. We consider
necessary and sufficient conditions for general nonsingular condiagonalizability in the
next section.

One might be interested in conditions under which a family F={A;: ic $}c M,
of complex symmetric matrices is simultaneously unitarily condiagonalizable, i.e., there
is a single unitary U € M,, such that UA,U" is diagonal for all i € #. A necessary and
sufficient condition is that A,A;=A;A; for all i,je$, ie., each product AA; is
Hermitian. This result and more general results about simultaneous unitary contriangu-
larization of a family of matrices may be found in [2].

4. Condiagonalization. Our objective is to give a simple condition for a given
matrix to be condiagonalizable, and as a first step we prove the following lemma. The
motivation for this result is that if a given matrix A€ M, is consimilar to a scalar
matrix, then A=S(AI)S'=ASS" and AA=ASS'ASS™"' =|A|* L. Matrices with this
property (that AA is a scalar matrix) are the basic building blocks from which
condiagonalizable matrices are constructed.

LeEMMA 4.1. A matrix A€ M, has the property that AA = I if and only if there exists
a nonsingular S € M,, such that A= SS™".

Proof. We have just seen that the stated condition is necessary. To show that it
is sufficient, define S, =e®A+e I for any 6 €R and observe that

(4.2) ASy=A(e PA+e”l)=e"AA+e“A=e"A+e I =S,
Since A has only finitely many eigenvalues, there is some 6,€R such that —e >" is
not an eigenvalue of A. For this value of 6, S, = e"®(A+e >*I) is nonsingular and
A=S,S,, from (42). O

We can now state and prove a necessary and sufficient condition for con-
diagonalizability.

THEOREM 4.3. Let A € M,. There exists a nonsingular S € M, and a diagonal Ae M,
such that A= SAS™" if and only if AA is a diagonalizable matrix with real nonnegative
eigenvalues and rank A =rank AA.
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Proof. The stated conditions are clearly necessary since AA=SAS 'SAS™'=
S|A]*S™" and the rank of both AA and A is the number of nonzero diagonal entries
in A. Conversely, if AA is diagonalizable and has nonnegative eigenvalues there is a
nonsingular S e M, and a nonnegative diagonal A € M, such that AA= SAS™'. There
is no loss of generality to assume that like diagonal entries in A are grouped together
and that A=A I, @A, L,D - - - DA, where I, € M, and A > A,> A3> -+ > A =20,
We then have

ST'AAS=ST'ASS 'AS=(ST'AS)(ST'AS) = A.

If we set B=S'AS, then (since consimilarity is an equivalence relation) it will suffice
to show that B is condiagonalizable if BB = A. Since A isreal, A=A =(BB)= BB = BB,
so B and B commute. Thus, BA= B(BB)=BBB=(BB)B=AB, so B and A also
commute. If we write B in block form as

By, By, -+ By
B,,

By -+ -+ B
with block sizes conformal to those of

/\11," O
A= , LyeM,, i=1,2,---k
O Aklnk

then the equation BA =AB says that \;B; =A;B; for all i=1,2,---, k. Since A; # A;
if i # j, we conclude that B; =0 if i # j and hence B is block diagonal

Bll 0
B= .
0 B«

with diagonal blocks the same size as those of A. The equation BB =A means that

each B;B; =\ for i=1,2, ---, k. Notice that B; must be nonsingular if A;>0. If
A; >0 we can write this equation as

B PR

and we can use Lemma 4.1 to conclude that there is a nonsingular S; € M, such that
Bi=S5,YA1,)87". If A =0, then

rank (B,,) +rank (B,,)+- - - +rank (By) =rank (B)
=rank (A) =rank (AA) =rank (A)=n,+ny,+- - -+ n_,.
This means that the rank of By is zero, so the last block Bk must actually be a zero
block if A, =0. In this event, we can write 0 = B, = Sk(x/X;Ink)S;‘, where S e M,, is
an arbitrary nonsingular matrix. If we set S=5,®- - - @ S, we have shown in all cases
that B = S(x/;\—ll,,l®' . -@)\/X;Ink)S"‘ and we are done. 0O

The special case in which A is a complex symmetric matrix is handled easily by
the theorem, since AA= AA* is Hermitian in this case and hence is diagonalizable.
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Moreover, rank A =rank AA* for any A€ M,, so the hypotheses of the theorem are
satisfied whenever A is a symmetric matrix. The theorem implies that every symmetric
matrix can be condiagonalized but does not yield directly the fact that the con-
diagonalization can be accomplished with a unitary transformation.

If A€ M, is Hermitian and positive definite, then AA is similar to the Hermitian
positive definite matrix A>AA"? and is therefore diagonalizable and has positive
eigenvalues. Since rank (A) =rank (AA)=n in this case, the theorem guarantees
that every Hermitian positive definite matrix is condiagonalizable. The condiagonali-
zation can be accomplished with a complex orthogonal transformation, though this
does not follow directly from the theorem. A Hermitian positive semidefinite matrix
need not be condiagonalizable, as the example A=(_} |) shows; rank (A)=1#
rank (AA) = 0.

Theorem 4.3 is a special case of a general theorem about consimilarity: Two
matrices A, B € M, are consimilar if and only if (a) AA is similar to BB, and (b) rank
(A) = rank (B), rank (AA) = rank (BB), rank (AAA) = rank (BBB), - - -, and so on, for
all n such alternating products with at most n terms. Using this characterization of
consimilar matrices, one can deduce the following for every Ae M,: A is consimilar
to a real matrix, A is consimilar to A, A, and A*, and A is consimilar to a Hermitian
matrix [4].

We have a simple necessary and sufficient condition for a single matrix to be
condiagonalizable, but what about simultaneous condiagonalization of more than one
matrix?

If a given family F ={A;: i€ $} = M, has the property that there is a nonsingular
Se M, such that A;=SA,S™" and A, is diagonal for all i€ %, then each AA;=
SAS'SA;S7'=SAA;S7'. The family 9={AA;: i, je #} is, therefore, a commuting
family of diagonalizable matrices. Moreover, AA;+AA; =S(AA;+A;A;)S ' =
S(2Re (A;A;))S™" has only real eigenvalues and A,A; — AjA; = S(2i Im (A;A;))S™" has
only imaginary eigenvalues. These necessary conditions are also sufficient.

THEOREM 4.4. Let F={A;:ie$}c M, and §={AA;: i,je F}. There exists a
nonsingular S € M,, such that SA;S™" is diagonal for all i€ $ if and only if

(a) A, is condiagonalizable for all i€ %, i.e., for each i€ $

(al) AA, is diagonalizable,
(a2) all the eigenvalues of A;A; are nonnegative, and
(a3) rank (A;) =rank (A,A));

(b) AA; is diagonalizable for all i,je

(¢) 9 is a commuting family ; and

(d) for all i,je ¥, A/A;+ AjA; has only real eigenvalues and A,A;— A;A; has only
imaginary eigenvalues.

Proof. The necessity of these four conditions is easily verified; we proceed to
show that they are sufficient. Conditions (b) and (c) imply that ¢ is simultaneously
diagonalizable, so there exists a nonsingular S € M, such that S™'A,A;S = A, is diagonal
for all i,je $. Condition (d) implies that A;=A;. If we set B;=S""A,S, then B, is
consimilar to A; and the family {B;: i € $} has the properties

(a’) B; is condiagonalizable for all i€ %,

(b") BB;=S"'A,S5'A;S=A, is diagonal for all i,jc 5,

(c) Aj=Ajforallijed.

Moreover, the family { B;} is simultaneously condiagonalizable if and only if the family
{A;} is simultaneously condiagonalizable.

Since each B; is condiagonalizable, we know that B;B; = A, has only nonnegative

diagonal entries and that rank (B;) =rank(Aj;). If all A; =0, then all B;=0 and we are
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done. If some Ago# 0, there is a (real) permutation matrix P such that

I
(4.5) PAwP ™' = =k ., LeM,

0 Al

nmtn,t-cctme=n A, >A> 0 > A1 > A =0, for some k with 1=k =n. Since P
is real, we have PA;P~'=PB,B,P™' = (PB,P"")(PBP™") for all i,je $. Observe that
PA,P7'is diagonal, PA;P™'= PA;P', and PB,P"" is consimilar to B, Thus, there is
no loss of generality to assume that Ay, has the block form (4.5) as a direct sum of k
distinct nonnegative scalar matrices.

Notice that ByAgo= ByAgo = BoBoBo= AgoBo, 50 Agy commutes with B,. Partition
each B; conformally with (4.5) so that

Bl!l Bl!k
(4.6) B = , B’?eM,,‘., j=12,---,k
Bk ... gk

By equating the i, j blocks of both sides of the identity BoAoo= AgoBo, We obtain the
identities BgA;l; = A, IBg, or (A;—A;) By =0. Since A; # A; if i # By =0if i#j, and B,
has the block diagonal form

By! 0
(4.7) B,= ,  BieM,.
0 B

Since B, is condiagonalizable, rank (B,) =rank (B,B,) =rank Aq. If A, =0, then
B§=0. If A,>0, then BX is nonsingular. In either event, Bj is nonsingular for all
i=1,2,---,k—1. Nowlet /e # and equate the corresponding i, j blocks of the identity
ByB,= Ao We find BiBY=0 if i#j for all I $. Since each B is nonsingular for
i=1,2,-- -, k—1, this implies that Bf =0 for all j#1i,i=1,2,- -+, k—1. By applying
the same reasoning to the last block row of the product B,B, = A, we find that B BJ =0
forall j=1,2,---, k and hence BY=0,j=1,2,- -, k—1. Thus, every B, is in block
diagonal form with the block structure of (4.5) and (4.7).

If k=n, i.e., By, has n distinct coneigenvalues, our argument shows that every B,
is diagonal and we are done. If k <n, there is at least one scalar matrix of size two or
greater among the diagonal blocks of Ay, and we must make a further argument.
Because every B, is a direct sum of smaller matrices in the same way, it suffices to
consider the case in which k=1, i.e., Ago= Agol. Since we are assuming Ago# 0, Lgo>0
and B, is nonsingular. Consider B,B, = A, for I # 0, and suppose not all the matrices
Aq are scalar matrices. If Ay, is not a scalar matrix, then it can be put into block scalar
diagonal form like (4.5) by a permutation similarity which, since it is real, is also a
consimilarity. Now apply the same permutation (con)similarity to every B, Although
B, may be altered by this transformation, the scalar matrix BoBy= A is not altered.
But Ao, By = ByB,By= ByA,0= ByAo;, s0 B, commutes with Ao, and hence B, is block
diagonal with the same block structure as Ag;, and all the diagonal blocks of B, are
nonsingular. If we examine the i, j blocks of the identity BoB, = A, as before, we find
that each B, has the same block diagonal structure as Ao, and B,. For each diagonal
block of Ag,, look at the corresponding diagonal block of each Aq. If they are all
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scalar matrices, stop. If any one is not a scalar matrix, then focus on that block,
permute, and argue again that the resulting sub-blocks are found in all the B;’s.

In at most n—1 steps, this process of successive refinement into diagonal blocks
results in a new family of matrices {C;} in which each C; is consimilar to B; (and
hence to the original A;) by a single permutation (con)similarity. Moreover, each C;
has the same block diagonal structure

c 0
C = , CVeM,, ies
0 cm

b

n+n,+- - -+n,=nand C§'CY=AVL, I, € M, Each C§” is condiagonalizable, so
there is a nonsingular S;€ M,, such that S;C{’§;" = A1, with A;>0. Then C§’C{’ =
S;NES,CY = AP, and §,C9 87" = (AP A,) S8 = (AP/A,) T, This shows that the
matrix $;®- - -® S,, simultaneously condiagonalizes every C.
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SUPER LINE-CONNECTIVITY PROPERTIES OF CIRCULANT GRAPHS*
F. T. BOESCHt AND J. F. WANG#

Abstract. The connection between line-connectivity concepts of graphs and indices of network reliability
is well-known. Of particular interest in such studies are the circulant graphs because the connected ones
have the largest possible value of line-connectivity A of p-point, degree r, regular graphs, namely A =r. In
this work, we define the higher order line-connectivity measure N; as the number of line-disconnecting sets
of order i. Regular degree r, p-point graphs having A = r satisfy N, = p. Such graphs which attain this lower
bound are called super-A. In this work we determine the necessary and sufficient conditions for a circulant
to be super-A. In addition we determine a lower bound on N; for A =i=2r—3. It is shown that a special
class of circulants, known as Harary graphs, achieve this lower bound for all these values of i.

Key words. circulant, connecting, disconnecting line set, edge connectivity, line connectivity, A-graph,
Harary graph, super line connectivity, super edge connectivity, vulnerability

AMS(MOS) subject classifications. 05C40, 68E10, 94C15

Introduction. To study the vulnerability of a communication network it is cus-
tomary to represent the network by an undirected graph. In this work we consider
certain graph theoretic optimization problems related to the design of invulnerable
networks. The terminology and notations of the graphs follow the book by Harary [7].
In this graph model one usually assumes that the graph of the network is connected
and the network is said to have failed if the graph becomes disconnected when a set
of lines called a disconnecting line set fails. A measure of the vulnerability of a graph
to line failure is the line-connectivity A which is the minimum order of a disconnecting
line set.

Suppose now that the cost of building a network is proportional to the number
of lines employed. Then the following optimization problem describes the design of
invulnerable graphs:

Determine the minimum number of lines g among all
graphs having A = n for given values of p and n.

It is easily verified that g= [np/2] where [x] denotes the smallest integer not less
than x. To verify that this lower bound is in fact the solution to the stated optimization
problem, it suffices to show that for any p and n (p=n+1) there exist graphs having
[np/2]lines and A = n. The solution was originally given by Harary [8] who constructed
a special class of graphs having these properties. However there are many graphs
which achieve this optimal, and we refer to them as A-graphs. In fact when either p
or n is even, the necessary and sufficient condition for a p-point graph to be a A graph
is that it be regular of degree 6 = A = n. Examples abound which show that an arbitrary
regular graph need not be a A-graph. However many classes of regular graphs are
A-graphs. Hence one might wish to impose further constraints to enable a comparison
of the vulnerability of A-graphs. An obvious possibility results from the observation
that some A-graphs have the property that removing a minimum disconnecting line
set may divide the graph into two parts having p/2 points each, while other A-graphs

* Received by the editors May 27, 1983 and in revised form November 12, 1984. This work was supported
under National Science Foundation grant ECS-8100652.

T Stevens Institute of Technology, Hoboken, New Jersey 07030.
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can only have a single point isolated by the removal of a minimum disconnecting line
set. This motivates the following definition.

DEeriNITION 1. If 8 denotes the minimum degree of any point in a graph G, then
G is said to be super-A if every disconnecting line set of order A is the incidence set
of a point of degree 6.

We note that if G is a regular graph of degree 8 on p points, then a super-A graph
has the maximum possible value of A for given values of p and 8, namely A = é.
However, the example K, X C; serves to verify that A = 8 is not sufficient to insure that
a graph is super-A.

We now turn our attention to a special class of regular graphs which includes
those shown to be A-graphs by Harary. In order to define them, we assume that the
points of a graph are labelled 0, 1, 2,-- -, p—1, and we refer to point i instead of
saying the point labelled i.

DEeFINITION 2. The circulant graph C,(ny, n,, - - -, n) or briefly C,(n;) where
0<n,<---<m<(p+1)/2hasitn,, itn,, - -,itn(mod p) adjacent to each point
i. The sequence (n;) is called the jump sequence and the n; are called the jumps. The
earliest connectivity result for circulants is due to Harary [8] who showed that
C,(1,2,- -, k), which we call Harary graphs, has both point and line-connectivity
equal to 8. A generalization of the line connectivity property of circulants is given in
[2] where it is shown that the circulant C,(n,, ny, - - -, ny) is super-A if n,;=1 and
k=2. However, it may be noted that these conditions are not necessary for a circulant
to be super-A as shown by C,¢(2, 5) which is super-A but not even isomorphic to a
circulant having a jump of unity.

Herein we determine the necessary and sufficient conditions for a circulant to be
super-A. We then turn our attention to the problem of determining N, the number of
disconnecting line sets of order i (where i > A) for the Harary graphs.

The reason for considering such numbers is that the problem of finding the
probability of disconnection for a network having equal and independent line failures
can be reduced to finding all the N; values of the corresponding graph. A complete
discussion of the connection between these two problems is given in [3]. Here we
merely note that in order to minimize this probability of disconnection over all p-point,
regular degree & graphs, one must first maximize A and then minimize all the N,
Graphs which are super-A are of interest because a regular degree 6 graph G with
A = 8 has N, = p, with equality achieved if and only if G is super-A. Further discussions
of these reliability problems can be found in [4], [5].

The super-A class of circulants. Clearly C,(n,) has A =0, or 2, but it is never
super-A. We proceed to establish a sequence of lemmas that will determine when any
circulant is super-A. However we need two preliminary results. Theorem 1 follows
immediately from number theory. Theorem 2, which apparently has never been stated
in English, is due to Mader [9]. His result applies to the class of point-symmetric
graphs, which include all circulants.

THEOREM 1. The circulant C,(ny, ny,---,n) is connected if and only if
ng (P’ Ny, Nyt ey, nk)= L

THEOREM 2 (Mader [9]). Every connected, point-symmetric graph has A = 6.

LEMMA 1. Let n=3, m=3 and G be the union of m point-disjoint cycles of length
n, say Cy, Cy, - - -, C,._,, together with n-independent lines between C; and C;,,(mod m)
foralli,0=i=m—1. Then G is super-A.

Proof. Note that G is regular of degree 4. One possible structure for G with m =3
and n =3 is illustrated in Fig. 1.
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¢

FiG. 1

Let U be a minimum order disconnecting line set of G. First it is claimed that
since C; is a cycle, U must contain at least two lines from C; for some i. Otherwise,
each C; is connected and can be coalesced into a single point. In this case U must
disconnect an n multiple line cycle C,, or |U|=2n> 4= §(G), which is impossible.
Now let these two lines be e, = {x,, y,}, e; ={x,, y,}. Suppose e, and e, are not adjacent.
Without loss of generality, it can be assumed that x,, x, are in one component and y,,
¥, are in the other component.

From Fig. 2 it is clear that there are two line-disjoint paths from x,, x, through
Ci:,to y,, ¥, and two line-disjoint paths from x,, x, through C;_, to y,, y,. Consequently,
there are four line-disjoint paths from x,, x, through C;, or C;_, to y,, y,. Thus
|U|=2+4>4=5(G), a contradiction.

C,
i

FI1G. 2

Hence e, and e, have to be adjacent to one point w, and so e, = {x,, w}, e, = {x,, w}
(see Fig. 3). It is now claimed that w should be isolated by U. Suppose not. Without
loss of generality, it can be assumed that there exists another point w’' in C;,, such
that w’ and w are adjacent. And it follows that x,, x, are in one component and w’,
w are in the other component. But (see Fig. 3) there exist two line-disjoint paths from
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X, X, through C;., to w' and there exists a third path, line-disjoint from the other 2
paths, that connects x;, x, through C;_; to w. Thus |U|= 2+ 1+2=5> 4, a contradiction.

Therefore w is isolated by U and the result is established. 0O

LEMMA 2. If G= C,(ny, n,) is connected, then G is super-\ for n,<p/2.

Proof. If max {gcd (p, n,), gcd (p, no)} =2 then since G is connected, it follows
that ged (p, n;) and ged (p, ny) cannot be equal to two simultaneously. Therefore,
min {gcd (p, n,), ged (p, n,)} = 1. Hence there is some number r such that either rn; or
rn,=1(mod p), where gcd (r, p) =1.

Assume without loss of generality that rn,=1(mod p) and that rn,(mod p) =
x(2=x=p—1). Let a denote the minimum of x and p—x.

It follows from the work of Adam [1] that C,(ny, ny) is isomorphic to C,(1, a).
Thus by the theorem of Bauer, Boesch, Suffel and Tindell [2], G is super-A.

Now if max {gcd (p, n,), gcd (p, n,)} =m=3, then G can be viewed as the union
of m point-disjoint cycles of length p/m together with p/ m independent lines between
C; and C;.,(mod m) for all i, 0=i=m—1 (see Fig. 4). Therefore, by Lemma 1, G is
super-A. [

F1G. 4. C|,(3,4),m=4.

LEMMA 3. Let G=C,(ny, ny, - -+, n) be connected, k=2, n,<p/2. Then G is
super-A.

Proof. Let U be a minimum disconnecting line set. The basic step for a proof by
induction on k is provided by Lemma 2. Assume k=3 and Lemma 3 holds for the
circulant graph with fewer than k jumps. Obviously U must contain at least one line
from C,(n;) for some i,1=i=k Since C,(n;) is a line-disjoint union of cycles,
U contains at least two lines from C,(n;). This is true because if x={u, v}e
U then u and v should be in different components. But # and v are in the same
cycle, thus at least one other line in this cycle should be removed. Now
let U={e|e in U but not in C,(n,)} and G'= G- C,(n;). Thus G'=G—-C,(n;) =
C,(ny,ny, -« -, My, Niey, - - -, M), There are two cases.

Case 1. G' is disconnected. By Theorem 1, ged (p, ny, ny, - -+, mi_y, By, - -+,
n,)=m=2, and since G is connected, gcd (n;, m)=1. In this case G’ consists of
m components C;. Each C; is isomorphic to

b 2

n N1 Nivy n
G1=Cp/m(_a'.' s PR |
m m m m

(see Fig. 5) and there are p/ m independent lines between C; and Cj,, for all j,0=j =
m—1, if m=3. There are 2p/m lines when m =2. By the induction hypothesis, G, is
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FIG. 5. Cy5(3,4), G'= G- Cy(3).

super-A and so are all C;. It is claimed that U must disconnect at least one C; for
some j,0=j=m—1. Otherwise, since G— U is disconnected,

2n,
|U|= 2 >k >4(k 1) =4k —4=2k,

which is impossible.

Now we know U disconnects at least one C; and since C; is super-A, YER (G)=
8(C;)=2k—2. But |U|<|U] —2=2k-2, thus |U|—|U| —2=A(G)=2k—2. Hence it
is concluded that U is a minimum line disconnecting set for C;. Therefore U isolates
a point (say w) in C,. Since the number of 1ndependent lines joining C; and Cj,, is
p/m>2if m=3, and is p if m =2, and since |U|—|U|+2 each point in V(C;) —{w}
is connected to C;_; and C;,, in G— U. It follows that all points in G except w are
in the same component of G — U. Therefore G is super-A.

Case 2. G'is connected. By induction hypothesis, G' is super-A and since U is
a disconnecting set in G, |0|=zA(G")=2k—-2. But |U|=|U|-2= 2k—2, so |0 =
|U|-2=2k—2. Thus U is a minimum disconnecting line set. Hence U isolates a point
(say w) in G', and so all the points in V(G')—{w} are in the same component of
G'— U. Since U is in the union of U and two lines not in G’, U cannot disconnect
G'—w. It follows that all the points in V(G)—{w}= V(G’)—{w} are in the same
component. Thus G is super-A. [

LEMMA4. Let G = C,(ny, ny, -+ * , n) be connected, withk =2, p even, andn, = p/2.
Then G is not super-A if and only if

p/2+1
2

Proof. Let p be even, n,=p/2, k=(p/2+1)/2 and n;=2i forall ,1=i=k—1.

Let U be the set of all the lines joining point i and point p/2+iforall i,0=i=p/2—1.

Then G-U=C,(2,4,6,8,--+,2(k—1)) becomes disconnected. Each component of
G — U has p/2 points. Since G has A = §,

k= and n;=2i forallijlsisk-1.

~1=1.

A(G)=2k—1—_—2(’—’/—2i1) ;

2

But |U| = p/2, thus U is a minimum disconnecting line set for G. Now as U does not
isolate a point, it follows that G is not super-A.

It remains to show that if k # (p/2+1)/2 then G is super-A, and if k=(p/2+1)/2
but n; =2i for all i, 1=i=k—1, is not true, then G is also super-A.
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Case 1. k#(p/2+1)/2. Let U be a minimum disconnecting line set for G. First
it is claimed that at least one line of U is in C,(p/2). Suppose not, and let G, be the
multi-graph obtained by coalescing points i <p/2 and i+ p/2 into a single point i of
G,. There is one line between points i and j (where i, j<p/2) in G, for each of the
following possible lines of G:

{ij}, {ij+p/2}, {i+p/2,j}, {i+p/2,j+p/2}

It follows that G contains either 0, 2, or 4 of these lines for each i, j < p/2. Thus there
are an even number of lines between each pair of points of G,, and A(G,) will be
even. However it follows from the path version of the min cut-max flow theorem that
A(G)=A(G),). But by assumption there was a minimum disconnecting line set of G
that did not contain any of the coalesced lines which implies A(G) = A(G,). This is a
contradiction as A(G) is the odd number 2k —1.

. Now let U={e|e in U but not in C,(p/2)} and G,= G~ C,(p/2). Obviously
|UI=|U|-1=2k-2.

There are two subcases.

Subcase 1. G, is disconnected. If G, is disconnected then by Theorem 1,
ged (p, ny, ny, - -+, M) =m=2. And since G is connected, gcd (p/2, m)=1. Now as
p is divisible by m, let p =jm. If j were even, then m would be a factor of p/2, which
contradicts p/2 and m being relatively prime. Now as p is even and j is odd, m =2s
for some s. Hence ged (p/2, m)=gcd (js, 2s) = s = 1. It follows that m =2 and p/2 is
odd. Moreover, each component of G, is isomorphic to (see Case 1 of Lemma 3)

n, n e ny_ 2
G3 = CP/z(?l, ?2, ey, le’) and %<Bé“.
By Lemma 3, each component of G, is super-A. Since k# £ p/2+1)/2 and since
n,=p/2> n_, =2(k—1), it follows that 2k —1< p/2. Now if U does not disconnect
one component of G,, then in order to disconnect G, U must consist of all the lines
in C,(p/2). This implies |U| = p/2>2k~1=8(G), a contradiction. So |U|=A(G;) =
2k—2, and since |U|=|U|—1=2k -2, it is concluded that | U| = 2k —2 = | U| - 1. There-
fore U is a minimum disconnecting line set for a component of G,. It follows that U
isolates a point (say w) in this component. Now we know U is the union of U and
one line (say e) in C,(p/2). If e is not adjacent to w then G — U is still connected, a
contradiction. (See Fig. 6). Thus U isolates a point in G, and so G is super-A.

FIG. 6. G,— U=C,UG,U{w}, G,=G~C,(p/2).
Subcase 2. G, is connected. If G, is connected, then U must disconnect G,.
Suppose not, then
G-U=[G,UC,(p/2)]-[U U {some lines in C,(p/2)}]
=[G,— U]U{some lines in C,(p/2)},



SUPER LINE-CONNECTIVITY IN CIRCULANT GRAPHS 95

i.e., G—U is the union of connected graph (G,— U ) and some other line set. This
means that G— U is still connected, a contradiction.

Then using arguments similar to Subcase 1, we obtain that U is a minimum
disconnecting line set for G,. Consequently, U isolates a point in G, and G is super-A.

Case 2. k=(p/2+1)/2 but n;=2i for all i, 1=i=k—1 is not true.

In this case, we first show that G,= G- C,(p/2) is always connected. Suppose
G, is disconnected. Then from the proof of Subcase 1, ged (p, ny, ny, - - -, n_) =m =2,

It follows that n; = 2i for all i, 1 =i = k — 1. But by the assumption k=(p/2+1)/2,
ie.,2(k—1)=(p/2)—1=n—1=n._,. Thus n,_,=2(k—1), and since all n,; are even,
1=i=k—1, it follows that n,_,=m,_,—2=2(k—2), n,_3=2(k—3) - - - etc. Finally we
obtain n;=2i forall i 1=i=k—1. Thus we have 2i=n;=2iforall i1=i=2k—1, a
contradiction.

Now we know G, is connected. Then following the proof in Subcase 2, G is
super-A. [

THEOREM 3. A connected circulant is super-A unless it is C,(a) or
C,,(2,4,6,--+,n—1,n) for n odd.

Proof. The theorem follows immediately from Lemmas 3 and 4. 0O

Higher order line-connectivity measures. We define N, as the total number of
disconnecting line sets of order i. In general it is difficult to determine all the N; values
of a graph; in fact Provan and Ball [10] have shown that the problem is NP-hard.
However, for the class of circulants known as Harary graphs we shall evaluate many
of the N; explicitly.

THEOREM 4. Let G=C,(1,2, - -, k), 2=k<p/2, and U be a disconnecting line
set. If |U|=iand A =i=4k—3 then U isolates exactly one point and

q—2k
Ne= ( i— 2k)p ’
where q is the number of lines in a p-point graph G, and N; is the number of disconnecting
line sets of order i.

Proof. Let the p points of G be labeled as 0,1,---,p—1, and let C be any
component of G — U. We shall assume |V(C)|=m =2 for all such C. Now let C be
decomposed into n contiguous parts (a part of G whose points are labeled contiguous)
say Cy, C,, - -+, C, and let | V(C;)| = m; for all 1 =i=n, and the gaps between C; and
Ci+1)mod n are denoted by g, Assume the C; are maximal.

First it is claimed that m = k+1. Otherwise, if m =k then every point in C has
degree at most m—1. Thus |U|ZQk—-m+1)m=2km—m’>+m, and let b=
|U|—(4k —3) = 2km — m*+ m — 4k +3; then it can be easily verified that

if m=2then b=1>0;

if m=3 then b=2k-3>0;

if m=4 then b=zmk—m)+(m—-4)k+m+3>0.

All the above show |U|> 4k —3, a contradiction.

So we know that the points of any component of G— U are at least k+1 in
number, if that component has two or more points.

Second, it is claimed that not all the gaps are trivial, i.e., at least one g; will have
at least two points. Suppose not; then every gap only has a single point and note the
union of all gaps (g;Ug,U---Ug,) are also components of G — U, and this union of
gaps must also have at least k+1 points, i.e., n = k+ 1. Then it can be shown that the
number of lines from each g; to C, is not smaller than 2 if k=2, and the number of
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lines from each g; to C, is at least 4, if k=3. So

|U|Z2n=2k+2=6>5=4k-3 ifk=2,
|\U|z4nz=4k+4>4k—3 ifk=3.

All the above are contradictions.

Thus without loss of generality, it can be assumed that g; has two end points
labeled x and y. Let the points in C adjacent to x and y be labeled as u and v,
respectively. (See Fig. 7).

Consider now the following definitions:

Since the points of a circulant are labelled 0 to p—1 we assume they are located
in clockwise increasing order on a circle.

Let h,,, h., denote the number of lines from x to C in the clockwise and
counterclockwise direction, respectively.

Let h,,, h,, denote the number of lines from y to C in the clockwise and
counterclockwise direction, respectively.

Let h,,, h,, denote the number of lines from u to G— C in the clockwise and
counterclockwise direction, respectively.

Let h,,, h,, denote the number of lines from v to G— C in the clockwise and
counterclockwise direction, respectively.

Then |U|= hyy + hyy+ hyy + hyy+ by + by + by + hy, —d where d is the number of
lines which overlap in the above count.

Note d =4, and 4 is the worst case when the lines {u, x}, {u, y}, {v, x}, {v, y} all
overlap.

In order to determine the value of d, there are three subcases discussed below:

Case 1. (see Fig. 8). If there exist some C; for i=3, then there are at least two
lines from C; to G— C —{x}—{y}. The two lines are {m, n} and {0, p}.

Case 2. (see Fig. 9). If there are no C; for i=3, then n=1 or 2. When n is one,
then |V(g,)|= k+1 (since g, becomes a component) then the lines {u, y}, {v, x}, are
never counted, and there are two lines {u, x}, {v, y}, which are counted twice.

Case 3. (see Fig. 10). The remaining case is n =2 and there is another gap g,
between C; and C,. If |V(C,)|+|V(C,)| = 4 then there are at least two lines from g,
to C —{u}—{v}.

If |V(C,))|+|V(C,)|=3 then k=2, and counting the number of lines from C to
G —C, we obtain |U|>5=4k-3.

Now note k — h,, is the number of lines from x to G — C in the counterclockwise
direction, since the jump sizes are contiguous; so h,,=k—h,,~> h,,+h,,=k And
k — h,, is the number of lines from u to C in the clockwise direction, again because
the jump sizes are contiguous, h,,=k—h,,;»> h,+h,, =k

Similarly, h,,+ h,, =k, hy,,+ h,, = k. Therefore we have |U| =4k —d. And in Case
1,|U|z4k—4+2=4k—2, in Case 2, |U|=4k—2, and in Case 3, |U|=4k—3. All are
contradictions.

This completes the proof that every component of G — U has two or more points
is impossible; hence U isolates a point.

Now suppose U isolates two or more points, say ¢ points; if ¢ =2k then |U|=
2kt—1t(t—1)/2. Let r=|U|—4k+3 and then it can be verified that

if t=2then r=2>0;

if t=3 then r=2k>0;

if t=4 then r>0;

if t=2k+1 then |U|= 2kt —2kt/2=kt=2k*+ k> 4k—3.
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All the above are contradictions, so t = 1. Now let U, and U, be two disconnecting
line sets, and A =|U,|=|U,|=4k—3. If U, isolates point x, U, isolates point y # x,
then U, # U,. Otherwise U, = U, will isolate more than one point, which is impossible.
Thus we have

i—-2k

Conclusions. In conclusion we note that any regular degree 2k graph on p-points

will have
q- 2k)
N, =
(i— 2%k )P

M=<q_2k)p, and 2k=\=i=4k-3. 0

as this lower bound counts only those order i disconnecting line sets which are obtained
from line incidence sets at points. Hence we have extended the result in [2] to show
that Harary graphs not only minimize N, but all N; for A =i=4k—3. For i larger
than this, the analysis used in the proof of Theorem 4 cannot be used. In fact, it can
be shown that the Harary graphs do not minimize all the N;; for example C; (1, 3)
has Ny=(%7)—4,096 while Cs (1,2) has Ny= (%) —3,528.

Finally we note that Theorem 3 may be viewed as giving the two forbidden
circulants in the class of all super-A graphs which are circulants. However, these two
graphs do not characterize the class of nonsuper-A, point-symmetric graphs. Namely
K, X K, is point-symmetric but not super-A. However, it is not isomorphic to either of
the two forbidden circulants; in fact K, X K, is not isomorphic to any circulant.
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VECTOR COMPUTATIONS FOR SPARSE LINEAR SYSTEMS*

DAVID R. KINCAIDt, THOMAS C. OPPEf AND DAVID M. YOUNGY

Abstract. We are interested in the development of algorithms, based on iterative methods, and software
for the solution of large sparse systems of linear algebraic equations with emphasis on systems arising in
the numerical solution of partial differential equations. The objective is to develop algorithms and software
which are effective when used with a vector computer such as the Control Data CYBER 205 or the CRAY
1. A package of programs, known as ITPACK, has been developed for use on conventional, or scalar
machines. A number of “short-range” modifications to ITPACK, including changes in the data storage
format and changes in the programming, but not in the algorithms used, have been made and tested on a
number of numerical examples. Preliminary work is described on “long-range” modifications which will
involve extensive changes in the basic algorithms in order to achieve efficient vectorization.

AMS(MOS) subject classification. 65F10

1. Introduction. The advent of high-performance vector computers such as the
Control Data CYBER 205 and the CRAY 1 is having a profound effect on the areas
of numerical analysis and mathematical software. This is true, in particular, for iterative
algorithms and software for solving large sparse systems of linear algebraic equations.
While there is a large potential gain achievable for many problems by using a vector
computer as compared with using a scalar computer, nevertheless this potential gain
can often only be realized by a careful choice of algorithms. It is often the case that
an iterative algorithm which is effective when used with a conventional or scalar
computer may not be as effective as expected on a vector machine. At the same time,
an algorithm which is very inefficient for a scalar machine may turn out to be surprisingly
efficient when used with a vector machine.

Normally, only a small part of the potential gain in using a vector computer can
be realized by making a direct conversion from a scalar program to a vector program.
Sometimes, however, it is possible to realize a substantial portion of the potential
improvement by making ‘‘short-range”” modifications to a program such as, for example,
changing the data structure and the programming but not changing the basic algorithm.
In many cases, however, a complete restructuring of the entire computer program,
including both the algorithm and the programming, is needed before the true potential
of a vector computer can be achieved.

In this paper, we describe some of our work on the development of iterative
algorithms and software which are designed to be effective when used on vector
computers. As our starting point, we consider a package of subroutines, known as
ITPACK 2C, which we developed for solving sparse linear systems by a variety of
iterative methods. (See Kincaid, Respess, Young and Grimes [1982].) This package,
which is described briefly in § 2, has been developed for a scalar computer. In § 3, we
discuss the iterative algorithms currently included in ITPACK from the standpoint of
vectorization. In § 4, we describe short-range modifications of ITPACK. These
modifications, which primarily involve the use of a different storage scheme have been
incorporated into a new package, ITPACKYV 2C (Kincaid, Oppe, Respess, and Young
[1984]). The result of numerical experiments and the effectiveness of various changes

* Received by the editors February 16, 1984, and in revised form October 15, 1984. This work was
supported in part by the National Science Foundation under grant MCS-8214731, by the U.S. Department
of Energy under grant DE-A505-81 ER10954, by the North Atlantic Treaty Organization under grant 648183,
and by Control Data Corporation, under grant 84PCR54B with the University of Texas at Austin.

t Center for Numerical Analysis, University of Texas at Austin, Austin, Texas 78712.
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to the package are also given. In § 5, we give a brief description of our work on
long-range modifications.

2. The ITPACK package. The ITPACK software package has been developed
over a period of several years at the Center for Numerical Analysis of the University
of Texas at Austin. The package provides for the iterative solution of the linear system

(2.1) Au=b,

where A is a given N X N matrix, b is a given N X1 column vector and the N X1
column vector u is to be determined. The matrix A is assumed to be nonsingular and
sparse. While the routines of ITPACK 2C often work in more general cases, they are
primarily designed to handle cases where A is symmetric and positive definite.

The ITPACK package provides for the solution of (2.1) by any one of seven
alternative iterative algorithms. Each algorithm involves a basic iterative method and,
except for one algorithm, an acceleration procedure. Each basic iterative method has
the form

u™ = Gu" +k,

where for some nonsingular matrix Q we have G=I—-Q 'A and k= Q'b. The basic
iterative algorithms used in ITPACK include the Jacobi method, the successive over-
relaxation (SOR) method, the symmetric SOR (SSOR) method, and the RS method. The
RS method is applicable to the case where the matrix A is a red -black matrix of the form

Dr H
(22) a=( o,

where Dy and Dg are square diagonal matrices. If we write (2.1) in the form
e (% oG
then the reduced system is
(Dg—KDr'H)ug = by — KD¢'bg.
Consequently, the RS method is defined by
ud* =(DE'KDR'H)u’ + D3'by — D' KDR' b

The acceleration procedures used in ITPACK include Chebyshev acceleration and
conjugate gradient acceleration. In each case the procedure is defined by

(2.4) u" = Pn+1{u(")+ 'Yn+13(n)}+ (1 —pn+1)u(n_1)s
where the pseudo-residual vector 8™ is defined by 6™ = Gu™ + k — u‘™. For Chebyshev
acceleration y, =y, = - - - = y; the numbers ¥, p;, p,, - - - can be determined in terms

of m(G) and M(G) which are estimates of the smallest and largest eigenvalues of G,
respectively. (See Hageman and Young [1981, p. 48].) For conjugate gradient acceler-
ation the values of y,, y,, - - - and py, p,, * - - can be computed in terms of certain inner
products involving 6 and 6" (See Hageman and Young [1981, p. 147].)

The seven algorithms of ITPACK include the Jacobi, SSOR, and RS methods,
each with Chebyshev and conjugate gradient acceleration, and the SOR method without
acceleration. The algorithms include automatic, or adaptive, procedures for determining
the necessary iteration parameters. They also include realistic procedures for deciding

when u"*V is sufficiently close to the true solution of (2.1) so that the iteration process
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can be terminated. Detailed information on the algorithms can be found in the book
by Hageman and Young [1981]; see also Grimes, Kincaid, and Young [1979]. The
usage of the software package is described in the paper by Kincaid, Respess, Young
and Grimes [1982].

3. Vectorization of ITPACK routines. In this section we discuss the programs
currently in ITPACK from the standpoint of vectorization. We will discuss both the
storage schemes and the algorithms themselves.

Let us now look first at the routines of ITPACK from the standpoint of vectoriz-
ation. Evidently, the acceleration procedures defined by (2.4) are vectorizable provided
that the basic iterative method is vectorizable.

The Jacobi method is clearly vectorizable and the RS method is also highly
vectorizable. To see this, we rewrite (2.3) in the form

ufg "V =—D Huf’ + Dy'bg,

(3.1)
u§ ™ =—D3' Kug™"+ Dy'bp.

Assuming Dy and Dj are of approximately the same size, the vector length will be
approximately N/2.

The SOR method is not in general vectorizable. The basic step in the SOR method
involves the solution of an auxiliary linear system with a lower triangular matrix. The
solution of such a system can be carried out by a forward substitution procedure. This
is efficient for a scalar machine but is clearly not efficient for a vector computer since
in order to get the ith component of the solution of the auxiliary system one must
have available the kth component for k=1,2, - - -, i — 1. There is, however, an impor-
tant case where the SOR method can be vectorized. If the matrix A of (2.1) has Property
A, (see Young [1971]), then one can permute the equations and relabel the unknowns
so that one obtains a red-black system of the form (2.2). The SOR method is defined

b n - n -
y u(R+l)=w{—DR1Hu(B)+DRle}+(1—w)u(R"),
u§f ™) = w{-D3'Kul*V+ D3'bp}+(1—w)ul.

Thus the computation of u%*" is vectorizable with vector length approximately N/2.
Similarly, the computation of u%'™" is vectorizable.

An important case where one obtains a matrix with Property A is when one is
solving a five-point difference equation for a square mesh, derived from an elliptic
boundary-value problem, for a two-dimensional region. Thus, if we consider the

solution of Laplace’s equation u.,+u,, =0 on the square 0=x=1,0=y=1 with a

y
A

FIG. 3.1. Nine-point grid.
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mesh size of h =1, we have the grid shown in Fig. 3.1. With the usual natural ordering
of {a=1,b=2,c=3,d=4,e=5, =6, g=7, h=8, i =9}, the matrix of the system
has Property A. However, if we designate the red points as g, ¢, e, g, i and the black
points as b, d, f, h and label the points accordingly {a=1, c=2, e=3, g=4, i=5,
b=6,d=7, f=8, h=9}, then we get the following red-black matrix:

4 0 0 0 0 -1 -1 0 ©
0 4 0 0 0 -1 0 -1 0
0o 0 4 0 0 -1 -1 -1 -1
o 0 0 4 0 0 -1 0 -1
o 0 0 0 4 0 0 -1 -1
-1 -1 -1 0 0 4 0 0 0
-1 0 -1 -1 0 0 4 0 0
0o -1 -1 0 -1 0 0 4 0
0o 0 -1 -1 -1 0 0 o0 4

The SSOR method with the natural ordering is also not vectorizable. (We remark that
one step of the SSOR method can be regarded as one iteration of the (forward) SOR
method followed by one iteration of the backward SOR method.) If the matrix A has
Property A, one could consider the corresponding red-black system. However, it is
well-known, (see, for instance, Young [1971]), that the SSOR method is not effective
when applied to a red-black system. This is in contrast to the SOR method which is
no less effective for a red-black system than for the original system. Consequently, if
one applies the SSOR method to a red-black system, one achieves vectorization but
there is an increase in the number of iterations required for convergence which may
not be off-set by the increase in speed.

For a five-point difference equation, it is possible to achieve some vectorization
with the SSOR method without sacrificing the convergence rate. This can be done, as
shown by Hayes [1977], by the use of the “ordering by diagonals”. Here one lets a =1,
b=2,d=3,c=4,e=5,g=6,f=7, h=8,i=9. It can be shown that the ordering by
diagonals is “‘equivalent” to the natural ordering for the SOR method. (See Young
[1971].) Similarly in the backward sweep, we have equivalence. Thus, applying the
SSOR method with the diagonal ordering gives the same convergence rate as with the
natural ordering. On the other hand, there is now much greater vectorization than with
the natural ordering since all values on a diagonal can be modified independently.
Thus, the average vector length is the same as the average length of the diagonals.

The choice of the data structure for the coefficient matrix A has a significant
impact on the vectorization of the routines of ITPACK. The scalar version of ITPACK
uses the same data storage format as the Yale Sparse Matrix Package (YSMP) which
uses three singly dimensioned arrays A, JA, and IA. (See Eisenstat et al. [1977].) In
this data structure, A contains the nonzeros of the matrix stored by rows, JA contains
the corresponding column numbers, and IA contains pointers into A and JA for the
beginning locations of new rows. This data structure has great generality and can
efficiently represent sparse matrices of random structure. However, this data scheme
inhibits vectorization of basic operations such as computing a matrix-vector product
because of the need to do indirect addressing and the short vector lengths involved.
For example, in scalar ITPACK, a matrix-vector product for a system of size N was
computed using N inner products applied to the condensed rows of the matrix, which
are typically short.
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To avoid this bottleneck on vector computers, it was decided to adopt the column
oriented structure used in the ELLPACK software. (See Rice and Boisvert [1985].) In
this data structure, two doubly dimensioned arrays, COEF and JCOEF, are used to
store the matrix A. Each row of COEF contains the nonzero coefficients corresponding
to a single equation and JCOEF contains the corresponding column numbers. Clearly,
COEF and JCOEF must be dimensioned at least N by the maximum number of
nonzeros per equation over all equations. This data structure is not as general as the
YSMP structure since the possibility exists of storing a great number of zeros if one
equation has many more nonzeros than the remaining equations. However, the matrix-
vector product operation vectorizes with the use of gather/scatter instructions on the
CYBER 205 and with the use of assembly-coded gather/scatter routines on the CRAY
1. Other operations, such as forward (back) substitutions using lower (upper) triangular
matrices do not vectorize.

Another storage scheme we have investigated is storing the matrix A by diagonals.
In this data structure, each column of COEF contains a diagonal of the matrix and
JCOEF contains its corresponding distance from the main diagonal. With this structure,
a matrix-vector product vectorizes without the use of gathering routines and operations
such as forward (back) substitutions and factorizations vectorize to some extent.
However, this storage format is the most rigid of the three since it can efficiently
represent only matrices with a diagonal structure. Again, it is easily possible to store
a great number of zeros if the matrix does not have a diagonal structure. This observation
illustrates a trade-off we have frequently encountered—namely, increased vectorization
often comes at the expense of more rigid storage requirements and more computations,
many of which may be operations involving zeros.

4. Short-range vectorization of ITPACK. We now describe the short-range
modifications of ITPACK and the numerical experiments which were run on the
CYBER 205 and CRAY 1 vector computers.

We decided to investigate the vectorization of ITPACK by modifying the code in
the following ways.

e Make a minimum number of changes to the current scalar ITPACK package
to allow as much vectorization as possible. This generally meant re-rolling DO loops
which had been unrolled for efficiency on scalar computers and using the available
dot product routines on the vector computers. The tightly rolled loops were recognized
by the compiler as vectorizable, thereby gaining improvement in the speed.

¢ Change the data structure of scalar ITPACK to one allowing greater vectoriz-
ation of certain matrix-vector operations. This major rewriting effort was deemed
necessary when it was discovered that the computations associated with the basic
iterative method constituted a time-consuming bottleneck for vector computers. The
resulting rewritten package will be referred to as “vector ITPACK”.

e Make use of the vector syntax extensions to Fortran available on the CYBER
205 computer. It was hoped that the use of this syntax would improve the efficiency
of the package.

These changes resulted in four different versions of the package which were used
in the timing tests to be presented here.

Scalar ITPACK # 1 is the standard scalar version as in Kincaid, Respess, Young,
and Grimes [1982]. This version uses unrolled DO loops in basic vector operations
for increased performance on scalar computers.

Scalar ITPACK #?2 is the standard scalar version but with re-rolled DO loops
and a few minor changes such as the use of the special dot product routines available
on vector computers.
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Vector ITPACK # 1 is the package rewritten to use the ELLPACK data structure.
This version uses standard Fortran primarily. The special dot product routines were
used as well as the gathering and scattering instructions available on the CYBER 205
and the corresponding software routines on the CRAY 1 computer.

Vector ITPACK # 2 is the CYBER 205 version of vector ITPACK # 1 with heavy
use of the vector syntax available in the CYBER Fortran.

The following test problem was used in this numerical experiment. A five-point
finite-difference stencil was used to discretize the partial differential equation:

U (X, y) +2u,,(x,y) =0,  (x,y)€S=(0,1)%(0,1),
u(x, y)=1+xy, (x, y) € boundary(S).

The mesh size chosen in the first experiment was h = 1/64, resulting in 3,969 unknowns.
The stopping criterion was 5.0E-6. Both a natural ordering and a red-black ordering
of the unknowns were used. While this is a rather simple problem, the timing results
are felt to be representative of those from more complicated problems since the software
does not take advantage of the constant coefficients in the partial differential equation.

Tables 1 and 2 give the iteration times for the CYBER 205 and CRAY computers,
respectively. The time necessary to scale the system and permute the matrix (if red-black
ordering was requested) is presented in Tables 3 and 4.

A number of observations can be made based on these results:

(i) A slight increase in speed resulted from removing scalar optimization tricks
such as unrolling DO loops from the original scalar ITPACK. The increase was small
since the bulk of the computations is the performance of the basic iterative method,
which remains nonvectorizable in scalar ITPACK # 2.

(ii) There was a considerable improvement in performance from scalar to vector
versions of ITPACK. The ELLPACK data structure allowed the matrix-vector product
operation to vectorize to a considerable extent, and this was the dominant computa-
tional kernel for many of the methods (the Jacobi methods for natural ordering and
all methods for red-black ordering). The SOR and SSOR methods are predominantly

TABLE 1
Iteration time (secs.), CYBER 205 (h=1/64).

Scalar Scalar Vector Vector
ITPACK ITPACK ITPACK ITPACK
Method Iterations #1 #2 #1 #2

(Natural ordering)

Jacobi CG 178 2.470 2.224 0.257 0.247
Jacobi SI 362 5.628 4.561 0.573 0.554
SOR 216 4.698 4.644 2.484 2.476
SSOR CG 34 2.128 1.790 0.843 0.839
SSOR SI 43 1.879 1.765 0.984 0.980
(Red-black ordering)
Jacobi CG 178 2.343 2.117 0.261 0.252
Jacobi SI 362 5.357 4.332 0.583 0.562
SOR 196 4.110 4.084 0.488 0.470
SSOR CG (w =1) 70 3.785 3.123 0.209 0.194
SSOR SI 196 8.125 7.540 0.690 0.654
RS CG 90 1.456 1.358 0.116 0.108

RS SI 182 3.132 2.780 0.220 0.203
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TABLE 2
Iteration time (secs.), CRAY 1 (h=1/64).

Scalar Scalar Vector
ITPACK ITPACK ITPACK
Method Iterations #1 #2 #1

(Natural ordering)

Jacobi CG 178 2.577 2.564 0.716
Jacobi SI 362 5.418 5.252 1.415
SOR 216 4.399 4.356 3.112
SSOR CG 34 1.771 1.725 1.143
SSOR SI 43 1.660 1.651 1.343
(Red-black ordering)
Jacobi CG 178 2.198 2.176 0.710
Jacobi SI 362 4.632 4.448 1.402
SOR 196 3.729 3.691 0.743
SSOR CG (w=1) 70 3.000 2.909 0.612
SSOR SI 196 6.810 6.793 1.632
RS CG 90 1.590 1.574 0.328
RS SI 182 3.292 3.231 0.656
TABLE 3

Total time-iteration time, CYBER 205 (h =1/64).

Scalar Scalar Vector Vector
ITPACK ITPACK ITPACK ITPACK
Method #1 #2 #1 #2

(Natural ordering)

Jacobi CG .091 .082 .030 .030
Jacobi SI .091 .081 031 .030
SOR .090 .082 .060 .060
SSOR CG .091 .083 .060 .060
SSOR SI .091 .082 .060 .060
(Red-black ordering)
Jacobi CG 714 704 .068 .066
Jacobi SI 714 .704 067 .067
SOR 713 .703 .068 .067
SSOR CG (w=1) 715 704 .068 .067
SSOR SI 714 704 067 .066
RS CG 721 709 .069 067
RS SI 722 710 .068 .068

recursive for natural ordering, and the improvement in performance was not as great
in the vector versions of ITPACK.

(iii) There was a marginal improvement in speed in going from the standard
Fortran version of vector ITPACK #1 to the CYBER 205 vector syntax version of
vector ITPACK # 2. For our applications, there were very few computations which
could not be recognized as vectorizable by the CYBER 205 compiler when written in
standard Fortran. The small savings in time resulted when calls to vector subroutines
were replaced by in-line vector instructions.

(iv) Comparisons of methods based upon the number of iterations are misleading
on vector computers. Methods which are slow to converge but are susceptible to
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TABLE 4
Total time-iteration time, CRAY 1 (h=1/64).

Scalar Scalar Vector
ITPACK ITPACK ITPACK
Method #1 #2 #1

(Natural ordering)

Jacobi CG .091 .090 .046
Jacobi SI 091 .090 045
SOR .090 .090 .082
SSOR CG 091 .090 .082
SSOR SI .090 .090 .082
(Red-black ordering)
Jacobi CG 17 715 .106
Jacobi SI 716 715 .106
SOR 716 716 .106
SSOR CG (w=1) 17 715 .105
SSOR SI 17 716 .106
RS CG 725 724 .108
RS SI 726 724 .108

vectorization can be more efficient than methods which have good convergence proper-
ties but involve recursive calculations. Hence, the JACOBI CG and JACOBI SI methods
seem to be preferable to the recursive algorithms of the SOR, SSOR CG, and SSOR
SI methods in the case of natural ordering. For red-black ordering, the RS methods
seem to be the most efficient. It is interesting to note that SOR, SSOR CG, and SSOR
SI methods vectorize with red-black ordering, thus performing better than with natural
ordering. This remains true for the SSOR methods in spite of the greater number of
iterations.

(v) The total time for each method is not significantly greater than the iteration
time in the vector version, as can be seen from Tables 3 and 4. This result is due to
the fact that the scaling and permuting operations on the matrix are also vectorizable
with the ELLPACK column-oriented data structure.

Tables 5 and 6 give the time per iteration for each method using natural and
red-black ordering for the CYBER 205 and CRAY computers, respectively.

Both the CYBER 205 and CRAY computers perform at about the same speed for
this problem using the scalar versions of ITPACK. There seems to be less of an
improvement in speed in going to the vectorized version of ITPACK for the CRAY
computer than for the CYBER 205. For those methods which vectorize well (i.e., those
methods whose basic iterative step is a matrix-vector multiply), the CYBER 205
achieves an order of magnitude improvement in speed for this problem size, while the
CRAY 1 improves by a factor of three to five. This may be due to the CYBER 205’s
efficiency in processing long vectors and its hardware gathering and scattering instruc-
tions. For the data structure of vector ITPACK, gathering operations are a significant
part of the matrix-vector multiply.

For both computers, there was not as significant an improvement in speed for the
SOR and SSOR methods for the natural ordering of the unknowns. These methods
require forward or back solutions through sparse triangular factors which are recursive
with the ELLPACK data structure.

It was also decided to test vector ITPACK on the test problem listed above for
various mesh sizes to determine the effect of the vector length on the performance.
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TABLE 5
Time per iteration (secs.), CYBER 205 (h=1/64).

Scalar Scalar Vector Vector
ITPACK ITPACK ITPACK ITPACK
Method #1 #2 #1 #2

(Natural ordering)

Jacobi CG .0139 .0125 .0014 .0014
Jacobi SI 0155 0126 .0016 .0015
SOR .0218 0215 0115 0115
SSOR CG .0626 .0526 .0248 .0247
SSOR SI .0437 .0410 .0229 .0228
(Red-black ordering)
Jacobi CG .0132 0119 .0015 .0014
Jacobi SI .0148 .0120 .0016 .0016
SOR .0210 .0208 .0025 .0024
SSOR CG (w =1) .0541 .0446 .0030 .0028
SSOR SI 0415 .0385 .0035 .0033
RS CG 0162 .0151 .0013 .0012
RS SI 0172 .0153 .0012 .0011
TABLE 6

Time per iteration (secs.), CRAY 1 (h=1/64).

Scalar Scalar Vector
ITPACK ITPACK ITPACK
Method #1 #2 #1

(Natural ordering)

Jacobi CG .0145 0144 .0040
Jacobi SI .0150 .0145 .0039
SOR .0204 .0202 .0144
SSOR CG .0521 .0507 .0336
SSOR SI .0386 .0384 .0312
(Red-black ordering)
Jacobi CG 0123 0122 .0040
Jacobi SI .0128 .0123 .0039
SOR .0190 .0188 .0038
SSOR CG (w=1) .0429 .0416 .0087
SSOR SI .0347 .0347 .0083
RS CG .0177 .0175 .0036
RS SI .0181 .0178 .0036

Both the CYBER 205 and CRAY computers are known to become increasingly efficient
as the vector length grows since the start-up times for vector computations becomes
increasingly insignificant relative to the stream time. The mesh sizes chosen were
h=1/16,1/32,1/64,1/128, and 1/256, resulting in 225, 961, 3,969, 16,129, and 65,025
unknowns, respectively.

Table 7 gives the different number of iterations for each method and each mesh
size. Tables 8 and 9 give the corresponding iteration times for the CYBER 205 and
CRAY 1 computers, respectively. Tables 10 and 11 give the iteration time per node
per iteration. The largest problem could not be run on the particular CRAY 1 being
used because of limited available memory.
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TABLE 7
Iterations
Method h=1/16 1/32 1/64 1/128 1/256
(Natural ordering)
Jacobi CG 49 94 178 330 629
Jacobi SI 84 179 362 772 1372
SOR 50 104 216 422 872
SSOR CG 16 22 34 51 73
SSOR SI 19 29 43 61 88
(Red-black ordering)

Jacobi CG 49 94 178 330 629
Jacobi SI 84 179 362 772 1372
SOR 52 101 196 396 839
SSOR CG (w=1) 20 37 70 120 223
SSOR SI 51 107 196 373 752
RS CG 25 48 90 167 321
RS SI 42 88 182 375 704

TABLE 8

Iteration time (secs.), CYBER 205.

Method h=1/16 1/32 1/64 1/128 1/256
(Natural ordering)
Jacobi CG 010 .040 247 1.792 14.121
Jacobi SI 018 .091 554 4.180 29.919
SOR .036 296 2.476 19.545 165.841
SSOR CG .028 136 .839 5.022 28.564
SSOR SI .029 .166 980 5.663 32.736
(Red-black ordering)

Jacobi CG .010 .040 252 1.824 14.395
Jacobi SI .018 .090 .562 4.259 29.211
SOR 011 .066 470 3.745 32.199
SSOR CG (w=1) .007 .031 194 1.293 9.893
SSOR SI .020 112 .654 4.372 35.688
RS CG .006 019 .108 749 5.949
RS SI .008 .032 .203 1.540 11.804

Tables 10 and 11 give the approximate time spent per node on each iteration. On
scalar computers, it would be expected that this quantity would be independent of the
problem size. However, as can be seen above, this quantity decreases as the problem
size grows for those methods which vectorize well. Hence, the JACOBI CG and
JACOBI SI methods for natural ordering and all methods for red-black ordering
improve their efficiency as the problem size grows, while methods which vectorize
poorly (the SOR and SSOR methods for natural ordering) show little improvement in
efficiency. The figures also indicate that for this experiment the CYBER 205 had a
greater improvement in efficiency for long vector computations than did the CRAY 1.

The gather/scatter operations on the CRAY 1 are done in software, whereas the
CYBER 205 has special hardware instructions for them. In fact, the CRAY 1 has
carefully written assembly code for gathering and scattering which runs faster than
the corresponding Fortran code but true hardware gather/scatter instructions such as
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TABLE 9
Iteration time (secs.), CRAY 1.

Method h=1/16 1/32 1/64 1/128
(Natural ordering)
Jacobi CG .015 .098 716 5.296
Jacobi SI .024 183 1.415 11.899
SOR 044 369 3.112 24.576
SSOR CG .034 .184 1.143 6.849
SSOR SI .037 224 1.343 7.724
(Red-black ordering)

Jacobi CG 014 .097 710 5.259
Jacobi SI .025 182 1.402 11.812
SOR .015 .100 743 5.982
SSOR CG (w=1) .013 .085 612 4.163
SSOR SI 032 237 1.632 12.076
RS CG .008 .047 328 2.408
RS SI .013 .086 656 5.305

on some CRAY X-MP’s should run substantially faster still. This many explain
why vector ITPACK enjoys a much greater speedup on the CYBER 205 than on the
CRAY 1.

Many iterative methods in ITPACK were susceptible to vectorization, but a major
rewriting of the package would be necessary for a vector computer to ‘“‘notice” all
vectorization possibilities. It is generally true that any code must be tailored to a
particular computer in order to achieve optimum efficiency, but the potential reward
for doing so on a vector computer is often an improvement of an order of magnitude
increase in speed. Our goal in carrying out short-range modifications on ITPACK was
to exploit the vector processing capabilities of vector computers without destroying
the general purpose nature of the package. It is hoped that the choice of the ELLPACK
data structure strikes a useful compromise between the demand for speed and the
demand for flexibility.

5. Long-range modifications. In this section we give a brief description of some
of our work on long-range modifications to ITPACK. These modifications will involve
the adaptation of some current algorithms and the use of new algorithms.

As indicated in § 4, if one uses the natural ordering, the SSOR method is not
vectorizable though it is often rapidly convergent. On the other hand, if one uses the
red-black ordering, it is vectorizable and converges in a greater number of iterations
which may be off-set by the increased speed. This behavior which is, as stated in § 3,
caused by the fact that the solution of a linear system with a sparse triangular matrix
is often not vectorizable, is typical of other approximate factorization methods, such
as the Incomplete Cholesky method of Meijerink and Van der Vorst [1977]. For such
methods one represents the matrix A of (2.1) in the form LU where L and U are
sparse lower and sparse upper triangular matrices, respectively. The repeated solution
of linear systems involving the matrices L and U are required.

In some cases an improvement in the vectorization can be made by reordering
the rows and corresponding columns of A, and hence of L and U. For the SSOR
method for a linear system corresponding to a 5-point finite difference equation one
can, as stated in § 3, use ordering by diagonals to achieve some vectorization. We are
planning to implement this in the near future not only for the SSOR method but for
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TABLE 10
Time per iteration per node (microseconds), CYBER 205.

Method h=1/16 1/32 1/64 1/128 1/256
(Natural ordering)
Jacobi CG 907 .443 .350 337 .345
Jacobi SI 952 .529 .386 .336 335
SOR 3.200 2.962 2.888 2.872 2.925
SSOR CG 7.778 6.433 6.217 6.105 6.017
SSOR SI 6.784 5.956 5.742 5.756 5.721
(Red-black ordering)
Jacobi CG 907 .443 .357 .343 352
Jacobi SI 952 .523 391 342 327
SOR 940 .680 .604 .586 .590
SSOR CG (w=1) 1.556 .872 .698 .668 .682
SSOR SI 1.743 1.089 .841 127 730
RS CG 1.067 412 .302 278 .285
RS SI .847 378 281 255 258
TABLE 11

Time per iteration per node (microseconds), CRAY 1.

Method h=1/16 1/32 1/64 1/128
(Natural ordering)
Jacobi CG 1.361 1.085 1.013 0.995
Jacobi SI 1.270 1.064 0.985 0.956
SOR 3911 3.692 3.630 3.611
SSOR CG 9.444 8.703 8.470 8.326
SSOR SI 8.655 8.038 7.869 7.851
(Red-black ordering)

Jacobi CG 1.270 1.074 1.005 988
Jacobi SI 1.323 1.058 976 .949
SOR 1.282 1.030 955 937
SSOR CG (w=1) 2.889 2.391 2.203 2.151
SSOR SI 2.789 2.305 2.098 2.007
RS CG 1.422 1.019 918 .894
RS SI 1.376 1.017 .908 .877

other approximate factorization methods as well. Another approach we plan to under-
take is based on work of Kershaw [1982] on the solution of block tridiagonal systems.

As an alternative to the use of an approximate factorization of A wherein A is
represented as the product of sparse triangular factors, we are investigating the use of
approximate inverses wherein A" is represented by a sparse matrix. Sparse approxi-
mate inverses have been developed by Dubois, Greenbaum and Rodrigue [1979] using
a Neumann series and by Johnson, Michelli and Paul [1983] using more general
polynomials.

The approach we have taken involves the construction of a sparse approximate
inverse H based on the use of the Gaussian elimination method. To compute the
columns k™, k@ - .- k™) of the exact inverse A™", one solves a set of linear systems
of the form

AKD = ¢,



VECTOR COMPUTATIONS FOR SPARSE LINEAR SYSTEMS 111

where i=1,2,---, N,and where e” isA the ith unit vector. Instead of this we determine

an approximate inverse H such that h; ;=0 if (i, j) € S. Here S is a sparsity set, i.e. a

subset of the pair (i, j) such thatthe i=i, j= N.Foreachi=1,2, - - -, N, we require that
AR = &

provided that (i, j) € S. Actually we can write

ADRD = &)

b

where A is obtained from A by deleting certain rows and columns of A. In some
applications the A are small matrices and the columns h can be computed quickly
in vector mode. The basic iterative method corresponding to a sparse approximate
inverse is fully vectorizable.

As an example the matrix

4 -1 -1 0
A 0 -1
-1 0 4 -1

0 -1 -1 4
with the sparsity set
S={1’ 1)’ (1’ 2)(1’3)(2, 1)’ (2’ 2)’ (2’ 4)’ (3’ 1)’ (3’ 3)’ (3’ 4)’ (4’ 2)’ (4’ 3)’ (4’ 4)}
has the incomplete inverse
2/7 1/14 1/14 0
1/14 2/7 0 1/14
1/14 0 2/7 1/14)
0 1/14 1/14 2/7

We remark that the determination of H can be carried out explicitly for the case

of a five-point difference equation over a rectangular mesh; for details see Kincaid,

Oppe and Young [1984]. Numerical experiments are currently underway to determine
the effectiveness of the method for various choices of S.

HA=
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A GENERALIZED PARITY FUNCTION AND ITS USE IN THE
CONSTRUCTION OF PERFECT CODES*

M. MOLLARDt

Abstract. We define a new generalized parity function, and use it to obtain a product construction of
single-error-correcting codes (binary or not).

Key words. combinatorics, error-correcting codes

1. Introduction. Let V, be the vector space of dimension n over the finite field
GF (q). A code of length n is a subset C of V,. If C is a subspace of V, the code is
called linear. A single-error-correcting code (or distance 3 code) is a code C having
the property
VxeC, VyeC, d(x,y)=3, orx=y,

where d(x, y) is the Hamming distance between x and y. This is the only kind of code
considered here. The Hamming bound states that

I
W ‘C|=n(q—1)+1'

C is called perfect if (1) is an equality. Perfect codes of length n exist if and only if
for some m
_q4"~1

g-1’

n

The earliest examples of perfect codes are linear ones (Hamming [1] for ¢ =2,
Shapiro and Slotnick [2] for the general case). Nonlinear perfect codes have been
constructed by Vasiliev [3] (¢ =2) and Schénheim [4]. Other nonlinear codes are also
known.

In this paper we present a product construction for combining codes, based on
the use of a “‘generalized parity function”. Starting with binary single-error-correcting
codes of lengths n, m this construction gives us a single-error-correcting code of length
nm+ n+ m. But our purpose here is to construct perfect codes, so we will only apply
it to such codes.

Phelps [5] has also introduced a product construction which generalizes his
“combinatorial construction of perfect codes” [6]. However, when compared to
Vasiliev’s construction, Phelps’ appears as being of a very different nature: we think
that, more than likely, it cannot produce the Vasiliev codes, while their generalization
is precisely our aim.

2. Product construction in the binary case. Let n,, n, be integers.
DEFINITION. The generalized parity function (Py(x), P,(x)) from V,
is defined by

to Vn,+n2

1n2

Pl(x)=(.”22 xij>’ iE{l,' ) "nl}a

F'2(x)==(.§l1 xij)a je{l" . '9”2}9

* Received by the editors December 15, 1983 and in revised form November 26, 1984.
t Laboratoire LSD (IMAG), 38402, St. Martin d’Héres Cédex, France.
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where the components of x, an element of V, ,.,, are (X;1, * * *, X1y X215 * * * 5 Xnyny)s 1€

the coordinate positions of x are arranged in lexicographic order over {1<- - - <n,} X
{1 < e < nz}.

Let C and C’ be perfect codes of lengths n,, n,, and let f be a vector function
from C to V,,. Now define F as
F={(x, ¢+ Py(x), ¢+ Py(x) + f(c))},

where xe V,, ,,,ce C, and c'e C'.
THEOREM 1. F is a single-error-correcting perfect code of length n = nyn,+ n,+ n,.
Remark. Two important particular cases are:
1) fis a constant value function,
2) n,=1, then P,(x)=x, P,(x)=P(x) the classical parity function; this is

Vasiliev’s construction.
Proof of Theorem 1. First notice that for some a and b
n=2-1, n,=2°-1,
and so
=mn,+n,+n,=2""-1.
The number of vectors in F is
2™ 2™ 2"

|F|=2™" = .
n+1n,+1 n+1

Therefore, if F is single-error-correcting, it must be perfect. Let a and a be two different
vectors of F. We have to show that d(a, @) =3. For some x, X, ¢, ¢, ¢/, ¢’ we can write

a=(x, c+ Py(x), ¢'+ Py(x)+f(c)),
a=(x, ¢+ P,(x), ¢'+ P,(x)+f(2)).

a) If x=x, then P,(x)= P,(X), P,(x)=P,(x) and d(a,d)=d(c, ¢)+d(c', ¢')=3.
b) If d(x, x)=1, then d(P,(x), P,(x))=d(Py(x), P,(%))=1. If ¢#¢, then d(c+
P,(x), ¢+ Py(x))=2 and d(a,a)=3. If c=¢, then d(&'+ Py(X)+f(C), ¢'+
P,(x)+f(c))=1 and again d(a, a)=3.
c) If d(x,x)=2, then d(P,(x), P,(%X)) and d(P,(x), P,(X)) are 0 or 2 but both
cannot be zero at the same time. Therefore, the equalities
1) ¢+ Py(x)=¢c+ P(x),
2) '+ Py(x)+f(c)=2"+ Py(X)+£(2),
are not compatible and d(a, a) =3.
d) The trivial case d(x, X) =3 ends the proof.
Let Cy, Gy, - - -, C, be perfect codes of lengths ny, n,, - - -, n, and let

)4 )4
m=1] (n;+1)— % n;—1.
i=1 i=1

We can define a family of functions R, (k€{1,2,- - -, p}) from V,, to V,, playing the
part of a parity function, and use it to build perfect codes of length [T7_, (n;+1)—1.
The interested reader can find this generalization of the above construction in [8].

3. General construction. Finally, we are going to state a generalization to perfect
codes over finite fields, and so generalize Schonheim’s construction. A different gen-
eralization, over arbitrary alphabets, recently has been developed by Phelps [7].
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Let g be a power of a prime and let a; (i=1,2, - -, g —1) be the nonzero elements
of GF (q) in a fixed order. For two integers n,, n, arrange the coordinate positions of
x, a word of V(,_;)n,n, in the lexicographic order over

{1’ e ,q_l}x{la' T nl}x{l, Y n2}'
P,(x) will be the function from V{,_,). ., to V, defined by

Pl(x)=(yh' : ':yj" * ‘:ynl):
where

q-1 "2

=2 nyb

i=1 k=1

Py(x) will be from Vi _y, ., to V,, defined by
Pz(x)=(J’1, s Vet 9yn2)’

where

q—1 n
V=2 4 Y Xy
i=1  j=1

THEOREM 2. Let C and C' be two perfect codes of lengths n,, n, and let f be a
function from C to V,,.. F is a perfect code over Vi,_,yn n,+n,+n, Where

F={(x, c+ Py(x), c'+ Py,(x)+f(c)), X€ Vig-iynnpy €€C, c'eC'.

A proof of this theorem can be found in [8]. We only remark here that for n,=1
we obtain the Schonheim nonlinear perfect codes.
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THE CHARACTERS OF THE INFINITE SYMMETRIC GROUP
AND PROBABILITY PROPERTIES OF THE
ROBINSON-SCHENSTED-KNUTH ALGORITHM*

SERGEI V. KEROV{ AND ANATOL M. VERSHIKt
In memory of V. A. Rohlin

Abstract. Connections between the Robinson-Schensted-Knuth algorithm, random infinite Young
tableaux, and central indecomposable measures are investigated. A generalization of the RSK algorithm
leads to a combinatorial interpretation of extended Schur functions. Applications are given to Ulam’s
problem on longest increasing subsequences and to a law of large numbers for representations. An analogous
theory for other graphs is discussed.

Key words. Young tableaux, random infinite Young tableaux, extended Schur functions, RSK-algorithm,
law of large numbers for representations of symmetric groups

1. Introduction. In the past several years the remarkable Robinson-Schensted-
Knuth (RSK) algorithm has found numerous applications (see e.g. [2]). In this article
we apply the algorithm (more exactly its “right half”’) to infinite sequences of letters
of a certain linearly ordered alphabet corresponding to infinite Young tableaux. Then
considering the elements of the sequences as independent random letters (with the
same distribution on the alphabet) we get infinite random Young tableaux. The main
result (Theorem 2) asserts that the measures on Young tableaux arising in this way
(i.e. the images of the product-measures) are the central (see § 6) indecomposable
measures.

If we use a generalization of the RSK algorithm in which we divide the alphabet
into “positive and negative” letters (as it will be done in § 2) the list of the indecomposable
central measures will be completely exhausted by the images of the product-measures
under the RSK algorithm. This generalized RSK algorithm was independently found
by Berele and Regev [1] and further considered in [10].

On the other hand every central measure on the space of infinite Young tableaux
defines a character of the factor-representation of finite type of the group © of all
finite permutations of positive integers (see § 6). Thus we get some new information
about the finite characters and the corresponding representations of &, and about
symmetric groups &, with large degree n. In addition, Theorems 1 and 2 have many
probabilistic and combinatorial corollaries (see §§ 6-8).

In the paper [17] (see also [8]) an important special case had been considered:
the image of the product-measure with purely continuous multiplier is the Plancherel
measure on infinite Young tableaux which corresponds to the regular representation
character of ©... Its statistical properties (including the limit shape of typical random
Young tableaux) were studied in [17] and [8]; and a number of combinatorial corol-
laries, including the complete solution of Ulam’s problem on the expected length of
the longest increasing subsequence of a random permutation, were given in [17] and
will be mentioned here in § 7.

The generalization of the RSK algorithm mentioned above is a combination of
two RSK variants described in [7]. This modified algorithm, defined in § 2, is very
important by itself even for finite n; it conserves the usual properties of the RSK

* Received by the editors November 26, 1984.
+ Mathematics Department, Leningrad State University, Leningrad 198 904, USSR.
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algorithm and connects combinatorial aspects of Young tableaux with the theory of
symmetric functions and representations of ©,. As an example we shall give in § 5 an
interesting probabilistic interpretation of the Schur functions.

The corollaries of the main theorem break up into various parts: new laws of large
numbers for nonlinear functionals on the sequences of independent random variables
(87), asymptotic primarity of induced characters of &,, “the law of large numbers™
for expansions of the induced representations on primary components (§ 8). Some com-
binatorial corollaries are contained in § 7. Theorem 2 explains the reason why the set
of indecomposable characters has the structure of a simplex and reveals the meaning
of the parameters of those characters in Thoma’s formula [14]—viz, the frequencies of
the rows and columns (cf. [6]).

The probabilistic properties of the projection which we call “youngization” for
the infinite case need further study; we establish here only that youngization is a
homomorphism of spaces with invariant measure. Both the structure of the partition
on the preimage of points and the description of measures invariant under Knuth’s
transformations (see § 3) are very interesting unsolved questions.

It is useful to look at a Young tableau as a path in Young’s graph. From this
viewpoint there can be seen an important generalization of the RSK algorithm in a
completely different direction. In § 9 we shall give new examples of graded graphs
and projections from the space of sequences into the space of paths in these graphs
for which our main theorem is justified, viz., the list of the indecomposable central
measures in the latter space is exhausted by the image of the product measures under
this projection. Kingman’s results on so-called partition structures [6] and the graph
of finite ideals in a binary tree which Stanley [12] has studied, are included into our
considerations. To find other interesting examples and a corresponding RSK algorithm
is an open problem. For the connections with the theory of representations of &, see
[14], [17], [16].

2. Bitabulation. Denote by N the set of positive integers; the Young diagram A +n
is an order ideal with n elements (cells) in N XN provided with the usual partial order.
Let L be a linearly ordered alphabet with the partition L= L, U L, (for our aims it is
enoughto put LcR, L, = LNR"). For x, ye L we shall write x /yifx<yorx=yelL,
and x\ y in other cases. We shall call a word w=x;x," - x,€ L" increasing if
X, /X, /- - 7 x, and decreasing if x; Ny X\ 0\ X,

Let t: A > L be a map, corresponding the letters of L to the cells of a diagram A.
We shall call ¢t an L-tableau, if the letters are increasing along the rows and decreasing
along the columns of A in the above sense (see the example below).

We define the algorithm INS to consist of the successive substitutions of the letters
x € L of a word w into the rows of the tableau ¢; by definition the insertion of a single
letter x coincides with INSERT from [7] if x € L. and with INSERT* if xe€ L,. The
inverse operation DEL combines DELETE and DELETE®* from [7] in the same way.

Using this algorithm INS we associate with a word w=x, - - * x,, in the alphabet
L a bitableau (R,, S,) defined as follows. The first tableau R, is the result of applying
INS to the letter x, and the tableau R,_,, the result being an L-tableau filled with the
letters of L; the second one S, is a usual Young tableau with integers 1,2, - - as
elements in its cells which is obtained from S,_, by placing the integer n into the new
cell of the diagram of R, (so that R, and S, have the same shape). We shall call R,
the sorting and S, the accompanying tableau of w. We put R,= S, =(J (the tableau
with empty diagram); thus by induction we have defined R,, S, completely. Let A(w)
be the common diagram (shape) of R,, S,.
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Example. If w=-2,2, =2, 1, 3, —1, 3 then

2 6
-2 -1 3 3 1 2 5 7

All the results of [7] are preserved (after suitable changing) for our modification
of the RSK algorithm. In particular, the operation of bitabulation defines a bijection
between the spaces of n-words we L" and the set of pairs (R, S) where R is an
L-tableau and S a Young tableau with the same diagram. The transformation which
corresponds to the word w the tableau S(w) we shall call youngization.

3. Generalized Schensted’s theorem. Let w be a word in the alphabet L and A an
arbitrary Young diagram. We denote the maximal cardinality of the union of k
increasing (resp. decreasing) subsequences of the word w by ri.(w)(c(w)), and let
Fr(A)(C(A)) be the sum of the lengths of the first k rows (resp. columns) of the Young
diagram A.

ProrositioN 1. For any we L" and k=1,2, - -, n, we have

n(w)=f(A(w)),  adlw)=E(A(w)),

where A(w) is the common diagram of R(w) and S(w).
It is not difficult to get the proof using Knuth’s equivalence [7, Thm. 6], which
has the following form in our case:

zxy=xzy ifx<y<zorx<y=zeljorL,ox=y<z (1)
yxz=yzx ifx<y<zorx<y=zeL,orL,ax=y<z (2)

Following [7] it is easy to check that R(w') = R(w) if we can get the word w’ from
the word w by a chain of modifications of the form (1) or (2). The generalization of
Proposition 1 to arbitrary finite partially ordered sets was obtained by Green and
Kleitman [4] and independently by S. Fomin [3].

4. Youngization. We shall denote the set of Young tableaux with n cells by T,
(by definition a Young tableau is an increasing chain of diagrams ¢ = A, A, <+ - < A,,
|A]=k), and by T the space of infinite Young tableaux with the topology of the
projective limit: T =Jim T,.

Let L™ be the space of infinite sequences of letters of the alphabet L. For we L™
we denote by w, the initial piece of length n of the word w, and we let S(w) € T denote
the infinite Young tableau (¢, A;(w,), -+ +, An(W,), : - - ), defined as the limit of the
accompanying finite tableaux S,(w,). Note that the limit of the sorting tableaux does
not exist in general. We can also consider infinite tableaux as infinite paths in the
graded graph of finite Young diagrams (see § 9). The transformation S: L™~ T which
we have constructed will also be called youngization; it is continuous and surjective.

5. The symmetric functions as probabilities. We shall say that a probability measure
d on L has type (a, B, y) where a=(ay;, as, "), B=(B1,B2 """ ), & B, YER",
= e, =, Bi=By=- -, if a4, a,, - - - are the values of its atoms on the points of
L, and B,, B,, - - - are the values of atoms on the points of L,, and finally if vy is the
value of the measure on its continuous part, so that 2oy, +38,+y=1.

Denote by h,(a, B, y) the probability that the random word w=x;, - - - x, with
independent letters with the common distribution d of type (a, B, y) is increasing in
the sense of § 2.
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PrROPOSITION 2. The generating series for the function h, has the following form:

et 1+ 8z
1+ % (B y)z"=em [ b2
n=1 i=1 1 —o;Z
(For y=B,=B,=""--=0 we get the complete homogeneous symmetric functions

h, = Z a;a;, o J)
i =ip=-=i,

As every symmetric function f has a unique representation as a polynomial in the
arguments h,, we can define its extension as the result of substitution of the function
h,(a, B, y) at the place of h, in this polynomial, for n=1,2, - - - . For instance the
extended power sum symmetric functions are the following:

sl(a,B’ ‘Y)=kz ak+kz Bk+y’
=1 =1

sn(aaB’ ‘Y)=kz al':+(_l)n+l Z ﬁl':, n=2.
=1 k=1

We shall denote by e, the extended Schur function corresponding to the Young
diagram A. When y =0, e, coincides with the hook-Schur functions HS, of [1] and
[10], and the super-Schur functions s,(a/B) of [13]. The probabilistic meaning of
extended Schur functions is given by the next proposition.

ProrosITION 3. Let P, = P,(«, B, v) denote the probability that a random filling of
the diagram A with letters from L with independent values and common distribution of
type (o, B, v) produces an L-tableau (in the sense of § 2). Then P\(«a, B, v) = e\(a, B,
v), the extended Schur function.

Proof. For Young diagrams A, u with n cells let K,, denote the usual Kostka
coefficients [9], [11], i.e., the number of Young tableaux (strictly increasing in columns
and weakly increasing in rows) of shape A containing w,1’s, u,2's, etc. As in the proof
of [11, Thm. 6.2] one can show that

Hp. = Z K)\p.P)\
AEn
for all u+ n, where H, =[], P:‘k*) and (k) denotes the one-row Young diagram of length
k. A similar formula holds for the usual symmetric functions and hence for extended
symmetric functions, viz.,

h,=Y K,.e\
A

It is easy to show using Proposition 2 that P,(a, B, y)=h,(a, B, y) forn=1,2,---.
It follows that H, = h, for u+n, so P, = e, because the matrix (K,,) is invertible. 0
An important fact which connects the theory of symmetric functions and the
theory of random tableaux is given by the following theorem.
THEOREM 1. Let m, ., be the product-measure with common multiplier d of type
(a, B, v) and consider the Young tableau t € T, of shape A +—n. Then

ma,B,'y{w € Loo: Sn(w) = t} = e)t(aa B’ 7)’

where e, (a, B, y) is the extended Schur function.

Proof. The probability on the left side of the formula depends only on the sequence
w, of the first n letter of w. Because bitabulation w, > (R,, S,) is a bijection, the
sequences w, with S,(w,)=1t are in one-to-one correspondence with L-tableaux of
shape A ; so the theorem follows from Proposition 3. 0O
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6. Product-measures, central measures and characters of the group &,,. We shall
use several definitions and facts from [16]. The Borel measure M on T is called central
if

M{t: t,=u}=M{t: t,= v}

for every two Young tableaux u, v with the same diagram. The central probability
measures on T form a simplex, the extremal points of which are indecomposable
central measures corresponding to the factor-representations of finite type of the group
©. This connection and the complete list of indecomposable central measures have
been found in [16] with the help of a method based on the ergodic theorem (compare
with the method in [15]). E. Thoma had obtained the list of characters of S, in 1964
[14] with a quite different method. From Theorem 1 and the results of [16] the main
theorem of the paper follows.

THEOREM 2. The image M,, 5, of the product-measure m,, 5, under youngization is
an indecomposable central measure. Any indecomposable central measure can be obtained
in this way. In other words, the transformation of measures induced by youngization is a
bijection between the classes of product-measures (with respect to the type) and indecompos-
able central measures.

Let us give some corollaries of this theorem.

7. Generalized Ulam’s problem. According to [16, Cor. 2], if we choose a tableau
te T with respect to the measure M, g, then the following limits almost always exist:
i(An) _

k . al(A
lim =Y a, th")
n n i=1 n n

k
= .; B

Their existence can also be proved with martingale techniques (compare [6]). Together
with Proposition 1 this fact leads to a new law of large numbers for sequences of
independent random variables.

PROPOSITION 4. Let d be a measure of type (a, B, y) on L and m, 5., =I]; d the
product-measure on L”. For almost all sequences we L™ with respect to the measure
My g, the limits

ck(wn)
n

. rk(wn)
lim
n n

k
= El Bi

k
= Z a;, lim
i=1 n
exist.

If the measure d is continuous M = M, ,, is the Plancherel measure; a stronger
result for this case was obtained in [16], viz., for almost all tableaux t=(A;, A5, - *)
with respect to the measure M the shape of the diagram in a suitable scale tends (as
n—- ) to a curve ) which was found and described in [16] (see also [8]). Using the
shape of this curve the authors [16] (see [8]) have proved that for the length 7, of the
first row of the diagram of the tableau ¢t = (A, A,, - - * ) the inequality

(A
lim LA

Jn

holds both a.e. and in the mean with respect to the Plancherel measure. Moreover, it
is easy to prove that M(A,)=1/ Jn where A, < T is the set of tableaux with the nth
cell in the first row. In [16] we have obtained from this the inverse inequality

.
fim 1A 5
n n

and hence the complete solution of Ulam’s problem as follows.



THE CHARACTERS OF THE INFINITE SYMMETRIC GROUP 121

THEOREM 3. The maximal length r,(w,) of a monotonic subsequence of a sequence
w, of n independent random variables with arbitrary continuous distribution on L grows
as 2v/n with probability one, i.e.,

Mg o1 {w: limi(‘_v_—")=2} =1.
” n n
In such a way we can also obtain information about the growth of several rows
and columns. Let us give a closely related fact about symmetric functions.
PROPOSITION 5. For every ay, 0y, B, B "5 v=0,Y a;+Y Bit+ty=1 and
£ >0 we have

lim Z (dim A)e)\(aa B’ 7) = l,

where the sum is over the diagrams A with n cells for which the inequality |Fi(A)/n—a,| < e
holds.

These methods allow us to prove a series of new laws of large numbers for
nonlinear functionals for random independent variables (as in Ulam’s case) and for
random Young tableaux, distributed according to one of the central measures;
asymptotic formulae for symmetric functions (as in Propositon 5) also follow.

8. Law of large numbers for representations. Let us consider two integer partitions
k:k=k+---+k, and pw:m=m+---+m, k+m=n, and the groups S, =
S XXy, G =6, X---xG,,. Let V,, be the representation of &, induced by
the linear character id Xsign of the subgroup &, X&) <&,. The Littlewood-
Richardson rule (see [9, Chap. 1.9]) when applied to V, ,, can be formulated as follows.
Let L= L,U L, be an alphabet with |L,| = k, | Lo| = m. The multiplicity of the irreducible
representation {A} of the group &, with diagram A in the representation V,, equals
the number of L-tableaux with diagram A in which the multiplicities of the letters
from L, are ky, - + -, k; and those of the letters from Loare m;, - - -, m. Let X =X, , < L"
be the set of words with the same multiplicities of letters. Using the above rules, we
can prove that the dimension of the A-primary component in V, , is equal to |[{x¢€
X, u: A(x)=A}| and the character ¢ = ¢, , of the representation V=1V, , is the fol-
lowing;:

1) =Y 5 acw(o)/dim A(w)
1X| wex
where o€ G, and Y, is the character of the representation {A}.

Applying these facts to our case, together with Theorems 1 and 2, we get:

PROPOSITION 6. Let ™ be the character of the induced representation V™ with
the parameters «(n), w(n) (see above) and
ki(n) m;(n)

«;, lim T = ﬁi'

l n k(n)+m(n)

k() +mn)
Then the limit
¥ (a)

lirIn‘nW:Xa,B,y(a)a o€ @00
gives the primary character of the group S, corresponding to the central measure M, g ..
Thus, the limit of the induced characters is the same as the limit of primary (irreducible)
characters with the same parameters.
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Denote by 9, ,(A) the relative dimension of the primary component, correspond-
ing to the diagram A n in the expansion of V, .
ProrosiTiON 7. Under the conditions of Proposition 6, for any ¢ >0 and k=

1,2, - -, we have
§E}=0.

In other words, for large n and for a typical diagram of an irreducible representa-
tion in the expansion of V™, the relative length of the ith row (column) is close to
ki/n(m;/n).

These properties can be called the laws of large numbers for characters and
representations because they express how (in a statistical sense) the irreducible
components of the induced representation concentrate (for large n) near one of them.
Probably this property takes place for a wider class of locally finite groups. We can
formulate it as a thesis: The list of the limits of the primary characters coincides with
that of the limits of characters induced from a suitable class of subgroups (in the
©-case, Young subgroups).

fi(A)

: (M)
_— a;| = e,
n El l|

k
n 'El Bi

lim 9, ,, {A:

9. Analogues of the main theorem for other graphs. Let & be a branching scheme
(Bratteli diagram), i.e., a graded graph with the set 2= U ., 9, of vertices; the
edges (possibly multiple) join the vertices of neighbouring levels only. A path in this

graph & is a sequence t = (e, e,, * * + ) of edges in which e,_, and e, have a common
vertex in 9,, n=1,2, - -. The space of paths Ch & =]im Ch &, is compact. A Borel

measure on Ch @ is by definition a central measure if the condition of § 6 holds with
u and v being finite paths (elements of Ch, &) with a common end; ¢, is the initial
segment of length n of the path t€ Ch @.

The problem of describing the indecomposable central measures for branching
schemes is the most interesting problem in the theory of the representations of AF-
algebras and locally finite groups (for factor-representations and K-functors see [S]).

For some graded graphs & it is possible to find the space & and a cylindrical
transformation ¢ of the infinite product ¥ onto Ch @, ¢: F°-> Ch 9, such that the
corresponding transformation of measures gives a surjection of the space of product-
measures onto that of indecomposable central measures. We shall call this kind of
graph 9 projective and the above transformation ¢ its projectivization. The basic example
is the Young graph.

Example 1. The vertices of the graph & =Y are Young diagrams, the grading is
defined by the number of cells, and the edges are as usual (i.e., two diagrams A and
u are adjacent if A can be obtained from u by adjoining a single cell). ThenCh @ =T
is the space of infinite Young tableaux. We can take for & the alphabet L from §§ 2-6.
Theorem 2 asserts that Y is projective and the youngization is its projectivization.

A completely different example is contained in a nonevident way in [6].

Example 2 (Kingman’s graph). The set of vertices is as in the first example, but
we use another language. The nth level in the graph K is the set of all (nonordered)
partitions of the integer n, n=n, +- - -+ n,. The edges are defined as follows. Consider
two partitions A € K,, and A€ K,,,,. They are joined in K iff A has the same parts as
A, excluding only one part n;. In this case there is a one-to-one correspondence between
(a) the set of edges joining A and A, and (b) parts of A equal to n,. Thus we can
identify every edge entering A with a part of A. Let A,(w) be the partition of n into
the multiplicities of the letters which one meets in the initial piece w, of the sequence
we F* (F is an alphabet). The last letter x, in w, fixes some part in the partition
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An(w). For every we F we get the sequence of edges which is the path ¢(w)e Ch K.
If we put #=[0, 1], the map ¢: F°~ Ch K gives the projectivization of K. This fact
can be extracted from [6], where the list of central measures (called there “partition
structures’) was found. It is interesting that the central measures in this case have a
connection with the asymptotic theory of Haar measure on &, (see [18]). Here is an
explanation of this fact: the graph K is that of conjugacy classes of the groups &,,
with edges which are defined naturally by the imbedding &, < &,,,;.

Example 3 (the order ideals of the universal binary tree). This example arises in
connection with [12]. Let & be the Hasse diagram of the lattice of finite order ideals
of the universal binary rooted tree T,. Let & be the space of infinite chains in T5;
F=[1} Z,. For w=(wy, w,, - - - )€ F° we put ¢(w) =(do, dy, - - - ) € Ch @, where d, =
g, d,=d,_,Ua, ac T, is the vertex of T, in which the chain w, leaves the ideal d,,_,.
It can be shown that ¢ is the projectivization of the graph %.

In conclusion we note that the problem of describing the central measures of a
graded graph can be formulated as the problem of describing the set of Markovian
measures on the compact space of paths of this graph with given cotransition prob-
abilities (which are common for all central measures). So this problem is included in
the cycle of questions which are typical of modern statistical physics.

Comment. This paper was offered to the journal at the end of 1981. For reasons
not depending on the authors, its publication was postponed. During this time we
were informed about the articles [1], [10], [13], [19], where the generalized Schur
functions are introduced in connection with a quite different approach (Lie super-
algebras). However these functions were considered for the first time in our article
[20] as the characters of factor-representations of the group &,.

In the recent paper [21] following the paper [17], we have obtained an exact
asymptotical estimation of the maximal degree of irreducible representation of &,:

0<C= —L_ln max d1n_1_A§ C,.
Jn Jn!
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THE NUMBER OF MAXIMAL INDEPENDENT SETS IN A TREE*

HERBERT S. WILFt

Abstract. We find the largest number of maximal independent sets of vertices that any tree of n vertices
can have.

AMS(MOS) subject classifications. 05C05, 05C15, 05C35

Key words. maximal independent sets, cliques, tree

1. Introduction. We determine, in § 2 below, the largest number of maximal
independent sets of vertices that any tree of n vertices can have. In § 3 there is a linear
time algorithm for the computation of the number of maximal independent sets of any
given tree. The application that suggested these questions to us was the analysis of the
complexity of an algorithm for computing the chromatic number of a graph. That
application will be discussed in § 4.

2. The main theorem. Let T be a tree, let V(T) be its vertex set and let n =|V(T)|
be its number of vertices. A set S< V(T) is an independent set if no two vertices of S
are joined by an edge of T. S is a maximal independent set (m.i.s.) if S is independent
and every vertex of V(T)—S is joined by an edge to at least one vertex of S. We write
w(T) for the number of m.i.s. of vertices of T (u(J)=1).

THEOREM 1. If we define

22141 ifn=2 is even,
1) f(n)={2""Y"2  ifnisodd,

1 ifn=0,
then f(n) is the largest number of maximal independent sets of vertices that any tree of
n vertices can have.

Figure 1 shows that there are trees of n vertices that have f(n) maximal independent

sets (the reader may enjoy checking these counts since they are not quite trivial!).
Hence it suffices to prove that no n-tree can have more than f(n) such sets.

Let T be a tree of n=3 vertices, and let x be an endpoint of T. We root T at x
and direct the edges of T away from x.

KA

n ODD n EVEN

FiG. 1
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Let v = y(x) be the child of x and let A,, - - -, A, be the children of y. Let U, be
the subtree of T that is rooted at A; (i=1, r).

We continue one layer further into T: in U, let W;; (j =1, s;) be the subtrees that
are rooted at the s; children of A, except that if A; is childless then we take s; =1, and
W., is then the empty tree (i =1, r). The picture is now as shown in Fig. 2.

X

Uy U, Y,

FIG. 2

LemMMA 1. If T is a tree of n=3 vertices then

(2) M(T)—H w(U)+ Hl HIM( i)
i=1j=

Proof. Let Sc V(T) be a m.i.s. that contains x. Then y¢ S. Let S;=SN V(U;)
(i=1,r). Then S; is maximal in U; (i=1, r), for if not then S can be augmented in
T. Conversely, if Vi=1, r: S; is maximal in U, then S={x}U S, U- - -U S, is maximal
in T.

Next consider a m.i.s. S< V(T) such that x¢ S, and therefore ye€ S. Hence
Vi=1,r: {1,238, and Vj=1, 5;: {if S;;=8N V(W,;) then §,; is maximal in W,; and
conversely}}. O

Let

= T
(3) h(n)= max u( ).

We will now prove that Vn=0: h(n) = f(n). Clearly h(n) = f(n) if n=2. Suppose
that n=3, and that Vj=0, n—1: h(j)=f(j). Let T be a tree of n vertices, and let x,
U(T), W;;(T) be as in Fig. 2. Write u, =|V(U,(T))| (i=1,r) and w;; =|V(W;(T))|
(j=1,s;;i=1,r). Then by (2) and the induction hypothesis,

(4) pr(T)= H Sflu)+ II1 Hlf(wu)
=1J=
We will carry out a maximization of (4) over all n-trees T in two stages, as follows.
As the problem is presented in (4) we are to maximize the right-hand side over all
partitions u of n—2 and all partitions w of the parts of u (each reduced by 1). In Stage
1 below we will identify, for given u, the maximizing partition w, and we will be left
with maximization over just the partitions u.
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In Stage 2 we will show that the maximum depends only on two integers, the
number r of parts of u, and the number e of even parts of u, but not otherwise on u.
We will then carry out the maximization over the admissible integer pairs (r, e), with
the end result that the maximum of the right side of (4) will have been shown to be
f(n), as defined in (1).

Stage 1 (in which the trees and the w;;’s are eliminated).

Fix integers m, r=1, let I'(r, m) denote the set of all r-tuples of positive integers
whose sum is m, and write I'(1, 0) = {0}. If we take the maximum of (4) over all n-trees
T, we get

(5) h(n)=max max {]f[ f(u;) +max l:[ ﬁf(wiJ)}

r=1 uel(r,n-2) i=1j=1
in which the innermost “max” is over the set of w’s such that for i=1, r:
(wi,la T wi,s) € r(sia u;— 1)'

Consider an integer r and partitions u, w that occur on the right side of (5) and
in which one or more of the w;; = 3. We claim that this set of integers can be ignored
when seeking the maximum in (5).

Indeed, replace w,, by |w; /2] 2’s, plus, possibly a 1, leaving all other w’s, u’s
and r untouched. Then the double product on the right will contain a factor

f(2) lwi1/2] — g lwy /2]

instead of the factor f(w,,). But from (1), f(k)=2"2 for all k=3. Hence the right
side of (5) cannot decrease by such a replacement.

Therefore, for fixed r and ueI'(r, n —2) we need consider only partitions of each
u;—1 into 0’s, 1’s and 2’s, say a 2’s, B 1’s and y 0’s (a =(u;—1)/2). However, such
a partition of u; —1 contributes a factor of 2 to the innermost product in (5), and this
is maximal when a = |(u4;—1)/2]. Hence for r fixed and ueI'(r, n—2), the double
product in (5) cannot exceed

[ 211721 = p(n=2-r-e)/2
i=1

where e = e(u) is the number of even numbers among u,, - - -, u,.
Stage 2 (in which the u;’s are eliminated).
As a result of stage 1 we have found that

(6) h(n)=max max {‘r f(ui)+2(n—2-r-e(..))/2}_

rz1 uel(r,n-2) —

Thus we have now a maximization problem over integer partitions, instead of over trees.
Fix three integers r, e, t such that r=1, 0=e=r and t= e. Consider the subclass
J(r, e, t) = T'(r, n—2) of those partitions of n —2 into r positive parts, exactly e of which
are even, and in which the sum of the even parts is 2¢. More precisely, then, J(r, e, t)
is the class of all partitions of the form
(@) n—2=2L+2L+: - +2L+ Q2L+ 1)+ -+ (2L +1),
(7) (b) l,;l (i=1, e), 1,20 (i=e+1, r),
() L+---+L=t
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Among the partitions ue J(r, e, t) the second term in the brace in (6) is constant,
so we consider

max [1 f(u) = max [1/21) 11 f@h+1)

J(ret) j=1 i=e+1

(8) = max fl @2 1+1) fl 2k

J(ret) j—1 i—e+1

e
=272 92 max ] (14+27%7Y)

J(ret) j=

where (7a) was used in the last equality.

The following result will be useful in the sequel.
LEmMMA 2. Fix g, z=0. Let

) Glg, z)=max [ (1+27™)

where the max is over all g-tuples of nonnegative integers m,, - - + , m, whose sum is z.
Then

(10) G(g z)=25""'(1+277)

and the maximum occurs when exactly one m;=z and all m;=0 (j#i). 0O

It is now convenient to split up the maximization of (8) over J(r, ¢, t) into two
cases, first where e =r, so all parts of (7)(a) are even, and second where e <r, so odd
parts then also occur in (7)(a).

Case 1. e=r. In this case (7a) shows that n is even and

Z l,=n/2"‘1=t
i=1

so we are in the class J(e, e, n/2—1). If we use Lemma 2 with g=e, z=n/2—-1—e¢,
the maximum on the right side of (8) becomes just 2"/2724 271 In this case, then, (6)
takes the form

(11) h(n) =max {2"/?7242°71 4 2"/2717¢}

where the maximum extends over 1=e=n/2—1. It is clear, from (11), that the
maximum occurs at either endpoint e =1 or e =n/2—1, of the interval. The maximum
value is 1+2"27' = f(n), as required.

Case 11. e <r. Here we find, from Lemma 2 with g = ¢, z = t — e, that the maximum
on the right side of (8) is
(12) max {2(n-—2—~r—e)/2{22—-l +22e—!—1}}'

J(r,et)

The maximum over ¢ occurs when ¢ is as small as possible, viz. t = e (see (7b, c)) and
the maximum is 2"">""*9”2 Thus (6) now becomes

(13) h(n)§r(na§( {2(n——2-—r+e)/2+2(n—-2—r—e)/2}.
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In (13) the “max’ is taken over the set of (r, ¢) for which

(a) 1=r=n-2 (from (7a))

(b) 0=e<r (in Case II)
(14)

(c) e+r=n-2 (from (7a, b))

(d) e+r=n(mod?2) (from 7a)

Suppose n is odd. We claim that the “max” in (13) occurs at r =1, e =0. Indeed,
if it occurs at (r, e¢) then surely r=e+1 or r=e+2, else we could reduce r by 2 to
increase the maximum without violating any of the constraints (14). Hence r=e+1,
by (14d), and (13) reads as

h(n) =9"/273/2 ax Q1 +2—e}=2(n—1)/2=f(n)

so in Case II, n odd, we have established that h(n) = f(n).

Finally, in Case II, suppose n is even, and further suppose that the maximum in
(13) occurs at (r, ¢). Again we must have r=e+1 or r=e+2, else we could reduce r
by 2. Now r=e+1 is ruled out by (14d), so r = e+2. Therefore (13) reduces to

(15) h(n)=2"?"2max {1+27°}

and the max occurs at e =0, the value being 2"/>"' < f(n), completing the proof of
Theorem 1. 0O

3. Alinear time algorithm. In this section we give another algorithm for computing
m(T). It will easily be seen to operate in linear time.

Let the edges of T be oriented away from the root , let x be some vertex, and
let €(x), 9(x) be the sets of children of x and of grandchildren of x, respectively. Let
mx be the number of m.i.s. in the subtree rooted at x, and let v, be the number of
those m.i.s. that do not contain x. Then it is easy to see that
(16) Uy = H My — H Vy, Mx = Uyt H M.

yeB(x) ye€(x) ze 9(x)
These formulas permit the computation of the pairs (u,, ¥,) at each vertex of 7, in
descending order of distance from r. One would begin by introducing a new fictitious
“child” of each leaf, and placing (1, 0) at each such new vertex as well as at each leaf.
The remaining vertices could then be done, in descending order, from (16). Therefore
the number of maximal independent sets of vertices in a tree can be computed in linear
time.

4. Remarks. In[1] E. Lawler discusses an algorithm for determining the chromatic
number of a graph, and shows that its run time, in the worst case, is O(mn(1+3/3)")
for graphs of m edges and n vertices.

The appearance of /3 derives from a theorem of Moon and Moser [2] to the
effect that a graph of n vertices cannot have more than 3"/> maximal independent sets
(they proved a sharper bound, but this one suffices for our present purpose). However,
the extremal graphs of Moon and Moser are disconnected. They are essentially disjoint
unions of triangles.

An improvement of Lawler’s run time estimate might therefore result if we could
solve the following problem:

What is the largest number of maximal independent sets that can occur in a connected
graph of n vertices?
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The present paper resulted from consideration of the above question. J. Griggs,
C. Grinstead and D. Guichard (p.c.) have shown that if ¢(n) denotes the answer to
this question then lim c(n)"/" =33, Note added in proof. They and, independently, Z.
Fiiredi, have now answered the above question.
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EFFICIENT VERTEX- AND EDGE-COLORING OF
OUTERPLANAR GRAPHS*

ANDRZEJ PROSKUROWSKIt AND MACIEJ M. SYSKO%

Abstract. The problems of finding values of the chromatic number and the chromatic index of a graph
are NP-hard even for some restricted classes of graphs. Every outerplanar graph has an associated tree
structure which facilitates algorithmic treatment. Using that structure, we give an efficient algorithm to color
the vertices of an outerplanar graph with the minimum number of colors. We also establish algorithmically
the value of the chromatic index of an outerplanar graph. Our algorithms are based on systematic coloring
of elements (vertices and edges, respectively) of adjacent faces.
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1. Introduction. The chromatic number, x(G), of a graph G is the minimum number
of colors needed for the vertices of G so that no two adjacent vertices are assigned
the same color. Correspondingly, the chromatic index, x'(G), is defined as the minimum
number of colors needed to color the edges of G so that no two adjacent edges are
assigned the same color. An assignment of at most k colors to the vertices (edges) of
a graph G is called a k-vertex- (k-edge-) coloring of G. The problem of determining
the chromatic number (index) of a graph G is NP-complete, even when G is restricted
to be planar (respectively 3-valent, see Garey and Johnson [6], Holyer [8]). However,
Gabow and Kariv [5] have designed an efficient edge-coloring algorithm for bipartite
graphs, Mitchell and Hedetniemi [9] have a linear algorithm for edge-coloring trees
and unicyclic graphs, and recently, Widgerson [14] has presented an efficient approxi-
mation algorithm for vertex-coloring general graphs. Arjomandi [2] and Terada and
Nishizeki [13] present approximate algorithms for edge-coloring general graphs. Apply-
ing a method that follows the recursive construction of series-parallel graphs, we can
easily color vertices of a series-parallel graph using the minimum number of colors in
time proportional to the size of the graph. (Compare with, for instance, Takamizawa
et al. [12] who do not treat explicitly the problems of vertex- or edge-coloring of
graphs, however.)

Here, we present efficient algorithms vertex- and edge-coloring graphs of the
subclass of series-parallel graphs, known as outerplanar graphs. A planar graph G is
outerplanar if and only if there exists a plane embedding of G in which all vertices
lie on the exterior (unbounded) face. Such an embedding is referred to as an outerplane
graph. For every 2-connected outerplane graph G there is a unique associated tree
T(G). This tree has internal nodes corresponding to the interior (bounded) faces of
G, and external nodes (leaves) corresponding to the exterior face, one leaf for each
edge of G on the exterior face. This associated tree corresponds to the—possibly
cyclic—weak dual graph of a general plane graph. To avoid confusion, we will talk
about nodes of T(G) and vertices of G. The edges of T(G) correspond uniquely to
edges of G in such a way that there is an edge between nodes of T(G) if and only if
the two corresponding faces of G share an edge. We consider T(G) to be a plane
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tree, in which the neighborhood of each node is ordered (see Proskurowski and Systo
[11]). A choice of a node of T(G) as its root induces a natural father-son relation
between adjacent nodes, and also a left-to-right ordering of brother nodes (sons of a
common father). A corresponding structure for a separable outerplane graph G is the
associated forest F(G). In that case, the connected components of F(G) correspond
to blocks (2-connected components) of G. The tree-like structure of these blocks allow
an easy ‘“‘color-exchange” algorithm transforming partial solutions for blocks of G
into a global solution, an optimal vertex- or edge-coloring of G. Thus, without loss of
generality, we restrict our discussion of coloring vertices and edges to 2-connected
outerplane graphs. We may assume that a linear time algorithm has been used to
extract 2-connected components from a general outerplane graph. See Fig. 1 for an
example of an outerplane graph, its associated tree and a rooting.

F1G. 1. An outerplane graph, its associated tree (rooted at node 1) with a depth-first traversal order, and
a partial edge-coloring following that order.

In the remainder of this paper we follow the standard texts of Fiorini and Wilson
[4], Garey and Johnson [6], and Harary [7] as references for edge-coloring, complexity
analysis, and general graph theory, respectively.

2. Vertex-coloring. The Four Color Theorem (Appel and Haken [1]) ensures that
the chromatic number of any outerplanar graph (as a planar graph) is at most 4. The
fact that the chromatic number of an outerplanar graph is at most 3 is implied by the
following observation. Every outerplanar graph has a vertex of degree 2. Every subgraph
of an outerplanar graph is outerplanar. Hence, we can apply the Szekeres-Wilf bound
on the chromatic number y(G) =1+ max §(G’), where maximum is over all subgraphs
G’ of G, and 86(G’) is the minimum vertex degree of G'.

THEOREM 1. The chromatic number of an outerplanar graph is at most 3.

Although the same result can be obtained using the techniques of Takamizawa et
al. [12], we enclose our new algorithm for completeness of the presentation.

Our method for producing an optimal vertex-coloring of a 2-connected, outerplane
graph G makes use of a traversal of the associated tree T(G), rooted at an arbitrary
node. We assume that the traversal is monotonic, that is, no node other than the root
is visited before its father.

Visiting a node C of T(G) we color the vertices of the corresponding face of G
with two or three colors, depending on its length. If C is not the root, two of its
adjacent vertices are already colored. These colors are subsequently used to color the
cycle C. It is clear that an outerplanar graph containing an odd-length face is not
bipartite. Our algorithm will produce a 3-coloring of such a graph. If all faces of G
have an even length then a 2-coloring is produced.
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This algorithm for coloring the vertices of an outerplane graph G takes time linear
in the total size of all faces of G, which, in turn, is proportional to the number of
vertices in G.

3. Breadth-first edge-coloring algorithms. The chromatic index of a graph G is
bounded by the maximum degree, A(G), of a vertex of G. Vizing’s theorem (see, for
instance, Fiorini and Wilson [4]) states that A(G) = x'(G) =1+ A(G). Fiorini [3] proves
that for an outerplanar graph G, x'(G)=A(G) unless G is an odd cycle. However,
his proof is an existential one and does not provide a method for finding an optimal
edge-coloring. Another proof of the above equality given in Fiorini and Wilson [4]
contains a flaw. Even corrected, their proof yields an edge-coloring algorithm of
higher-than-linear complexity. Terada and Nishizeki [13] also prove this result. We
present an algorithm for optimally edge-coloring an outerplanar graph, which may be
consided as yet another, constructive proof of the above equality. The algorithm takes
explicit advantage of the structure of a 2-connected outerplane graph by assigning
edge colors as it traverses the associated tree of the graph. Our algorithm has time
complexity linear with the size of the input, while the exact algorithm of Nishizeki et
al. [10] for edge-coloring series-parallel graphs is less efficient, as is the approximate
method of Arjomandi [2]. (They have complexity of O(mn) and O(min (mn, nA+
m+~ n log n)), respectively, where m and n are orders of the graph’s edge and vertex sets.)

The arbitrary monotonic traversal of the arbitrarily rooted associated tree T(G),
used above in an optimal vertex-coloring of an outerplanar graph G fails in an attempt
to edge-color G. The free choice of coloring edges along a cycle, when restricted by
an algorithmic method may lead to an eventual coloring conflict. See Fig. 1, where a
monotonic traversal is used. The edges of the triangular face corresponding to node
8 cannot be colored without the use of a fifth color.

We will give a traversal method of a carefully rooted associated tree T(G), and
a judicial coloring of the corresponding cycles of G that produces an optimal edge-
coloring. We define a breadth-first traversal of the internal nodes of a rooted plane
tree T as the traversal of the nodes of T in left-to-right order in levels defined by the
distance from the root. Figure 2 indicates the order of node visits in the breadth-first
traversal of a rooted plane tree. The process of visiting a node E during the traversal
of T(G) corresponds to edge-coloring the corresponding face E of G. Although at
most one edge e of E has a color already assigned (during a visit of the node’s father,
C), the color assignment to the two edges of E adjacent to e is restricted by other
colored edges adjacent to e. This restriction may prevent an optimal coloring if, in the

F1G. 2. A paradigm of edge-coloring.
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case of a triangular face E with end-vertices u and v of the base e, u and v are incident
each with A(G)—1 edges already assigned colors, the same for both u and v. Fortu-
nately, this cannot happen in a breadth-first traversal of T(G) for an outerplane graph
G with the maximum degree A(G)=5.

LEMMA 1. Leta 2-connected, outerplane graph G with the maximum degree A(G) = 5
be partially edge-colored by a breadth-first coloring algorithm using A colors. This
A-coloring can be extended to a face E of G corresponding to the next-to-be visited node
of T(G), the associated tree of graph G.

Proof. We proceed by induction on the number of visited nodes of T(G). If E is
the first face to be colored, then at most 3 <A(G) colors are needed. Therefore, let us
assume that C is the father node of E and the corresponding faces of G share an
edge e with end vertices u and v (cf. Fig. 2). At most one of these two vertices may
be incident with A(G) —1 previously colored edges: if v is in the face corresponding
to some ancestor of the node C, then u may be in at most one colored face other than
C, namely, that corresponding to the left brother of node E. Thus, the number of
previously colored edges incident with u is at most 3 <A(G)—1 (edges a, b, and e in
Fig. 2), and edges of E can be colored using only A(G) colors. 0O

The above lemma does not translate directly for the case A(G) =4, because of
the distinct possibility that the base edge of a partially colored triangle face is adjacent
to four colored edges forcing the same colors on both of the triangle’s sides (cf. face
8 in Fig. 1). The edge-coloring during the visit of the corresponding node’s father must
prevent an occurrence of this situation. The coloring process will have to preserve the
following property.

Property P,. A partial 4-edge-coloring of a 2-connected outerplanar graph G with
A(G) =4 has property P, if and only if G does not have a colored edge (u, v) shared
by a partially colored face E such that three colors are used to color all edges incident
with vertices u and v.

In the breadth-first edge-coloring algorithm, property P, can be endangered only
in two situations when coloring edges of the face corresponding to the father C of the
node E. The first one, in which C’s right brother would also be his leftmost brother
(in the circular orientation of the root’s children), is eliminated by rooting the associated
tree in a leaf node. The second situation can be reached only through the sequence
of face coloring (tree traversal) illustrated in Fig. 2. The node visiting order is
A---BC--- DE. Coloring edges of C we have to consider two cases of C’s left
brother B, which can be either external (corresponding to the outer face of the graph)
or internal (see Fig. 2). In the former case, there is a choice of two colors for the first
(leftmost) edge of C. This guarantees that the next to the last (rightmost) edge of C
(edge a in Fig. 2) can be colored so as to preserve property P, (with respect to face
E), namely by assigning it a color different from those assigned to edges ¢ and d of
face A. In the latter case, when the color of the first edge of C is forced by the formerly
colored edges of A and B, we have additionally to consider the length of C. If C is
a triangle, then the property P, might not be preserved. However, this property is not
necessary for maintaining the property P, for coloring of E since C’s leftmost son
node (D in Fig. 2) cannot be interior. If C has length greater than 3, then there is
enough freedom in coloring its edges to preserve property P,. Thus, we have the
following Lemma.

LeMMA 2. Property P, can be preserved in a partial coloring of an outerplane graph
G with k= A(G) =4 colors following the breadth-first order coloring algorithm.

An immediate corollary gives the desired statement about edge-coloring such
graphs.
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COROLLARY 3. Let a 2-connected outerplanar graph G with the maximum degree
A(G) =4 be partially A-edge-colored by a breadth-first coloring algorithm. The A-edge-
coloring can be extended to a face C of G corresponding to the next-to-be-visited node of
T(G).

When A(G) =3, the property of a partial 3-edge coloring required to avoid forced
situations can be obtained directly from P,.

Property P;. A partial 3-edge-coloring of a 2-connected, outerplane graph G with
A(G) =3 has property P; if and only if G does not have a colored edge e shared by
a not yet colored face such that the two colored edges adjacent to e have the same color.

LEMMA 4. Let G’ be a partially 3-edge-colored subgraph of a 2-connected, outerplane
graph G with A(G) = 3. Let this partial 3-edge-coloring have property P; and be obtained
through the breadth-first coloring algorithm. Let C be the next-to-be-visited node of T(G).
The 3-edge-coloring of G can be extended to C preserving property P;.

Proof. First, let us assume that C is the first face of G to be colored and that it
has n edges. Let e be an edge shared by C and another face, C'. Such an edge always
exists since A(G)=3>2. We observe that the edges of C adjacent to e (or any other
edge shared by another face) do not belong to any other face, because of the degree
constraint. We assign color 2 to e and color other edges of C (say, clockwise) depending
on the value of n. If n=0mod 3, then coloring edges by 1-2-3 (with e appropriately
included in the sequence) ensures property P;. If n=1mod 3, then we color edges of
C by 1-2-3 starting with an edge adjacent to the initially colored e, but excluding e.
The only two edges that could violate property P; are adjacent to e and thus belong
only to C, since A(G)<4. If n=2mod 3, we again color edges along C by 1-2-3
starting with an edge adjacent to e. This time, however, the three last edges of C (i.e.
£, & h in Fig. 3) are colored differently, depending on adjacencies of f. If f is shared
with another face, then it is colored 3, with colors 2 and 3 assigned to the remaining
edges. Otherwise, the three edges are colored 2-1-3, respectively. Beside the edges
adjacent to e, the only possibly offensive edges in the former case are adjacent to f
and thus in no other face than C. In the latter case, only f and one edge adjacent to
e have adjacent edges assigned the same color. By the remark above, they are in no
other face and thus the property P; holds. Next, consider a G with property P; and
a face C corresponding to the next-to-be-visited node of T(G). Our inductive assump-
tion yields that the three colored edges of C are assigned colors 3-2-1. The same case
analysis as the one above proves that C can be colored to ensure property P;. Thus
G can be colored with three colors. [0

2
37 ¢\
2 2
n = 0 1

F1G. 3. Coloring the first face of G.

The amount of work necessary to color the edges of each face is proportional to
the length of that face. Therefore, the total time spent edge-coloring an outerplanar
graph is bounded by a linear function of the graph’s size. Preprocessing a given
outerplanar graph to obtain its rooted associated tree can also be performed in linear
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time (see Proskurowski and Systo [11]). Collecting the results of this section, we finally
have the following theorem.

THEOREM 2. The breadth-first coloring algorithm produces an optimal edge-coloring
of an outerplanar graph in time proportional to the size of the graph.
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PARALLEL ALGORITHMS FOR NONLINEAR PROBLEMS*

R. E. WHITET

Abstract. Multi-splittings of a matrix are used to generate parallel algorithms to approximate the
solutions of nonlinear algebraic systems. A parallel nonlinear Gauss-Seidel algorithm for approximating
the solution of Au + ¢(u) = f where A is an M-matrix is introduced and studied. Also, a parallel Newton-SOR
method is defined for the problem F(u)=0 where F'(u) =the Jacobian is an M-matrix. An illustration and
comparison of these methods with their serial versions is given. The speed-up on the Denelcor HEP parallel
processing computer is also recorded.
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Key words. multisplitting, parallel nonlinear Gauss-Seidel algorithm, parallel Newton-SOR algorithm

1. Introduction. In this paper we discuss parallel algorithms (algorithms whose
parts may be executed simultaneously) for the problems:

(1) Au+¢(u)=f where
A is an M-matrix,
& (u) = (d;i(u;)) with ¢;:R—>R being continuous and nondecreasing,
u, ¢(u), feR™.
(2) F(u)=0 where
F:RN >R"N,
F'(u)=(F,,(u)) is an M-matrix.

The importance of parallel algorithms is that on computers with parallel architec-
tures convergence may be obtained in a shorter time than on serial computers. The
main thrust of this paper is the development and study of two parallel algorithms
which may be used to approximate the solutions to (1) and (2). The first algorithm
(see (8)) generalizes the nonlinear Gauss-Seidel method. The second (see (16)) general-
izes the Newton-SOR method. We briefly describe these two serial methods.

The serial version of the nonlinear Gauss-Seidel algorithm for the approximation
of the solution of (1) is

3) u'=r;"(w) where
w=fi—Y au]"' =Y azu},
j<i j>i

ri(z)=auz+ ¢i(z)=w,
z=r;"(w) =the inverse function of r,(z).

Under the conditions in (1) the iterative scheme in (3) converges to the unique solution
of (1) (see J. M. Ortega and W. C. Rheinboldt [6] and [7]).
The classical Newton method for approximating the solution of (2) is

(4) un+1=un__F:(un)—1F(un),
* Received by the editors February 14, 1984, and in revised form September 15, 1984.
1 Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27695-8205.
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or,
un+1 =y" _un+l/2 where Fr(un)un+1/2= F(un)‘

If F'(u) is an M-matrix, then F'(u)= B(u)— C(u), where B(u)= D(u)— L(u) and
C(u)= U(u) is the Gauss-Seidel splitting, is a regular splitting. In this case we have
p(B(u)"'C(u))<1, and hence

F'(u)™'=(B(u)-C(u)™
(B(u)(I=B(u)"'C(u)))™

oo

ZO (B(u)™'C(u))"B(u)™".

m=

Then we may approximate F'(u) by truncating this series. This gives an approximation

of u™*'? and, consequently, generates the serial version of the Newton-SOR method
(5)
M(n)—1
u=u"— Y (B(u")'C(u"))"B(u") 'F(u") where, for example, M(n)=2".
m=0

In [6], [7] and A. Sherman [10] it was shown if F'(u) = B(u)— C(u) is a weak regular
splitting of the M-matrix and other conditions, then the algorithm (5) will converge.
Furthermore, in [10] an error estimate was given (see (17) in Theorem 3).

There have been a number of papers dealing with parallel algorithms for linear
problems. One of the first papers was by F. Robert [8] where a parallel algorithm
based on a block iterative method was studied in the context of M-matrices. V. Conrad
and Y. Wallach [2] have introduced an algorithm which was studied in terms of strict
diagonal dominance. L. J. Hayes and P. Devloo [3] have recently used an overlapping
block iterative method. This is similar to the schemes studied in D. P. O’Leary and R.
E. White [5]. Some of this work is summarized in § 2 in this paper. Other parallel
algorithms for linear problems are described in R. W. Hockney and C. R. Jesshope
[4] and in A. Sameh [9].

In § 2 we review the results in O’Leary and White [5] on multi-splittings and
parallel algorithms for linear problems. Section 3 contains the parallel nonlinear
Gauss-Seidel algorithm, and § 4 has the parallel Newton-SOR algorithm. The last
section contains an illustration and comparison of these algorithms to a problem which
evolves from a semilinear elliptic boundary value problem.

2. Parallel linear algorithm. Let S={1,- .-, N} correspond to the nodes of the
algebraic problem Au=feR". Suppose the nodes are grouped into K blocks where
S =the union of S, with k=1, - -, K. These blocks may be overlapping and usually
evolve naturally from the problem which generated the algebraic system. For example,
if Au=f comes from a partial differential equation on a rectangular grid, then the
blocks may correspond to the rows or columns in the grid. Another example is from
the finite element method where the blocks consist of the element nodes from groups
of elements.

Often these blocks generate either a sequence of splittings of A

A=Bk—Ck, k=1,"',K
or, a decomposition of A

A= Ak.

1

™=
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In the latter case we may also generate a sequence of splittings of A by defining
B, = A+ E;
where E; is a nonnegative diagonal matrix
Ci=—-3) A+E.
j*k

If each B! exists, then we can define the algorithm
u" = B'Cu"+ Bi'f with u"=u*".

Because B, emphasizes the components of A which are relevant to the nodes in S,
this iterative scheme may converge very slowly. In order to accelerate the convergence,
we introduce the weighting nonnegative diagonal matrices D, where = D, = I. (We
will use the notation = =Y ¥_,.) Then we may weight each u*"*' and compute the sum
as

un+l = EDkuk’”“.

This leads us to state the following definitions.
DEFINITION. (B, C\, D) is called a multi-splitting of A if and only if
i) A=B,—C, where each B;' exists,
ii) 2 D, =1 where each D, =nonnegative diagonal matrix.

PARALLEL ALGORITHM. Let (B, C;, D,) be a multi-splitting.

(6) u™'=(2 DB;'Cu" + (2 DB )f
=Hu"+Gf where H=X DB;'C, and G=3 D,B;".

Remarks. 1. We may use a SOR parameter to accelerate convergence
(6.1) u" ' =(1-w)u"+w(Hu" + Gf).

2. By using the properties of a multi-splitting we may write (6) as
(6.2) u"'=u"-G(Au" -f).
Or, if the SOR parameter is used, then (6.1) becomes

(6.3) u" ' =u"—-wG(Au" - f).

3. The terms in algorithm (6) may be computed simultaneously; hence, we call
this a parallel algorithm.

In order to obtain convergence of (6), we must have p(H) <1. This is, in general,
not true (see the example in [5]). Three different types of conditions (M-matrix,
symmetric positive definite, and norm) each will essentially imply convergence of (6).
These conditions are precisely stated in [5], but we restrict this paper to the M-matrix
condition. Recall that an M-matrix A = (a;) is defined by the properties a; =0 for i # j
and A™'=0. Also, A= B— C is called a weak regular splitting of A when B™'=0 and
B7'C =0. These two definitions are important because any weak regular splitting of
an M-matrix implies p(B™'C)<1.

THEOREM 1. If A is an M-matrix and A= B,—C, k=1, - - -, K are weak regular
splittings of A, then p(H) <1.
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Examples. 1. Let K =2 and N =2.
2 -1 2 0 0 1
A"(—l 2) (—1 2)‘(0 0)_BI_C‘
2 -1 00
“(0 2)'(1 0)"BZ'C2'

_ 0 3 _ 10
BI‘C1=(0 ;) and lecz=(; 0).
When
1 0 0 0
D,—(O 0) and Dz—(o 1),
then
0o 3 X
H=\, and p(H)=3.
5 0
When
0 0 1 0
D,—(O 1) and Dz—(o 0),
then
10
H=(4 1) and p(H)=1}
0 2
When
10
D=(2 )=D,
1 0 % 2
then

[l

) and p(H)=3.

2. Let A=D—L— U where D is a diagonal matrix, L is the strictly lower matrix
and U is the strictly upper matrix. Let A= (a;) be an M-matrix and S, be blocks of
nodes where k=1, - - - | K. Define the strictly lower submatrix

L _{—-a,j, j<iandijes,
k- 0, otherwise.

Let A=(D—L;)—(U+ L-L,)= B;,— Ci (see Fig. 1). Clearly, these are weak regular
splittings of A. Also, if K =1 and L, = L, then this is the Gauss-Seidel splitting; if
K =1 and L, =0, then this is the Jacobi splitting. Further, we restrict D,:

Let d* be the ith diagonal component of D,.

Require d¥=0if i¢ S

Notation. Let b; be real numbers,

2%, = the sum with respect to j# i and j£ S,
27 b; =the sum with respect to j<i and je S,

3*b, = the sum with respect to j>i and j€ S,
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Fig. 1. D, L, U and L,.

Then the parallel algorithm (6) may be written in component form as

+1 __ 0 n - k,n+1 +
uf’" —[f;—z aijuj —2 aijuj" ‘_2 a,-ju}']/a,-,-,
Wit =Sdkubn,

(7)

This will be generalized to the parallel nonlinear Gauss-Seidel algorithm which will
be discussed in the next section.

3. Let A=2A; and B, = A, + E, where E, is a diagonal matrix with components
ef. When C,= B, —A, then we have a sequence of splittings of A. This type of
decomposition arises when A, reflect rows or columns of grid points for a domain of
a partial differential equation. The diagonal matrix is added to A, so that each Bj'
exists. Under the assumptions

i) 0= —-aﬂ;é —a; i#jand A= (aﬁ;),

i) e¥+ak>— ak

iii) ef+ak> a,
it was shown in [5] that for any weighting matrices D, the conditions of Theorem 1
hold. The essential properties of this type of decomposition are given in the following
definition, and it will be used in the discussion of the parallel Newton-SOR algorithm
in § 4.

DEFINITION. Let A, A, E.and D, be square matrices. (A, E,, D) will be called
a convergent dissolution of A if and only if

i) A=3A,,
ii) E,, D, =0 are diagonal matrices,
iii) (B4, Ci, Dy) is a multi-splitting of A where

AL i

Bi=A+E.and C,=E, -} A,
j#*k
iv) p(H)<1 where H=3XD,B;'C,.
Remark. If K =1, then any weak regular splitting of an M-matrix will be a
convergent dissolution. The reader should consult A. Berman and R. J. Plemmons [1]
as a general reference on M-matrices and splittings.

3. A parallel nonlinear Gauss-Seidel algorithm. In this section we consider the
nonlinear algebraic problem (1). We assume A is an M-matrix, ¢;(u) are continuous
and nondecreasing. When ¢(u) =0, then we may apply the special parallel algorithm
(7). If ¢(u) #0, then we could apply the serial algorithm (3). The following algorithm
is a combination of (3) and (7). We shall use the same notations as in the description
of algorithm (7).
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PARALLEL NONLINEAR GAUSS-SEIDEL ALGORITHM. Let S={1,:-:-, N}=the
union of S,. Let r(z)=a;z+ ¢;(z)=w and r;'(w)=z Assume 2d¥=1, d*=0 and
df=0for i¢ S* Let i€ S,.
ur™'=r7"(w;) where w,=f,—2%au} -3 auf" - au’,
utl+l = Zd(cul.c,n+l

(8)

An SOR parameter may be used as follows
(8.1) it =(1-wyul + wEdfubm,

THEOREM 2. Let A be an M-matrix and ¢;:R - R be continuous and nondecreasing.
Then algorithm (8) converges to the unique solution of (1).

Proof. By [7, Thm. 13.1.5], problem (1) has a unique solution and the serial
algorithm (3) converges to the solution. Let 0= L, = L be the lower triangular matrix
associated with the block S, (see § 2, Ex. 2, in this paper). Then the M-matrix A has
the multi-splitting

A=(D—Lk)"(U+L_Lk)=Bk_Ck,

and for each k this is a regular splitting of A. Since A is an M-matrix, the assumptions
of Theorem 1 hold, and hence p(H) <1.

The argument that follows is similar to the serial case in [7]. Since a; >0 and
¢;(z) are continuous and nondecreasing, then r;(z) are continuous and strictly increas-
ing. Also, the following important inequalities are valid

aq|z—z7|=|r(z)—r(z7)],

9

aiilri—l(w) —r{(w7)|= [w—w"|.

We use the notation for feR"N that f=(f;) where f; =[f]; =the ith component of f.
Then (8) may be written as

(10) ubmt = "Y(w,) where w,=[f+(U+L-L)u"+ Lau*"""].
Let u be the solution of (1) and use the fact that ( By, C;, D) is a multi-splitting to obtain
(11) w;=r;'(w;) where w7 =[f+(L+ U - L,)u+ Lu),.

Then lines (9), (10) and (11) combine to give
alue™ ' — | =|[(L+ U~ L) (u" — u)+ L (u*"*" — )]
=[(U+L-L)|u"—u|);+[Lc]u"""" - u|];
where U+ L—L,, L, =0. Or, (12) in matrix form is, for i€ S,
(13) [(D-L)lu"" " ~ul];=[(U+L-L)|u" - u|l.

(12)

Let m¢ S, and note that the mth row of D — L, has only one nonzero component,
namely, the diagonal component. Consequently, (13) may be written as, for i€ S,

(14) lue™* —u|=[(D - L) (U+L-L)|u" - ul]:
Since for i€ S, and =d¥ =1, we have from lines (8) and (14)
luf ™ —u =Edﬂ“?’"+l—“i|
(15) =[EDBi'Cilu" —ul];
=[H|u" —ul].
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Note (15) is independent of k, and by mathematical induction we have

|u"' —u|=H|u" —u|

=H"|u'—u|.
Since H=0 and p(H) <1, algorithm (8) converges to the solution of (1).

4. Parallel Newton—-SOR method. Let F:R™ >R" and F;:RY >Rfori=1,---, N
be the component functions of F. Let F'(u)=(F, (u)) be the N XN Jacobian, the
derivative matrix, of F. Consider problem (2) and suppose F(u) =3F*(u) = (ZF¥(u))
is a decomposition of F(u). For example, if F(u)=Au—f and A=3A* then define
F'(u)=A'u—f, and F*(u)= A*u for k=2, - -, K. In this case algorithm (6) has the
form

u"'=u"-wG,F(u") where
G,=3XD.B,(u")™"' and
B.(u™)= (F*(u")+ Eu")'.
Remarks. 1. If K=1, w=1.0 and E, =0, then B,(u")= F'(u") and we retrieve

Newton’s method.
2. Bi(u")7" can be viewed as a crude approximation of

F'(u™)™ = (Bi(u")(I - Bi(u") "' Ci(u™)) ™!
=( Z=O(Bk(u”)"‘Ck(u"))"') Bi(u")™".

If the series is truncated after m =0, then F'(u")™'= B, (u")™".

DEeFINITION. Consider the nonlinear problem (2). A parallel Newton-SOR
algorithm for approximating the solution is given by (16). Let F(u)=3XF"(u) and let
F'(u) =B, (u)— Ci(u) for k=1, - -, K be a weak regular splitting of A where B, (u)
may be defined as (F*(u)+ Exu)'. Let 0=m=M(m)—1, e.g. M(m)=1 or m or 2",

By = B (u"),

Cin=C(u"),

fu=F(u") = (Ben— Cin)u" = F(u") — F'(u")u",
Foy(u)= (Bn— Cin)utfu=Fu")+ F'(u")(u—u"),

n+1,0 __ n

u u”,

(16) un+1,m+IE un+l’m—'WEDkBEI”F”(u”-H’m),

u"tt=y" MM where 0=m=M(n)—-1and 1=w<2.

Notation. The iteration in (16) with respect to m will be called the inner iteration.
The iteration with respect to n will be called the outer iteration. The total number of
inner iterations for n outer iterations is Z"m___lo M (m). In particular, when M(m)=2",
then the total number of inner iterations is 2" —1.

Remarks. 1. If M(n)=1 and F(u)= Au—f, then (16) is (6).

2. If M(n)> 0, then we are just using a higher order approximation of F'(u")™".

3. If M(n) is large, then there will be a smaller number of function evaluations.
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4. If F,(u™"™)=0, then u"*"" =u"—F'(u")"'F(u") is just the next Newton
iteration. Since this is the ‘“best” one can hope for, the inner iteration should be
terminated.

Theorem 3 establishes the convergence of algorithm (16) and gives estimates on
the rate of convergence. In particular, line (17) implies superlinear convergence when
M((n) - co. The proof of Theorem 3 is nearly identical to the proof given in A. Sherman
[10] where K = 1. The asumptions used in this paper are similar, and assumptions 1,
2 and 3 are identical to Sherman’s first three assumptions. The choice of norm and
constants ry, - - -, rs will be explained in the sketch of the proof.

Assumptions. Let F: R->R"™ with R<R" bounded. Let u*€ R and F(u*)=0.

1. F is differentiable on So={u: ||u —u*|| < ro}.

2. F'(u) is nonsingular at u = u*,

3. There exists an L> 0 such that for ue S,

I1F'(u) = F'(u*)|| = L||u — u*|.

4. F'(u)=2A(u) = B (u) — C(u) where
Bi(u)=A(u)+E, and Ci(u)=-Y A;j(u)+Ex.
jk
5. Assume for k=1, - -, K B,(u) are nonsingular at u = u*.
6. (A(u*), E,, D,) is a convergent dissolution of F'(u*).
7. For k=1, - -, K there exist L, >0 and r;> 0 such that for
ueSs={u: |lu—u*||<rs}
we have

| Bi(u) = B (u™)|| = Ly ||u — u*|.

THEOREM 3. Let assumptions 1-7 hold and F(u*)=0. Let M (n) be positive integers
and define

m~ =max [{1, M(O)}U{M(n)-"i1 M(D):n=1,2,--- }]
=0

If m~ < oo, then there exist an r> 0 and ¢ <1 such that foru®e S={u—u*||<r}, w=1.0
and u""" given by (16) we have
an e B

Sketch of the proof. We simply show that Theorem 3 falls into the context of
Sherman’s theorem. The first step is to show that algorithm (16) has the form given
in Sherman’s paper where H(x) is replaced by H, = 2D, B;,,C; , and B(x) " is replaced
by G,=2D,Bj.. Consider (16) with 0=m = M(n).

u" =y G (B = Cin)u™ T+ )
=y I D (u"T T = Hy w4 B, Hin=Bi»Crn
=H,u""""'=G,f,
=H,(Hu""" 2 ~G,f,) -G,

m—1
=Hyu"- Y H,G,f,.
=0
Let m= M(n).
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M(n)—-1

(n
un+1,M(n)=HnM(n)un_ z HLan;‘
1=0

M(n)—1

=u" - Z H.[(I-H,)u"+G,f,]

M(n)—-1
=u"— Y HLED(I-BihCin)u"
1=0
+2DkB£ln(F(un)—(Bk,n—Ck,n)un)]
M(n)—-1

=u"— Y H,[EDBi,F(u")]

=0

M(n)—-1
(18) =y" - IZ H.G,F(u").
Line (18) has the same form as line (2.6) in A. Sherman [10].

The second step is to discuss assumptions 4, 5, 6 and 7. The choice of rs in
assumption 7 is to be smaller than ry, - - -, r, which are now defined. (Their existence
is referenced in [10].). ri=r, is deﬁned so that F’'(u) is continuous and nonsingular
on S, ={u: |u—u*| <r}. r,=r, is defined so that on S,={u: ||u —u*| <r,} Newton’s
method converges Q-quadratically. r;=r, is defined so that each B,(u) is continuous
and nonsingular on S;={u:|lu—u*|<r;}. Since assumption 6 holds, we have
p(H(u*)) <1. Consequently, there is a norm |-| such that |[H(u*)|<1. Adjust
ro, * - -, I3 so that the above results hold for this new norm. By a theorem in Ortega
and Rheinboldt [7, pp. 350-351] there is a r, = ry such that for u € Sy;={u: |ju —u*|| <ry}
and u"*! given by (18), i.e. (16), converges to u*.

The third step is to establish the error estimate in (17). A careful inspection of
Sherman’s proof yields that it remains only to show the following:

There exist an L*>0 and a suitable neighborhood of u* such that for u in this
neighborhood we have

(19) () —H(u*) || = L*||u — .

Since Assumptions 3, 4 and 5 hold, By (u)~ Ck(u) I — B,(u)"'F’(u) is continuous in
a neighborhood of u*. Hence, H(u) =2D,B;(u) ' Ci(u) is continuous in a neighbor-
hood of u*. Assumptions 4 and 5 imply || Bi(u)”"| is uniformly bounded in some
neighborhood of u*. Assumptions 3 and 7 imply Ci(u) is Lipschitz continuous in
some neighborhood of u*. Consequently, for u in some neighborhood of u* there
exists L¥ such that

| Bu(1) ™ Cul() = Be(u®) ™ Ce(u®)|| = Ll — w¥|.

Thus, (19) must hold for some L* and u in some neighborhood of u*. This completes
the sketch of the proof.

5. Numerical examples. In order to illustrate and compare the above algorithms,
we consider the algebraic problem which evolves from a semilinear elliptic partial

differential equation. The following problem is discretized by using the finite difference
method.
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— (K u.)x — (Kou,), =—ge* onQ,
u=x>+y> ondQl where
K,=1+x+)?,
K,=1+e*+¢’,
g=202+3x*+y*+ e +(1+y)e’)e >
chosen so that u = x*>+ y” is the unique solution,
Q=(0,1)x(0,1)~[3,3]1x[3,3 (see Fig. 2),
Q) =boundary with two parts.

In the finite difference method a rectangular grid is used with Ax=Ay=1/nd =h
where nd = the number of nodes in each direction. Unless otherwise indicated all the
computations are for nd =9. If nd =9, then the number of unknowns is 9> —3>=72;
if nd = 19, then the number of unknowns is 19°— 5> =336. If K =1, then the algorithm
must be serial ((3) or (4) or (5)). If K =24 (for nd =9), then the blocks are from the
12 rows and the 12 columns. In this case the numerical scheme is a variation on the
ADI method. If K =4, then the blocks are similar to the block S; whose 21 nodes are
given by the dots in Fig. 2. The weighting matrices are given by d¥=1/NK where NK
is the number of elements in the set {k: ie S, k=1, - -, K}. In all the computations
convergence was defined by the I, error < h’.

10

FIG. 2. Q with nodes of S,.

Table 1 indicates the number of iterations needed for convergence of the serial
algorithms. The Newton and Newton-SOR computations were taken from A. Sherman
[10]. In order to compare the serial and the parallel algorithms’ computing times, one
must consider (i) the operations for each serial iteration, (ii) the operations needed
for each parallel iteration divided by the number of blocks, (iii) the number of iterations
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TABLE 1
Serial algorithms

Algorithm K w Number of iterations
Newton (3) 1 1.0 2
Gauss-Seidel (4) 1 1.2 33
Gauss-Seidel (4) 1 13 27
Newton-SOR (5) 1 1.4 3 outer (7 inner)

needed for convergence, and (iv) the overhead time for the parallel computer. Unfortu-
nately, the latter significantly depends on the particular computer (see R. W. Hockney
and C. R. Jesshope [4]). The results which are summarized in Tables 2-4 do not
indicate the parallel overhead; they were computed on a serial computer. Table 5
contains some results obtained on the Denelcor HEP computer at Argonne National
Laboratory.

Table 2 contains the iteration counts for the parallel nonlinear Gauss-Seidel
algorithm (8). Note that the iteration count for K =4, w=1.3 is less than the serial
nonlinear Gauss-Seidel algorithm (3) for K =24 and w=1.3.

TABLE 2
Parallel nonlinear Gauss- Seidel

K w Number of iterations
24 1.0 70
24 1.2 58
24 1.3 132
4 1.0 29
4 1.2 23
4 13 21
4(nd =19) 1.3 109

Table 3 lists the iterations needed for the parallel Newton-SOR algorithm (16)
to converge. In both cases M(m)=2", and so the total number of inner iterations is
2" —1 where n =the number of outer iterations.

TABLE 3
Parallel Newton-SOR

K w Number of iterations
24 1.3 4 outer (15 inner)
48(nd =19) 1.3 7 outer (127 inner)

Table 4 illustrates the superlinear convergence which is indicated by (17) in
Theorem 3 for the parallel Newton-SOR method with w=1.0. In this table nd =9,
K =24, M(m)=2" and w=1.3.

All the above results were simulated on a serial computer, and they only measure
the convergence of the algorithm with no parallel overhead. The following numerical
experiments were done on the Denelcor HEP multiprocessor at the Argonne National
Laboratory. This particular machine consists of one process execution module (PEM)
and simulates independent processors by pipelining instructions. The maximum
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TABLE 4
Convergence rate for parallel Newton-SOR

n = outer iterations I, error
1 3.90
2 1.64
3 2.97x107!
4 9.51x1073

effective use of this machine normally occurs when 8 to 12 processes are executing
concurrently. We consider the same partial differential equation, but we changed the
domain to Q = (0, 1) X (0, 1) (with no hole). This was done so that we could experiment
with equal blocks where K =1, 2, 4, 8, 16. The convergence criteria was changed to
the relative error being less than 0.0001 at each node. In order to measure the
convergence of the algorithm and to measure the parallel overhead of the HEP, we
introduce the following parameters.

Parallel Algorithm Index (PAI)= (I, X U,)/ (I, X Uy)
I, = iterations needed for convergence with k equal blocks
U, =unknowns in each equal block.

Speed Up (SU)= E,/ E,
E, = execution time for serial algorithm with no parallel code
E, = execution time for parallel algorithm with k blocks.

Since the blocks are equal, the products in PAI reflect the amount of work being done
by each processor. When PALI is greater than 1.0, a savings in computing time by the
parallel algorithm is indicated, provided the parallel overhead is ignored, i.e. the
parallel overhead is assumed to be zero. The SU reflects both the convergence of the
parallel algorithm and the parallel overhead. Thus, the difference PAI—SU may be
viewed as a measure of the parallel overhead. For K =1, 2, 4, 8, 16 these values are
tabulated in Table 5. The rapid increase of PAI—SU when K goes from 8 to 16 results
from the HEP at Argonne only being able to simulate 8-12 independent processors.

TABLE 5
PAI and SU
K Iter. for conv. PAI SU PAI-SU
1* 57 1.0 1.0 0.0
57 1.0 0.999 0.001
2 58 1.769 1.617 0.152
4 63 2931 2.337 0.594
8 69 4.461 2915 1.546
16 70 7.329 2919 4.410

* means that there is no parallel code
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BALLOTING LABELLING AND PERSONNEL ASSIGNMENT*

W. D. WEIt, Y. Z. CAI4, C. L. LIU§ AND A. M. ODLYZKOY

Abstract. A personnel assignment problem is formulated as a problem of embedding a partially ordered
set into another one. In this paper, an optimal solution to a special case in which the partially ordered sets
are trees and forests is presented. Also, a related enumeration problem is studied.

Key words. combinatorial optimization, matching, balloting sequences

1. Introduction. The following problem was studied in Megiddo and Tamir [1]:
n =2m airplane pilots, linearly ordered by seniority, are to be divided into m teams
each of which consists of a captain and a first officer. It is stipulated that the captain
must have seniority over the first officer in each team. For each pilot, there is a measure
of her effectiveness as a captain and a measure of her effectiveness as a first officer.
We seek an assignment of the pilots that will maximize the total measure of effectiveness.
Although the problem can be stated as a problem of maximum matching, it can also
be formulated in a more general setting.

Let (T, =) be a set of personnel ordered by the partial ordering relation =. Let
(P, =) be a set of positions ordered by the partial ordering relation =. We assume that
|T|=|P|. An assignment ¢ is a one-to-one cosrespondence from T to P. An assignment
¢ is said to be feasible if p, = p; implies that ¢ '(p;) = ¢ ~'(p;). The positions in P are
divided into r types, type-0, type-1, - - -, and type-(r-1). Let h be a function from P to
{0,1,2,- -+, r—1} such that h(p;) specifies the type of p. Let fo,f1, -, f,_1 be r
functions from T to the reals such that f;(#) is a measure of t;’s effectiveness when ¢
is assigned to a type-j position. Consequently, the total measure of effectiveness of an
assignment is given by
(1) L Fhesan(t)-

€T

In such a formulation, the problem of dividing pilots into m teams stated above
is a special case in which (7, =) is a linearly ordered set where = is the linear ordering
relation according to seniority, (P, =) is that shown in Fig. 1, and there are two types
of positions corresponding to that of a captain and that of a first officer.

F1G. 1

The problem of determining a feasible assignment that maximizes the total measure
of effectiveness is an NP-complete problem, as a matter of fact, even when (T, =) is
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restricted to be a linearly ordered set and the value of r is restricted to 2 [2]. In [2],
the case when (T, =) is a linearly ordered set and (P, =) belongs to a special class of
partially ordered sets was studied. In this paper, we study a special case in which
(T, =) is a tree.

2. An assignment problem. Let (7, =) be a rooted tree. Let (P, =) be as shown in
Fig. 2. Namely, (P, =) is m copies of a rooted tree that has an internal node (the root)
and k leaves. The positions corresponding to the roots are type-1 positions, and the

1 1 1

F1G. 2

positions corresponding to the leaves are type-0 positions. Let g be a function from
T to the reals such that

g(t:)=fi(t) —fo(t:).
Then the expression in (1) can be rewritten as

Y g(t)+X folt).
h(o () =1 ‘

Consequently, an optimal feasible assignment is one that maximizes the quantity

z g(t).
t
h((1))=1
Given (T, =) and (P, =), (T, =) is said to be feasible if there exists at least one
feasible assignment ¢ from T to P. Clearly, our optimization problem is meaningful
only when (T, =) is feasible. We now proceed to show how to determine whether
(T, =) is feasible, and if so, how to determine an optimal feasible assignment.
Given a tree (T, =) we assign to each node two numbers as follows:
(i) For a leaf t, p(t)=—k, q(t)=1.
(ii) For an internal node ¢t
p)= ¥ q(v)-k
visasonoft
p(t) if p(1)=0,

q(‘)={p(t)+k+1 if p(1) <0.

A node is said to be a negative node if p(t) <0. A node is said to be a nonnegative
node if p(t)=0.

LeEMMA 1. For any t, q(t)=0.

Proof. The lemma is obviously true for a leaf . Inductively, for an internal node
t, since q(v) =0 for every son of ¢, p(t) = —k. It follows that g(¢)=0. 0O

Let (T, =) be a tree, and ¢ be any node in T. We use T, to denote the subtree of
T rooted at t. Let N(T,) denote the total number of nodes in T, and N,(T,) denote
the total number of negative nodes in T, We have

LeMMA 2. For any node t in T,

N(T) =k N(T) +4(0)]
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Proof. According to the definition,
q(t) = —k*(number of leaves in T,)
—k* (number of internal nodes in T,)+(k+1)* N,(T,).
That is,

(k+1)* Ny(T;) = k* N(T,) +q(1). o

A (0, 1)-labelling of (T, =) is a mapping from T to {0, 1}. Let ¢ be an assignment
from T to P. We use h¢ to denote the (0, 1)-labelling of (T, =) such that h¢(t;) =
h(¢(t;)). heo will be referred to as the (0, 1)-labelling of T induced by ¢. We have

LEMMA 3. Let ¢ be a feasible assignment from T to P. Then, for the (0, 1)-labelling
he, in any subtree T, the number of 0’s in T, is larger than or equal to k times the number
of I'sin T,

Proof. The lemma follows immediately from the fact that ¢ is feasible. 0O

LeEMMA 4. Let ¢ be a feasible assignment from T to P. Then, for the (0, 1)-labelling
he

(i) The number of 0’s in T is equal to k times the number of 1’s in T.

(ii) For any subtree T,, the number of 0’s in T, is larger than or equal to the number
of negative nodes in T,.

Proof. (i) is obvious.

(ii) can be proved by induction. If ¢ is a leaf, clearly, (ii) is true. Inductively, let
t be an internal node. If ¢ is a nonnegative node, since (ii) is true for all subtrees
rooted at the sons of ¢, (ii) is also true for T,. If ¢ is a negative node, let us examine all
subtrees rooted at the sons of . If in any one of these subtrees, (ii) is satisfied with
strict inequality, that is, the number of 0’s in that subtree is larger than the number of
negative nodes in that subtree, then (ii) is true for T,. On the other hand, consider the
case in which in each subtree rooted at a son of ¢, the number of 0’s in that subtree
is equal to the number of negative nodes in the subtree. If h(¢ (7)) =1, we have

number of O’sin T,= )  number of 0’s in T,

visasonof't

= z Nl(Tv)

visasonoft

——‘-—[k* Y ON(T)+ % q(v)].

k+1 visasonoft visasonoft

But p(t) <0 implies that

Y q(v)<k
visasonoft
Thus,
number of 0’s in T<——1——[k* ¥ N(T)+k]——£—N(T)
! k+1 visasonoft v - k+1 !
or

number of 0’s in T, < k*(number of 1’s in T,),

contradicting Lemma 3. Thus, we must have h(¢(t))=0. In that case, (ii) follows
immediately. 0O
We have now a criterion for (T, =) being feasible.
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THEOREM 1. (T, =) is feasible if and only if q(t) =0 where t is the root of T.
Proof. Suppose (T, =) is feasible. Let h¢ be a (0, 1)-labelling induced by a feasible
assignment ¢. According to Lemma 2 and (ii) in Lemma 4,

1
number of 0’s in T= N,(T) =7c—+—1[k* N(T)+q(1)].
On the other hand, according to (i) in Lemma 4,

k
ber of 0’s in T=——N(T).
number of 0’s in P (T)
It follows that q(t) =0.
On the other hand, we shall show inductively that (7, =) is feasible if q(¢)=0.
Let v,, vy, - * +, v; denote the sons of ¢ According to the definition,

q(v)+q(v)+- - -+q(v)=k

For 1=j =i, we show how we shall choose g(v;) nodes from T,. We shall first
remove from T, any subtree rooted at a node with the value of its g-function being
0. Note that the removal of such subtrees does not alter the value of the g-function
at each node. It follows that we can always find a path from v; to a leaf in the resultant
tree such that the value of the g-function at every node in the path is larger than 0.
Removal of this leaf from the tree will reduce the value of the g-function of every
node in the path by 1 and will not alter the value of the g-function of the other nodes
in the tree. Such a step can be repeated g(v;) times until the value of the g-function
at u; becomes 0. Now, by the induction hypothesis, all subtrees rooted at nodes with
the value of their g-functions being 0 are feasible. Furthermore, the root ¢ of T, together
with the q(v;)+q(v,)+-+-+q(v;) =k nodes removed as described above, can be
assigned to a rooted tree with k leaves. [

Let p be a (0, 1)-labelling of (T, =). p is said to be a balloting labelling' of (T, =)
if according to p

(i) The number of 0’s in T is equal to k times the number of 1’s in T.

(ii) For any node ¢, the number of 0’s in T, is larger than or equal to the number
of negative nodes in T,

LEMMA 5. Let p be a balloting labelling of (T, =). Then there is a feasible assignment
& from (T, =) to (P, =) such that ho is equal to p.

Proof. Let t be any vertex in T. In T,, according to the labelling p,

k
number of O’s in T, = N,(E)ETN(E).

+1
Thus
number of 1’s in T,éN(T,)——E—N(T,) =—1—-N(T,).
k+1 k+1
It follows that
(2) number of 0’s in T, = k* (number of 1’s in T,).

We now show how to construct a feasible assignment from (7, =) to (P, =) by
showing how each vertex ¢ in T such that p(¢) =1 can be matched with k vertices

! The reason for such a choice of terminology will become obvious later.
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tis b, -+, b such that p(t)=p(t,)="-=p(t)=0 and t=t,t=t,, -, t=t. We
use the following algorithm:
(i) Initially, all vertices in T are unmarked.
(ii) Let t be a vertex in T such that ¢ is unmarked, p(¢) =1, and T, contains no
other vertex ¢’ such that ¢’ is unmarked and p(¢')=1.
(iii) According to (2), there are k or more unmarked vertices in T,, t;, t,, - -, &
such that p(t,) =p(t,) ="+ -=p(t)=0. Match ¢ with t,, t,, - - -, t;, and mark
t, tl, t2, cry, tk'
(iv) Repeat (ii) and (iii) until all vertices in T are marked. 0O
Lemmas 3 and 4 form the basis of an algorithm for determining an optimal feasible
assignment from (T, =) to (P, =), since a balloting labelling of T, p, that maximizes

the qual’ltity
P t,~ ti

will yield a (not necessarily unique) optimal feasible assignment. We use the following
algorithm to determine such a balloting labelling p.
(i) If t is a leaf, set p(t) =0, and mark t.
(ii) Let t be a negative internal node such that in T, there are no unmarked
negative nodes. Among all nodes in T, that have yet not been labelled by p,
choose a vertex v such that

g(v)= min  g(s),
t;isnotlabelled
label p(v) =0, and mark t.
(iii) Repeat (ii) until all negative internal nodes are marked.
(iv) Label all remaining nodes with 1.
As an illustrative example, consider the tree (7, =) shown in Fig. 3a, where the

number associated with each node ¢ in T is the value of g(t), and the forest (P, =)
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shown in Fig. 3b, where the number associated with each node p in P is the type of
position p. Fig. 4a shows the value of p(t) at each node. Fig. 4b shows the (0, 1)-labelling
h¢ corresponding to an optimal feasible assignment ¢.

(=]
(=]
(=]
(=]

FiG. 4

3. An enumeration problem. A balloting sequence is a sequence of equal numbers
of 0’s and 1’s such that in any prefix of the sequence the number of 1’s is larger than
or equal to the number of 0’s. Equivalently, in any suffix of a balloting sequence the
number of 0’s is larger than or equal to the number of 1’s. We generalize the notion
of a balloting sequence to that of a balloting labelling of a tree. In particular, we are
interested in counting the number of balloting labellings of a rooted, regular, full k-ary
tree T. The following lemma will make it more obvious that the notion of a balloting
labelling is a natural extension of a balloting sequence.

LEMMA 6. Let p be a (0, 1)-labelling of a tree (T, =). Then p is a balloting labelling
if and only if

(i) The number of O’s in T is equal to k times the number of 1’s in T.

(ii) For any node t, the number of O0’s in T, is larger than or equal to k times the
number of 1’s in T,

Proof. The if part is almost identical to the proof of Lemma 4 (simply replace h¢
by p). The only if part was included in the proof of Lemma 5. 0O

Thus, indeed, for the case k =1, the number of balloting labellings becomes the
famous Catalan number. A (0, 1)-labelling of a tree such that only the condition in
(ii) of Lemma 6 is satisfied is referred to as an unbalanced balloting labelling.

We are not able to obtain a closed form expression for the number of balloting
labellings of a rooted, regular, full k-ary tree. However, our development in § 2 enables
us to carry out a recursive computation. We shall illustrate the computational procedure
for the case of binary trees.

Let T; denote the rooted, regular, full binary tree of height i. Let s(n, m) denote
the number of unbalanced balloting labellings of T,,,, with Ny(T,,.,)+m 0’s. Let
r(n, m) denote the number of unbalanced balloting labellings of T, with Ny(T,,)+m
0’s. Note that s(n, 0) is the number of balloting labellings of the rooted, regular, full
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binary tree of height 2n + 1. Also, note that

5(0,0)=1,
s(0,1)=1,
5(0,i)=0 fori=2,
and
s(n, i)=0, r(n,i)=0 for i<O.
LEmMMmA 7.
s(n,m)= . Y 1 r(n, my)r(n, m,)+ +Z r(n, my)r(n, my,),
r(n,m)= - Y » s(n—1,my)s(n—1, my)+ +Z s(n—=1,my)s(n—1, m,).

Proof. Note that
Ny(Tonia) =3(2°"2-1),
Ny(To) =3(22"2 1),
Ny(Tyn-1) =3(2°" - 1).

The lemma follows from examining the two possibilities of labelling the root of T,
(and T,,) with a 0 and a 1, respectively. 0O

Lemma 7 enables us to compute s(n, m) and r(n, m) recursively. For example,
we have computed:

5(0,0)=1,
s(1,0)=3%
s(2,0)=(3*+7)?
$(3,0) = (3" *7°*331)?,
5(4,0)=(3%%7"%11%331°%7417)*,
(3) 5(5,0) = (3% % 7% 11°%61%331"" %7417+ 312781459),
$(6,0) = (3% %7 7% 11" %613 331 % 7417""
*312781459° % 25953749 x 510438906725663)7,
$(7,0) = (3% % 7% %11 % 61" %331 ¥ 7417* % 312781459""
*25953749°  510438906725663> * 5% 103 * 563
*12135746036357929594641013887859237891177)?,
s(8,0) = 7.57631795308851224  10%6'*,

Let
m=0
R, (z)= Y r(n,m)z™

According to Lemma 7
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(4) S.(2z)=zR}(2)+ R3(2),

(%) R,(2)=2""[S71(2) = §7_1(0)]+ S7,(2).
Combining (4) and (5), we obtain

(6) Sa(z)=(z+1)[(1+27") S5 _1(2) —z7'S7_,(0)]).

The equation in (6) shows that
s(n,0)=s(n—1,0)[s(n—1,0)+2s(n—1,1)’=s(n—1, 0)*,
and
s(n, 0 "zs(n—1,00* """,
Therefore, s(n, 0)* " is an increasing function of n, and the limit
fim s(n, 0)*"
exists.

Using any one of the values of s(n, 0) in (3), we can obtain a lower bound of
5(n, 0). For example, we have computed:

s(n, 0) = (2.496937)*" for n=5,
s(n, 0)=(2.503241)*" for n=6,
s(n, 0) = (2.505582)*" for n=38.

On the other hand, we can also compute an upper bound of s(n, 0). From (6) we
have

(Z+ 1)’

(7 Sa(z)=

S,_,(2)* forz>0.

Applying (7) repeatedly, we obtain
[(Z+1)3]1+4+42+ +4n N0~
z

)4""‘0

Su(z)=

no(

22/3 1—4"""o - "o 22/3 z+1 4n—"no
Ry Sno(2) (1+) = Swo(2) ’

4"~ "o
S.(2)= [ 2/31 no(z)] for np=n and 0<z<1.

that is

Since from (6) we have s(n,0)=S,(z) for z>0
z4+1 4~"0714"
s(n, 0)§[( 373 no(z)) ] for no=n, 0<z<1.

If s(n,0) is known for 0=n=n,—1, then (6) enables us to compute S, (z) for
any given z>0. For ny=6 and z=3%10"" we obtain

s(n, 0) = (2.505992)*"

for n=6. Using the numerical values in (3) for s(n, 0) for n=0—5, we confirm that
the bound is actually valid for all n=0.
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For no=9 and z=2.5%10"*, we obtain a slightly tighter bound.
s(n,0)=(2.505786)*",  n=0.

4. Remarks. The problem studied in this paper can also be formulated as a matroid
optimization problem. For a rooted tree (T, <) and any integer k>0, let ¥ denote
the family of all subsets F of T such that for every node te T, k-|T,N F|=|T,- F|
where T, is the set of all nodes in the subtree rooted at ¢. (Note that in the terminologies
of § 2, each subset F corresponds to a (0, 1)-labelling of T in which the nodes in F
are labelled 1.) It is not difficult to show that % is the family of independent sets of
a matroid on T. Thus, our optimization problem becomes that of finding a maximum
weight independent set of size |T|/(k+1), which can be solved using the “greedy”
algorithm for matroids. (We are grateful to a referee who pointed out to us such a
formulation.)

It should also be noted that we solve in this paper only a special case of an
assignment problem. The case in which (P, =) contains trees of height larger than 1,
and the case in which there are more than 2 types of positions are unsolved. Such
cases will probably require the development of new methods of solution other than
that presented here.
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GENERALIZED BINARY BINOMIAL GROUP TESTING*

NADER MEHRAVARIY

Abstract. The conventional group testing problem is that of correctly classifying each member of a
given population as defective or non-defective. A conventional binary group test is a simultaneous test on a
subset of the population with only two possible outcomes. A "good" reading indicates that all the members of
the subset are non-defective, and a "bad" reading shows that there is at least one defective member in the
subset. The goal is to design an efficient algorithm to correctly identify all the defective members of a
population. In this paper, we introduce the idea of generalized binary binomial group testing. The
generalized group tests provide different information about the number of defectives in a group than does the
conventional group test. In particular, motivated by problems in finite-user random-access communication
systems, we investigate the following two generalized binary group tests: the so-called conflict/no conflict test
which indicates whether there is at most one defective item in a group, and the so-called success/failure test
which indicates if there exists exactly one defective item in a group. We introduce and analyze group testing
procedures for the above generalized group testing problems. The proposed procedures perform better than
the scheme of testing each item individually and the algorithms based on binary tree search methods.
Optimality of the proposed algorithms is also discussed.

Key words. group testing, blood testing, random-access communication
AMS(MOS) subject classifications: 62, 60, 5

1. Introduction. The problem of conventional group testing is concerned with
correctly classifying each of the units in a population of size M as defective or non-
defective. In the binomial group testing problem, each unit represents an independent
Bernoulli trial with probabilities p and g=1—p of being defective and non-defective,
respectively. A conventional binary group test is a simultaneous test on n units with
only two possible outcomes. A "good" reading indicates that all » units are non-
defective, and a "bad" reading shows that there is at least one defective unit among the
group. The goal is to design sequential testing procedures that minimize the expected
number of group tests. Hereafter, the above problem will be referred to as
conventional binary binomial group testing or simply conventional group testing.

Group testing was first introduced during World War II by Dorfman [1].
Dorfman introduced a method that identified all syphilitic men called up for induction
using up to 80 percent fewer blood tests than in the previously-employed method of
testing each individual. In Dorfman’s scheme, after the blood samples were drawn,
they were pooled in groups of n, whereupon groups, rather than individuals, were
subjected to the test. If none of the n individuals in the group were syphilitic, then the
test would be negative. If, however, one or more of the individuals in the group
carried the syphilitic antigen, the test would be positive. In this latter case, the
individuals in that group had to be tested individually. Dorfman computed the most
efficient group size, n, and showed that on the average, his scheme required fewer
blood tests.

Sterrett [4] improved upon Dorfman’s procedure by testing individual members
of a defective set only until a defective unit was found. (A defective set is one which is

*Received by the editors September 1, 1983, and in final revised form February 15, 1985. This paper
was typeset at AT&T Bell Laboratories, Holmdel, New Jersey, using the troff program running under the
UNIX® operating system. Final copy was produced on July 10, 1985.

YAT&T Bell Laboratories, Holmdel, New Jersey 07733.
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known to contain at least one defective item.) Then the remaining units from that
defective set were pooled and tested. This was continued until that particular defective
set was completely analyzed. Sobel and Groll [3] further generalized this idea by
testing small subsets of a defective set rather than immediately testing individual units.

In Section 2, we introduce the idea of the generalized binary group testing
problem. In particular, we describe two generalized group tests that were motivated
by problems in the area of random-access communication systems under a finite-user
model [2]. The first is referred to as the Conflict/No Conflict (CNC) test, and it
indicates whether there is at most one defective unit in a group. The second is referred
to as the Success/Failure (SF) test, and it shows whether there is exactly one defective
item in a group. Sections 3 and 4 contain the description and analysis of group testing
procedures employing CNC and SF tests, respectively. The proposed procedures
perform better than the method of testing individual items and the methods based on
binary tree search for small values of the probability, p, that an item is defective, and
adapt themselves to testing one item at a time for higher values of p. In addition, the
optimality of these procedures is discussed.

2. Generalized binary binomial group testing problem. In this section, we
introduce the idea of a generalized binary group test and formalize the corresponding
binomial group testing problem. Hereafter, we make use of the following terminology:

1. A non-defective set is a set that contains no defectives.

2. A defective set is a set that contains at least one defective item among its
members.

3. A conflicted set is a set that contains at least two defective items among its
members.

4. A binomial set is a set whose members are each defective with probability p
independently of one another.

DEFINITION 2.1. Let R(G) be the random variable representing the number of
defective items in a group G. A generalized binary group test T(a,b;G) is a
simultaneous test on group G with only two possible outcomes. A "good" reading
indicates that a<R(G)<b, and a "bad" reading shows otherwise (..,
R(G)<a or R(G)>b), where the integers a and b satisfy 0<a <b<|G|.

By choosing the integer pair (a,b), the generalized test T (a,b;G) will provide us
with specific binary group tests which provide different kinds of information. Three of
these tests that are the subject of this paper are identified below.

1. Something/Nothing (SN) Test: Let a=0 and b=0 in the definition of
T(a,b;G). The resulting test indicates whether there is at least one
defective in a group. Note that the SN test coincides with the conventional
group test.

2. Conflict/No Conflict (CNC) Test: Let a=0 and b=1 in the definition of
T(a,b;G). The resulting test indicates whether there are at least two
defectives in a group.

3. Success/Failure (SF) Test: Let a=1 and b=1 in the definition of
T(a,b;G). The resulting test indicates whether there is exactly one
defective in a group.



GENERALIZED BINARY BINOMIAL GROUP TESTING 161

The SN group testing problem that coincides with the conventional group testing
problem has been studied by many authors including Dorfman [1], Sterrett [4], Sobel
and Groll [3], and Ungar [S]. A simple procedure was proposed by Sobel and Groll
[3] for solving the SN problem that has been shown to be optimum (in the sense of
minimizing the expected number of group tests) for large values of p and to be close
to the (yet unknown) optimum strategy for small values of p. Let Hgy (M) represent
the expected number of group tests needed to classify a population of size M by using
this procedure. For the sake of completeness and comparison, the values of Hgy (M)
for M =64 have been illustrated in Figure 1 as a function of p. This procedure is
shown to be optimum for the range of p > (3—/5)/2 where the strategy adapts itself to
testing individual items [5S].

3. Conflict/No Conflict group testing. Consider the CNC group test that was
introduced in the previous section. This particular test was motivated by the following
problem in the area of random-access communication systems under a finite-user
model [2). In such systems, simultaneous transmission by two or more active
transmitters results in interference. The task is to partition a population of
transmitters into subsets so that each subset contains at most one active transmitter.
Then, granting transmission rights to one subset at a time would result in
interference-free transmission. We now want to investigate the generalized group
testing problem that was motivated by this communication problem. A CNC group
testing problem is defined as follows:

DEFINITION 3.1. A Conflict/No Conflict (CNC) group testing problem is
concerned with partitioning a population of size M into subsets such that each subset
contains at most one defective object. Members of the population are each associated
with an independent Bernoulli (p,g=1—p) random variable, where p is the probability
that an object is defective. We have at our disposal a Conflict/No Conflict generalized
binary group test T(0,1;G). The goal is to design efficient algorithms for correctly
partitioning the population.

We will consider the problem only for finite M where efficiency is defined in the
sense of minimizing the expected number of group tests needed to partition the
population. CNC group testing differs from conventional (SN) group testing since the
latter is capable of identifying the individual defective items, whereas the former is
only capable of distinguishing between groups of items with at most one defective
(non-conflicted group) and groups with two or more defectives (conflicted group). In
addition to the application of CNC group testing in random-access communication
systems, this type of group testing can be used in any industrial and/or medical setting
where the presence of two or more items (devices, molecules, cells, insects, etc.) having
the same property would be undesirable and needs to be avoided in the most efficient
way.

We now propose and analyze an algorithm for the CNC group testing problem.
The proposed procedure is in the same class as the one introduced by Sobel and
Groll[3] for the conventional (SN) group testing problem. In what follows, we use the
same definitions and terminology used by Sobel and Groll. The definitions of a
defective set, a non-defective set, a conflicted set, and a binomial set are the same as
those in Section 2. If a subset S of a conflicted set T is known to contain at most one
defective, the set T—S is called a "mystery” set. The proposed procedure has the
property that, at each step, the unclassified portion of the population is divided into a
binomial set, a conflicted set, and a mystery set. Let n and m represent the number of
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unclassified items and the size of the conflicted set at some step of the algorithm,
respectively.

Let random variables Z and V represent the number of defectives in two disjoint
binomial sets of size x and m—x, respectively. Let the random variable Y be equal to
Z+V, ie., Y represents the number of defectives in a binomial set of size m. To
describe the proposed protocol, we introduce the symbols a(x), y(x,m), 8(x,m) which
are defined as:

alx) = P(Z2>2),
y(x,m) = P(Z>2|Y>2),
6(x,m) = P(V=2|Y>2, ZL1).

These quantities can easily be expressed in terms of p,

alx) =1-¢* —xpg*™!, x>2, 3.1

>
yGem) = P(Z22|Y22) = P(Z22,Y22)

P(Y>2)
_ P(Z>2,V>0
P(Y>=2)
a(x)
pzzy _|alm T ¥ 62
“P(r>2 '
0 for x=1.
P(V>2,Y>22 Z<1)
d(x,m) =P(V22Y>2 Z<1) = (o Z<D)

_ PW>22)P(Z<L1) _ _am=x)1-ax)]
P(Y2Dl1-P(Z22|Y>22] am)ll-alx)/a(m)]
alm—x)[1—alx)]

alm) —al)  for mmx>2
- (3.3)

0 for m—x=1.

Before describing the procedure, consider the following simple fact that was given in a
more general setting by Sobel and Groll [3].
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FACT 3.1 Let a be equal to 0 and b be any integer in Definition 2.1 of a
generalized binary group test. Let S1 and S2 be two disjoint binomial sets of
objects. If a test T(0,b; SIUS2) produces a "bad" outcome and another test
T(0,b;S1) also produces a "bad" reading, then the conditional distribution of objects
in S2 is the same as the original binomial distribution.

If at the beginning of some step, the conflicted and mystery sets are both empty
(i.e., we are faced only with a binomial set), we call this an "H-situation"; if the
conflicted set is not empty and the mystery set is empty, we call this a "G-situation"; if
the mystery set is not empty, we call this an "F-situation." By "resolving" a particular
situation we mean that we classify the unclassified portion of the population when we
are faced with that particular situation. Let H (n) be the expected number of group
tests needed to resolve an H-situation when the binomial set is of size n. Let G (m,n)
be the expected number of group tests needed to resolve a G-situation when the
conflicted set is of size m and the binomial set is of size n—m. Let x (H) and x(G)
be integers to be optimized later. The proposed group testing procedure is as follows:

CNC group testing procedure. If we have an H-situation, then a subset of the
binomial set of size x (H) is tested; if we have a G-situation, then a subset of the
conflicted set of size x (G) is tested; if we have an F-situation, then the entire mystery
set is tested. After each test, the binomial, conflicted, and mystery sets are updated
using the outcome of the test and Fact 3.1.

The operation of the protocol can be expressed as a pair of recursive equations
along with a set of boundary conditions. These equations are:

HMm) =1+ lmin {1 = a(x)IH(—x) + a(x)G(x,n)} for n>2,

<x<€n
(3.49)
Gmn) =1+ min {yGx,m)G(x,n)
1<x<m—1
+[1 — yG,m)1 + 6(x,m)G(m—x,n—x)
+ (1 = 8(x,m))Hm—m)]} for n>m>=3.
(3.5)
The boundary conditions are:
H() =0, (3.6)
G(0,n) = H(n), 3.7
G(Q2) =2, (3.8)
GQ2,n) =24H(”M-2) for n>3. (3.9)

Let integers x (H(n)) and x(G(m,n)) be the values of x that achieve the
minimization in (3.4) and (3.5). These integers define the procedure implicitly. They
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can be found by solving (3.4) and (3.5) recursively, starting with the boundary
conditions (3.6)-(3.9). If m is greater than 1, it is assumed that a subset of the
conflicted set of size x with 1<x<m—1 will be tested without mixing it with items
from the binomial set. This is referred to as the "nonmixing" rule. (Note: Consider a
G-situation where the conflicted set is of size two. In such a situation, the
defectiveness of the two members of the conflicted set can be deduced without any
further tests. However, in some applications this observation is not sufficient to satisfy
the objectives of that particular application. For example, in the communication
problem, the objective is to transmit the active users’ messages. In such application,
knowing that the pair of users are both active is not sufficient, and the algorithm has to
use two "steps" to transmit their messages. The above discussion explains why
G (2,2)=2 and similarly explains the 2 in expression for G (2,n). Conversely, there are
other applications where the knowledge of defectiveness of items is sufficient; in that
case G(2,2) should be zero and the 2 in the expression of G(2,n) should be
eliminated.)

The algorithm is initiated in an H-situation where the binomial set is of size M.
Hence, the performance of this algorithm is measured by H (M) which is given by
(3.4). Figure 1 shows H (M) as a function of p for M=64.

The rest of this section is devoted to a brief discussion of some of the properties
of the proposed algorithm. Let piyc(M) be the value of p where the above algorithm
adapts itself to testing groups of size one only. One of the interesting properties of
this algorithm is that pinc(M) = pinc = 1/7/2 independently of the original
population size [2]. It has also been shown that this algorithm is the optimum strategy
for p >1/v/2; i.e., if p>1/v/2, the best strategy in the sense of minimizing the expected
number of group tests is to test groups of size one only. The proof is given in [2] in
terms of the communication problem. Upper-bounds to the performance of the (yet
unknown) optimum strategy for CNC problem is a communication setting is given in
[2]. The above algorithm also outperforms algorithms based on binary tree search
techniques originally designed for the communication problem. A comparison of such
tree search algorithms and the above algorithm can be found in [6].

4. Success/Failure group testing. Consider the SF group test that was introduced
in Section 2. The SF test was also motivated by a problem in the area of random-
access communication systems [2]. A SF group testing problem is defined as follows:

DEFINITION 4.1. A Success/Failure (SF) group testing problem is concerned
with partitioning a population of size M into subsets such that each subset contains at
most one defective item. We associate independent Bernoulli (p, g=1—p) random
variables with each of the M objects, where p is the probability that an object is
defective. We have at our disposal a Success/Failure generalized binary group test,
T(1,1;G). The goal is to design efficient algorithms for correctly partitioning the
population.

Again, for finite M, the efficiency is defined in the sense of minimizing the
expected number of group tests.

We now propose and analyze an algorithm for the SF group testing. Consider
the setting where p is close to zero. Then, with high probability, a population of
objects does not include any defective. However, since the SF test is not capable of
distinguishing between a non-defective group and a conflicted group, a "bad" reading
could be misleading. This inefficiency suggests the introduction of an (M+1)st item
that we shall refer to as the "auxiliary" item. The auxiliary item is a defective item
that is always exclusively included (by the tester) in the first group to be tested, i.e.,
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when the algorithm is initiated. Therefore, when none of the "real" items are defective,
the auxiliary item is the only defective item. Hence, the auxiliary item transforms the
SF group test into a conventional (SN) group test for the first step of the algorithm.

We shall refer to the first step of the algorithm, when all M items are in a
binomial set, as an H-situation. If at some later step all of the unclassified items are
in a binomial set, we call it an "H -situation". Let H (M) be the expected number of
group tests needed to resolve an H -situation and let H (n) be the expected number of
group tests needed to resolve an H-situation when the binomial set is of size n. Let
x(H) and x(H) be integers to be optimized later. The proposed algorithm is as
follows:

SF group testing procedure. If an H-situation exists, test a subset of the
binomial set of size x (H). If this results in a "bad" reading, then the same x (H)
items are tested individually in the next x (H) tests, after which the size of the
binomial set is reduced by x (H). If, however, a "good" reading is obtained, the subset
does not require any more tests and the size of the binomial set is again reduced by
x(H). If an H-situation exists, then proceed as above except use x (H) instead of
x (H).

The role of the auxiliary item becomes clear by studying the following pair of
recursive equations describing the operation of the algorithm. These equations are:

HWM) =1+ min {"HWM—-x) + (1—¢*)[x+HM-x)1}, 4.1)
1Sx<M

H@m) =1+ mm {xpg*'H (n—x) + (1=xpg* HIx+H (n—x)1},

\x n
4.2)
with the boundary conditions
H©) = H(0) =0. (4.3)

Equation (4.1) represents the operation of the algorithm for the first step of the
algorithm where the auxiliary item is present. The next equation is for the remaining
steps where the auxiliary item is not being used.

The performance of this algorithm is shown in Figure 1 for M =64 as a function
of p. Note that the protocol performs better than testing individual items for small
values of p. Let psp(M) be the value of p at which the algorithm tests individual
items. The value of H (M) for this algorithm is equal to M +1 for p >psp(M), which
is one more than is required for testing individual items. This is due to the one test
used by the auxiliary user. Hence, a better strategy would be to use the proposed
algorithm for 0<p <pgr(M) and then test individual items without the help of the
auxiliary item for p >psr (M), where psr (M) is the value of p at which W(M)=M.
In contrast to the CNC and the conventional group testing, psp(M) depends on the
value of M. Note that a slightly better procedure can be obtained by deploying the
auxiliary item throughout the entire procedure; however, this may bring some hardship
for the tester. Upper-bounds to the performance of the (yet unknown) optimum
strategy for SN problem in a communication setting is given in [2].
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FIG. 1. Performance of the group testing procedures.
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ON THE EIGENVALUE PROBLEM FOR A CLASS OF BAND MATRICES
INCLUDING THOSE WITH TOEPLITZ INVERSES*

WILLIAM F. TRENCHY

Abstract. We study the eigenvalue problem for a class & of band matrices which includes as a proper
subclass all band matrices with Toeplitz inverses. Toeplitz matrices of this kind occur, for example, as
autocorrelation matrices of purely autoregressive stationary time series. A formula is given for the characteris-
tic polynomial p,(A) of an nth order matrix H, in ¥, with bandwidth k+1=n, as the ratio of kxk
determinants whose entries are polynomials in the zeros of a certain kth degree polynomial which is
independent of n and has one coefficient which depends upon A. The formula permits the evaluation of
p.(A) by means of a computation with complexity independent of n. Also given is a formula for the
eigenvectors in terms of these zeros and k coefficients which can be obtained by solving a k X kK homogeneous
system.

AMS(MOS) subject classification. 15A18

1. Introduction. We consider the eigenvalue problem for the class # of matrices
(1) H, = (hy,) 720,
defined as follows. Let
A(z)= Y az’, B(z)= 3 b.*,
v=0 w=0
where
2) aoby#0 and r+s=k<n,
and {h;,} are defined by the generating functions

2'A(z) ¥ b,z7*, 0=iss-—1,
n=0

n—1
Hi(z)= Y hy2 ={z'A(z)B(1/z), sSis=n-r-—1,
j=0

n—i—1
z‘B(1/z) ¥ a2’ n—-r=i=n-—1.
v=0
Explicitly,
(3) hl:in = cj—-l' - Z aj—i+vbu - Z bl'—j"“p,aﬂ,! Oé i’.] =n- l’
v=i+t+l p=n—i
if we define
P
4) a=0if I>rorl<0, b=0ifI>sorl<0, Y=0if g>p,
q
(5) ¢, =0 if v>rorv<-—s,
and
(6) C(z)=A(z)B(1/z2)= ¥ ¢,z2"

v=—5
* Received by the editors March 1, 1984, and in revised form December 5, 1984.
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The class  is connected with Toeplitz matrices; i.e., matrices of the form
T = (i) 7.
From (3) and (4),
Osiss—-land r=sj=n-1,
7 hjn,=¢_; if{orssi=n—-r-—1,
orn—r=i=n—-1land 0=j=n—-s-1;
thus, H, is quasi-Toeplitz (a term used in [7]) in that hy, is a function of j—i alone

except in the s X r submatrix in the upper left corner of H, and the r X s submatrix in
the lower right corner. Moreover, H, is banded; i.e.,

(®) hjn=0 ifj—i>rori—j>s,

from (3), (4), and (5).

Matrices in the class # have been encountered by the author [10] in connection
with prediction of stationary time series, and by Greville [4], [5], [6], in connection
with a smoothing problem. Greville and the author studied them in [7], and obtained
results which can be summarized as follows.

THEOREM 1 (Greville-Trench). The matrices H, (n> k) are invertible if and only

if A(z) and z°B(1/z) are relatively prime, in which case their inverses are the Toeplitz
matrices

H.'=T,=(dj-i)ij0 n>k,
where {¢;} is determined as follows: Obtain [¢,_i, ¢s_3, -, d_,] as the (unique)
solution of the k x k system
(@) T ady,=bs'se 0=j=s—1,
@ 7
(b) ”Z=o b.d_j+. =0, 1=sj=r,

and then compute

(10) ¢j = _agl gl av¢j—v3 JEs,

and

(11) ¢-—j=_b(;l Zl bu¢—j+u9 j=r
p=

Moreover, if H, (n> k) is a matrix of the form (1) such that (8) holds and H;" is a
Toeplitz matrix, then H, € .

Greville continued the investigation of these matrices in [2] and [3].
The main result of this paper reduces the evaluation of the characteristic poly-
nomial p,(A) of H, to finding the zeros of the polynomial

(12) P(z;A\)= Zr', 2" =z

p=-s

(which are obviously independent of n) and evaluating a kth order determinant whose
entries are polynomials in these zeros. The complexity of this representation of p,(A)
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depends only on k (cf. (2)), and is independent of n. Moreover, we give an explicit
formula for the eigenvectors of H, corresponding to a given eigenvalue, which depends
on k coefficients that can be obtained by solving a kth order homogeneous system
with complexity independent of n. The results are analogous to those obtained in [11]
for Toeplitz band matrices

(13) T,= (Cj—i)z,;lo,

where {c,} satisfies (5) and r+s=k<n. However, the arguments needed here are
considerably more complicated than those in [11].

Our results here are not restricted to the case where A(z) and z°B(1/z) are
relatively prime, so that H, is invertible; however, this case is especially important,
since Theorem 1 implies that the eigenvalue problems for invertible matrices in # and
for Toeplitz matrices with banded inverses are equivalent. Although there is a large
body of literature on inverting Toeplitz matrices and solving systems with Toeplitz
matrices, little has been published on approaches to the eigenvalue problem for these
matrices which take full advantage of their simple structure. (For examples, see
Grunbaum [8], [9]; Dini and Capovani [1]; and Trench [11].)

2. Preliminary definitions and lemmas. We take the underlying field to be the
complex numbers.

It can be seen from (7) and (8) that if r or s is zero, then H, is a triangular
Toeplitz matrix. Since the eigenvalue problem for such matrices is trivial, we assume
henceforth that (2) holds, and also that

(14) rsa,bs # 0.

Then rsc,c_ #0, so P(0; A)#0.

It was shown in [11] that there are at most k values of A for which P(z; A) has
fewer than k distinct 